CN1922511B - 窗口遮盖的后向反射器 - Google Patents

窗口遮盖的后向反射器 Download PDF

Info

Publication number
CN1922511B
CN1922511B CN2005800059945A CN200580005994A CN1922511B CN 1922511 B CN1922511 B CN 1922511B CN 2005800059945 A CN2005800059945 A CN 2005800059945A CN 200580005994 A CN200580005994 A CN 200580005994A CN 1922511 B CN1922511 B CN 1922511B
Authority
CN
China
Prior art keywords
window
depth
retroreflector
error
cube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2005800059945A
Other languages
English (en)
Other versions
CN1922511A (zh
Inventor
西蒙·拉布
劳伦斯·B.·布朗
罗伯特·E.·布里奇斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Faro Technologies Inc
Original Assignee
Faro Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Faro Technologies Inc filed Critical Faro Technologies Inc
Publication of CN1922511A publication Critical patent/CN1922511A/zh
Application granted granted Critical
Publication of CN1922511B publication Critical patent/CN1922511B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/74Systems using reradiation of electromagnetic waves other than radio waves, e.g. IFF, i.e. identification of friend or foe
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/12Reflex reflectors
    • G02B5/122Reflex reflectors cube corner, trihedral or triple reflector type

Abstract

示例性实施例可以实现为任何类型的无遮盖立方角锥后向反射器,球形安装后向反射器(SMR)即是其中一个实例。在许多进行计量测试的要素环境中,由于加工或其他工作活动,空气中混入了大量的颗粒物质。该物质能够覆盖立方角锥的玻璃表面(11)或聚集在玻璃表面之间的边缘处。当积聚了足够的物质时,入射到后向反射器的激光束可能反射时功率减弱或波阵面变形。立方角锥的玻璃表面应该清理干净。但是,如果清洁不当,玻璃表面可能被划伤。在一些情况下,难于清理积聚在相邻玻璃平面结合的顶点的物质。本发明(b)和(c)通过在后向反射器(33)上放置平面玻璃窗口(31)解决了这些难题。平面窗口可以用最少的劳动快速清洁并且如果被破坏容易替换。这增大了后向反射器保持清洁的可能性。

Description

窗口遮盖的后向反射器
发明背景
发明领域
本发明涉及例如可用于坐标测量的后向反射器目标。
背景技术
有一类仪器通过向与点接触的后向反射器目标发射激光束测量该点的坐标。该仪器通过测量到后向反射器目标的距离和两个角确定点的坐标。普通型的后向反射器目标包括嵌在金属球体内的立方角锥后向反射器,立方角锥的顶点在球体的中心。这类后向反射器目标通常称作球形安装后向反射器(SMR)。立方角锥后向反射器由三个相互垂直的面形成。这些面可以由三个垂直的镜面(无遮盖立方角锥)或玻璃棱镜的三个垂直表面(实心立方角锥)构成。
发明内容
实施方式包括调整激光后向反射器以补偿穿过后向反射器窗口的激光的方法,该方法包括:确定调整因数以补偿由于激光穿过后向反射器窗口导致的传播误差;根据调整因数调整后向反射器反射点的位置以最小化传播误差。
实施方式包括激光后向反射器装置,该装置包括:使激光穿过照射到后向反射器的窗口,位于后向反射器上用于在激光穿过窗口后反射激光的反射点,其中反射点位于所选位置以最小化由于激光穿过窗口引起的激光传播误差。
实施方式包括调整激光后向反射器以补偿穿过后向反射器窗口的激光的系统,该系统包括:确定调整因数以补偿由于激光穿过后向反射器窗口导致的传播误差的装置;根据调整因数调整后向反射器反射点的位置以最小化传播误差的装置。
实施方式包括一个或多个其中具有计算机可读指令的计算机可读介质,当计算机执行指令时,指令使计算机确定调整因数以补偿由于激光穿过后向反射器窗口导致的传播误差,并根据调整因数确定后向反射器反射点的位置以最小化传播误差。
附图说明
参考示例性而非限定性的附图,实施方式将仅通过实例的方式描述,图中相同的元件以相同的数字表示,其中:
图1(a)是现有技术的后向反射器。
图1(b)是后向反射器实施例的透视图。
图1(c)是图1(b)的后向反射器的剖视图。
图2(a)是后向反射器的原理图。
图2(b)是具有窗口的后向反射器的原理图。
图3是相对于角A1的径向误差曲线图。
图4是相对于角A1的横向误差曲线图。
图5是相对于角A1的径向误差曲线图。
图6是相对于角A1的横向误差曲线图。
具体实施方式
示例性实施例可以实现为任何类型的无遮盖立方角锥后向反射器,球形安装后向反射器(SMR)即是其实例之一。在许多进行计量测量的工厂环境中,由于加工或其他工作活动使大量颗粒物质混入空气。该物质覆盖立方角锥玻璃的表面或集中在玻璃表面之间的边缘处。当累积了足够的物质,入射到后向反射器的激光束可能反射时功率减弱或波阵面变形。立方角锥的玻璃表面应该清理干净。但是,如果清洁不当,玻璃表面可能被划伤。在一些情况下,难于清理积聚在相邻玻璃平面结合的顶点的物质。本发明通过在后向反射器上放置平面玻璃窗口克服了这些难点。平面窗口可以用最少的劳动快速清洁并且如果被破坏容易替换。这增大了后向反射器保持清洁的可能性,并因此降低了由于后向反射器变脏引起测量误差的可能性。
在立方角锥后向反射器上放置玻璃窗会导致一些潜在的问题。但是通过合理设计后向反射器组件,误差可以最小化。以下讨论这些设计技术。
图1(a)是传统SMR10的透视图,其包括无遮盖立方角锥后向反射器11、球体12和凸缘13。三个垂直镜面的表面相交的点称为立方角锥的顶点33。在传统的SMR10中,顶点33尽可能靠近球体12的中心放置。凸缘13提供对立方角锥后向反射器11的保护,其还提供方便操作员的手柄。
受保护的SMR的透视图如图1(b)所示,剖视图如图1(c)所示,其包括经修改的SMR主体25和保护外壳30。如传统SMR10一样,经修改的SMR主体25包括无遮盖立方角锥后向反射器11、球体12和凸缘13。但是,在经修改的SMR主体中立方角锥的顶点33从球的中心移开,其原因将在下面解释。保护外壳30包括窗口31和窗口支架32。
图2(a)是表示传统SMR10的一部分即无遮盖立方角锥后向反射器11的原理图。射入激光束40以相对于对称轴41的角A1进入无遮盖立方角锥后向反射器,其照射到立方角锥的顶点,在立方角锥的三个垂直镜面上反射,并向后回扫光束路径离开后向反射器。
图2(b)是表示无遮盖立方角锥后向反射器11和受保护SMR20的一部分窗口31的原理图。在图中夸大了窗口的厚度T以更清晰地表示玻璃内光线的弯曲。激光束40以相对于对称轴41的角A1进入窗口31。当激光束40进入窗口31时,其向内弯向窗口表面的法线。当其穿过窗口到达空气时,其远离窗口表面的法线向外弯曲,恢复到原始角度A1。如果没有窗口,激光通过的路径42如虚线所示。当有窗口31时,有窗口的激光束路径40与没有窗口的激光束路径42不重合。
对称轴41与路径42的交叉点43以“X”标记。该点应该保持靠近球体的中心。这确保了无论SMR的方位(即角A1)如何变化跟踪器始终测量空间中的同一点。为了获得最佳的性能,立方角锥的顶点33应调整为偏离球体的中心,如图2(b)所示。如果角A1很小,则近似值至少为d=T(1-1/n),其中T是窗口厚度,n是窗口折射率。
通过调整球体12内的立方角锥11而最小化测量径向和横向距离的误差从而实现受保护SMR20的最佳设计。径向距离沿径向测量,径向是从测量仪器到SMR的方向。横向距离沿位于SMR且垂直于径向的平面测量。受保护SMR径向误差ΔR为
ΔR=2[nT/cos(A2)+H/cos(A1)-(nT+H+L)]  (1)
距离L如图2(b)所示。为了求出L,从点43到激光束40与窗口31相交的点G画弧线,找到弧线与法线41相交的点F。从点F到窗口的距离是
L=(T+H-d)/cos(A1)-(T+H-d)              (2)
从顶点33到点F的光学距离是nT+H+L,其是式(1)中的最后一项。往返光学路径是该值的两倍,其说明了式(1)前的系数2。从顶点33到点G的光学距离是nT/cos(A2)+H/cos(A1)。这些项也可以在式(1)中找到。如果窗口31不引起径向测量中的误差,则从点33到G的光学距离应当等于从点33到F的光学距离,且式(1)中的径向误差ΔR应当为零。通过选择与球体中心相关的顶点33的深度d,能够变化距离L和式(1)中对应的误差ΔR。通过合理选择距离d,误差ΔR能够最小化。
受保护SMR的横向误差ΔD是
ΔD=Tsin(A1-A2)/cos(A2)-d sin(A1)。                (3)
式(3)中的第一项代表玻璃窗口31引起的激光束40远离对称轴41的弯曲。第二项代表由于激光束越过点43而向对称轴41的方向传播并到达点33。式(3)中的第二项可以抵消第一项。通过合理选择距离d,第二项的大小可以调整以最小化误差ΔD。
对于给定的角A1,d的特定值使径向误差最小,而不同的值使横向误差最小。且最优的深度d随着角A1变化。图形方式有助于在整个角度范围内选择最优的深度d。例如,假设受保护SMR具有下列特性:T=1mm,H=21mm,n=1.5。窗口支架32的清晰孔径确定了可能的角A1的范围。在本例中,假设A1可以从0度变化到25度(即周角是50度)。使用公式(1)、(2)和(3)及斯涅耳(Snell)定律,sin(A1)=n sin(A2),对不同深度d,径向和横向误差是角A1的函数。根据调整因数k可以方便地给出深度d:
d=T(1-1/n)k                                           (4)
最优的调整因数k对小角度接近于1,对较大的角度更大一些。
图3和4分别表示径向和横向误差的结果。从图中可以看出k=1.09给出了小于5微米的最大径向和横向误差。这接近于最优值,因为其给出了比k=1.07或k=1.11小的最大误差。从公式(4)中可以得出对应的深度d=0.363毫米。
在另一优选实施例中,T=1mm,n=1.51509,k=1.0908及d=0.3708mm。
图5和6示出了径向和横向精确度的提高。这些图中,如传统SMR10一样,顶点33位于球体12的中心,这是k=0的情况。图5和6分别表示最大径向和横向误差分别是约80和155微米。可见,通过优化顶点33的深度d,最大误差已经缩小了一个数量级。
本发明的功能可以在软件、固件、硬件或其某种结合中实现。作为示例,本发明的一个或多个方面可以包含在一件具有例如计算机可用介质的产品(如一个或多个计算机程序产品)中。该介质中具有用于例如提供和简化本发明功能的计算机可读程序代码装置。一件产品可以作为一部分包含在计算机系统中或单独售出。
此外,还提供了至少一个机器可读计算机存储装置,其明确包含至少一个机器可执行指令组成的程序以完成本发明的功能。
在不背离本发明的精神和范围的情况下,对窗口遮盖的立方角锥后向反射器作出各种修改和变化对于本领域的普通技术人员是显而易见的。

Claims (4)

1.调整球形安装后向反射器SMR内的立方角锥顶点深度的方法,所述深度调整部分地补偿由激光束穿过SMR的窗口导致的径向和横向误差,所述方法包括:
选择将要评估的深度d的多个数值,其中深度d定义为从SMR的中心到立方角锥顶点的距离;
选择激光束在玻璃窗口上的入射角A1的范围;
在所选的入射角的范围内针对每一个值d将因玻璃窗口导致的径向误差ΔR和横向误差ΔD计算为入射角A1的函数;
基于前述计算结果选择深度d的值,所述深度d的值提供径向误差ΔR和横向误差ΔD的最小绝对值误差;及
将球形安装后向反射器SMR内的立方角锥顶点的深度调整为所选d值。
2.根据权利要求1所述的方法,其中针对具体的深度d和具体的入射角A1计算径向误差ΔR进一步包括:
以第一等式ΔR=2[nT/cos(A2)+H/cos(A1)-(nT+H+L)]开始,其中T为窗口的厚度,n为窗口的折射率,及H为从窗口内缘到立方角锥顶点的距离;
通过以第二等式L=(T+H-d)/cos(A1)-(T+H-d)进行替代从第一等式中消去参量L;
使用第三等式sin(A2)=sin(A1)/n从第一和第二等式的结合中消去参量A2,从而获得ΔR的合成等式,其中消去了参量H;及
以数值替代合成等式中的T、n、A1和d从而获得ΔR的值。
3.根据权利要求1所述的方法,其中深度d设为等于T(1-1/n)k,其中T是窗口厚度,n是窗口折射率,k=1.0908。
4.根据权利要求3所述的方法,其中T=1毫米、n=1.51509及d=0.3708毫米。
CN2005800059945A 2004-02-24 2005-02-17 窗口遮盖的后向反射器 Expired - Fee Related CN1922511B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US54731104P 2004-02-24 2004-02-24
US60/547,311 2004-02-24
PCT/US2005/005058 WO2005083477A1 (en) 2004-02-24 2005-02-17 Retroreflector covered by window

Publications (2)

Publication Number Publication Date
CN1922511A CN1922511A (zh) 2007-02-28
CN1922511B true CN1922511B (zh) 2010-09-22

Family

ID=34910883

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2005800059945A Expired - Fee Related CN1922511B (zh) 2004-02-24 2005-02-17 窗口遮盖的后向反射器

Country Status (7)

Country Link
US (1) US7388654B2 (zh)
EP (1) EP1719001B1 (zh)
JP (1) JP4842249B2 (zh)
CN (1) CN1922511B (zh)
AT (1) ATE504018T1 (zh)
DE (1) DE602005027180D1 (zh)
WO (1) WO2005083477A1 (zh)

Families Citing this family (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070269098A1 (en) * 2006-05-19 2007-11-22 Marsh Bobby J Combination laser and photogrammetry target
DE102006031580A1 (de) 2006-07-03 2008-01-17 Faro Technologies, Inc., Lake Mary Verfahren und Vorrichtung zum dreidimensionalen Erfassen eines Raumbereichs
TWI323242B (en) * 2007-05-15 2010-04-11 Ind Tech Res Inst Package and packageing assembly of microelectromechanical system microphone
TWI370101B (en) * 2007-05-15 2012-08-11 Ind Tech Res Inst Package and packaging assembly of microelectromechanical sysyem microphone
WO2009058890A2 (en) * 2007-10-29 2009-05-07 Cubic Corporation Resonant quantum well modulator driver
US7859675B2 (en) * 2007-11-06 2010-12-28 Cubic Corporation Field test of a retro-reflector and detector assembly
US9482755B2 (en) 2008-11-17 2016-11-01 Faro Technologies, Inc. Measurement system having air temperature compensation between a target and a laser tracker
US9551575B2 (en) 2009-03-25 2017-01-24 Faro Technologies, Inc. Laser scanner having a multi-color light source and real-time color receiver
DE102009015920B4 (de) 2009-03-25 2014-11-20 Faro Technologies, Inc. Vorrichtung zum optischen Abtasten und Vermessen einer Umgebung
DE102009057101A1 (de) 2009-11-20 2011-05-26 Faro Technologies, Inc., Lake Mary Vorrichtung zum optischen Abtasten und Vermessen einer Umgebung
US9113023B2 (en) 2009-11-20 2015-08-18 Faro Technologies, Inc. Three-dimensional scanner with spectroscopic energy detector
US9210288B2 (en) 2009-11-20 2015-12-08 Faro Technologies, Inc. Three-dimensional scanner with dichroic beam splitters to capture a variety of signals
US9529083B2 (en) 2009-11-20 2016-12-27 Faro Technologies, Inc. Three-dimensional scanner with enhanced spectroscopic energy detector
US8630314B2 (en) 2010-01-11 2014-01-14 Faro Technologies, Inc. Method and apparatus for synchronizing measurements taken by multiple metrology devices
US8875409B2 (en) 2010-01-20 2014-11-04 Faro Technologies, Inc. Coordinate measurement machines with removable accessories
US9163922B2 (en) 2010-01-20 2015-10-20 Faro Technologies, Inc. Coordinate measurement machine with distance meter and camera to determine dimensions within camera images
US9628775B2 (en) 2010-01-20 2017-04-18 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
CN102713499B (zh) 2010-01-20 2014-07-09 法罗技术股份有限公司 用于坐标测量设备的配重
US9607239B2 (en) 2010-01-20 2017-03-28 Faro Technologies, Inc. Articulated arm coordinate measurement machine having a 2D camera and method of obtaining 3D representations
US8615893B2 (en) 2010-01-20 2013-12-31 Faro Technologies, Inc. Portable articulated arm coordinate measuring machine having integrated software controls
US8677643B2 (en) 2010-01-20 2014-03-25 Faro Technologies, Inc. Coordinate measurement machines with removable accessories
US8898919B2 (en) 2010-01-20 2014-12-02 Faro Technologies, Inc. Coordinate measurement machine with distance meter used to establish frame of reference
US9879976B2 (en) 2010-01-20 2018-01-30 Faro Technologies, Inc. Articulated arm coordinate measurement machine that uses a 2D camera to determine 3D coordinates of smoothly continuous edge features
JP5615382B2 (ja) 2010-01-20 2014-10-29 ファロ テクノロジーズ インコーポレーテッド マルチバスアーム技術を用いた可搬型の関節アーム座標測定機
US8832954B2 (en) 2010-01-20 2014-09-16 Faro Technologies, Inc. Coordinate measurement machines with removable accessories
CN102782442A (zh) 2010-01-20 2012-11-14 法罗技术股份有限公司 具有被照亮的探针端的坐标测量机及操作方法
US9772394B2 (en) 2010-04-21 2017-09-26 Faro Technologies, Inc. Method and apparatus for following an operator and locking onto a retroreflector with a laser tracker
US9377885B2 (en) 2010-04-21 2016-06-28 Faro Technologies, Inc. Method and apparatus for locking onto a retroreflector with a laser tracker
US9400170B2 (en) 2010-04-21 2016-07-26 Faro Technologies, Inc. Automatic measurement of dimensional data within an acceptance region by a laser tracker
US8537371B2 (en) 2010-04-21 2013-09-17 Faro Technologies, Inc. Method and apparatus for using gestures to control a laser tracker
US8422034B2 (en) 2010-04-21 2013-04-16 Faro Technologies, Inc. Method and apparatus for using gestures to control a laser tracker
US8619265B2 (en) 2011-03-14 2013-12-31 Faro Technologies, Inc. Automatic measurement of dimensional data with a laser tracker
US8724119B2 (en) 2010-04-21 2014-05-13 Faro Technologies, Inc. Method for using a handheld appliance to select, lock onto, and track a retroreflector with a laser tracker
DE102010020925B4 (de) 2010-05-10 2014-02-27 Faro Technologies, Inc. Verfahren zum optischen Abtasten und Vermessen einer Umgebung
WO2012033892A1 (en) 2010-09-08 2012-03-15 Faro Technologies, Inc. A laser scanner or laser tracker having a projector
US9168654B2 (en) 2010-11-16 2015-10-27 Faro Technologies, Inc. Coordinate measuring machines with dual layer arm
GB2503153B (en) * 2011-02-14 2015-03-25 Faro Tech Inc Cube corner retroreflector for measuring six degrees of freedom
GB2518998A (en) * 2011-03-03 2015-04-08 Faro Tech Inc Target apparatus and method
US9482529B2 (en) 2011-04-15 2016-11-01 Faro Technologies, Inc. Three-dimensional coordinate scanner and method of operation
WO2012141868A1 (en) 2011-04-15 2012-10-18 Faro Technologies, Inc. Enhanced position detector in laser tracker
US9686532B2 (en) 2011-04-15 2017-06-20 Faro Technologies, Inc. System and method of acquiring three-dimensional coordinates using multiple coordinate measurement devices
US9164173B2 (en) 2011-04-15 2015-10-20 Faro Technologies, Inc. Laser tracker that uses a fiber-optic coupler and an achromatic launch to align and collimate two wavelengths of light
DE102012100609A1 (de) 2012-01-25 2013-07-25 Faro Technologies, Inc. Vorrichtung zum optischen Abtasten und Vermessen einer Umgebung
US9638507B2 (en) 2012-01-27 2017-05-02 Faro Technologies, Inc. Measurement machine utilizing a barcode to identify an inspection plan for an object
US8997362B2 (en) 2012-07-17 2015-04-07 Faro Technologies, Inc. Portable articulated arm coordinate measuring machine with optical communications bus
US9513107B2 (en) 2012-10-05 2016-12-06 Faro Technologies, Inc. Registration calculation between three-dimensional (3D) scans based on two-dimensional (2D) scan data from a 3D scanner
US10067231B2 (en) 2012-10-05 2018-09-04 Faro Technologies, Inc. Registration calculation of three-dimensional scanner data performed between scans based on measurements by two-dimensional scanner
DE102012109481A1 (de) 2012-10-05 2014-04-10 Faro Technologies, Inc. Vorrichtung zum optischen Abtasten und Vermessen einer Umgebung
US9041914B2 (en) 2013-03-15 2015-05-26 Faro Technologies, Inc. Three-dimensional coordinate scanner and method of operation
CN103207422A (zh) * 2013-04-02 2013-07-17 中国科学院光电研究院 光学角反射靶球及其制造方法
US9329028B2 (en) 2013-12-11 2016-05-03 Faro Technologies, Inc. Spherically mounted retroreflector having an embedded temperature sensor and socket
US9239238B2 (en) * 2013-12-11 2016-01-19 Faro Technologies, Inc. Method for correcting a 3D measurement of a spherically mounted retroreflector on a nest
US9347767B2 (en) 2013-12-11 2016-05-24 Faro Technologies, Inc. Spherically mounted retroreflector and method to minimize measurement error
US9121689B2 (en) 2013-12-11 2015-09-01 Faro Technologies, Inc. Method for correcting a spherically mounted retroreflector when resetting a distance meter
US8947678B2 (en) * 2013-12-11 2015-02-03 Faro Technologies, Inc. Method for correcting three-dimensional measurements of a spherically mounted retroreflector
US9423492B2 (en) 2013-12-11 2016-08-23 Faro Technologies, Inc. Method for finding a home reference distance using a spherically mounted retroreflector
US9074869B2 (en) * 2013-12-11 2015-07-07 Faro Technologies, Inc. Method for measuring 3D coordinates of a spherically mounted retroreflector from multiple stations
US9690017B2 (en) * 2014-03-31 2017-06-27 Faro Technologies, Inc. Spherically mounted retroreflector and method of making the same
US9395174B2 (en) 2014-06-27 2016-07-19 Faro Technologies, Inc. Determining retroreflector orientation by optimizing spatial fit
WO2016073208A1 (en) 2014-11-03 2016-05-12 Faro Technologies, Inc. Method and apparatus for locking onto a retroreflector with a laser tracker
US9632219B2 (en) * 2015-03-26 2017-04-25 Faro Technologies, Inc. Spherically mounted retroreflector that includes a replicated cube corner
DE102015122844A1 (de) 2015-12-27 2017-06-29 Faro Technologies, Inc. 3D-Messvorrichtung mit Batteriepack
CN109691076B (zh) 2016-09-07 2022-03-18 惠普发展公司,有限责任合伙企业 一种边缘感测装置及系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5327216A (en) * 1992-09-18 1994-07-05 Shell Oil Company Apparatus for remote seismic sensing of array signals using side-by-side retroreflectors
US5355241A (en) * 1991-12-09 1994-10-11 Kelley Clifford W Identification friend or foe discriminator

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH038715A (ja) * 1989-06-06 1991-01-16 Showa Denko Kk 微粒水酸化アルミニウム
JPH064256Y2 (ja) * 1989-06-10 1994-02-02 株式会社ソキア 反射鏡装置
JPH03225220A (ja) * 1990-01-30 1991-10-04 Nikon Corp 光波測距儀用反射光学装置
FR2717271B1 (fr) * 1994-03-10 1996-07-26 Aerospatiale Cible rétroréflectrice pour télémétrie laser.
DE19602327C2 (de) * 1996-01-24 1999-08-12 Leica Geosystems Ag Meßkugel-Reflektor
EP1407291B1 (en) * 2001-04-10 2010-12-15 Faro Technologies Inc. Chopper-stabilized absolute distance meter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5355241A (en) * 1991-12-09 1994-10-11 Kelley Clifford W Identification friend or foe discriminator
US5327216A (en) * 1992-09-18 1994-07-05 Shell Oil Company Apparatus for remote seismic sensing of array signals using side-by-side retroreflectors

Also Published As

Publication number Publication date
EP1719001A1 (en) 2006-11-08
JP4842249B2 (ja) 2011-12-21
ATE504018T1 (de) 2011-04-15
CN1922511A (zh) 2007-02-28
US7388654B2 (en) 2008-06-17
EP1719001B1 (en) 2011-03-30
US20050185182A1 (en) 2005-08-25
JP2007523357A (ja) 2007-08-16
DE602005027180D1 (de) 2011-05-12
WO2005083477A1 (en) 2005-09-09

Similar Documents

Publication Publication Date Title
CN1922511B (zh) 窗口遮盖的后向反射器
US7818889B2 (en) Target object used for retroreflexion of optical radiation
CN1071898C (zh) 测量球-反射器
EP1190215B1 (en) Measuring angles of wheels using transition points of reflected laser lines
US5771099A (en) Optical device for determining the location of a reflective target
US8827469B2 (en) Two-sided reflector and two-sided target object
AU669513B2 (en) Method and apparatus for determining the optical properties of a lens
CN110927965B (zh) 用于补偿因光线偏折产生误差的补偿透镜的设计方法
US6123427A (en) Arrangement for retroreflection of a ray using triple prisms
CN1474956A (zh) 设计隐形眼镜的方法
US20120013918A1 (en) Optical Receiver Lens and Optical Distance Measuring Device
RU2384812C1 (ru) Автоколлиматор для измерения угла скручивания
CN209263941U (zh) 一种具有角度投线功能的角度尺
CN106066529A (zh) 一种大视场折反式测量光学系统
EP4155668B1 (en) Target object with improved angular incidence range for retroreflection
JPH10206159A (ja) 測量機用ターゲット
CN205982799U (zh) 一种大视场折反式测量光学系统
US11852464B2 (en) Chromatic confocal sensor with imaging capability for 6-axis spatial allocation calibration
EP4343272A1 (en) Sensor with curved reflector
CN202329612U (zh) 一种激光电子标靶
CN116358842B (zh) 基于机械臂的大口径光学元件表面缺陷检测方法及装置
DE102019102063B4 (de) Verfahren zum Vermessen einer Oberflächentopographie eines Prüflings und Oberflächentopographie-Messvorrichtung
JPH07333412A (ja) リトロリフレクター
Aamdal Single camera system for close range industrial photogrammetry
RU2315965C2 (ru) Способ измерения параметров оптических систем

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100922

Termination date: 20170217