CN1922461B - 封装的交换装置及其制造方法 - Google Patents

封装的交换装置及其制造方法 Download PDF

Info

Publication number
CN1922461B
CN1922461B CN2004800419560A CN200480041956A CN1922461B CN 1922461 B CN1922461 B CN 1922461B CN 2004800419560 A CN2004800419560 A CN 2004800419560A CN 200480041956 A CN200480041956 A CN 200480041956A CN 1922461 B CN1922461 B CN 1922461B
Authority
CN
China
Prior art keywords
fluid
housing
hollow
switch
hollow tubing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2004800419560A
Other languages
English (en)
Other versions
CN1922461A (zh
Inventor
查·P·多
约瑟夫·E·史密斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Entegris Inc
Original Assignee
Mykrolis Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mykrolis Corp filed Critical Mykrolis Corp
Publication of CN1922461A publication Critical patent/CN1922461A/zh
Application granted granted Critical
Publication of CN1922461B publication Critical patent/CN1922461B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/06Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material
    • F28F21/067Details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/021Manufacturing thereof
    • B01D63/022Encapsulating hollow fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/031Two or more types of hollow fibres within one bundle or within one potting or tube-sheet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/003Membrane bonding or sealing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • B01D69/087Details relating to the spinning process
    • B01D69/088Co-extrusion; Co-spinning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0015Heat and mass exchangers, e.g. with permeable walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/08Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/08Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag
    • F28D7/082Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag with serpentine or zig-zag configuration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/006Tubular elements; Assemblies of tubular elements with variable shape, e.g. with modified tube ends, with different geometrical features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/06Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material
    • F28F21/062Constructions of heat-exchange apparatus characterised by the selection of particular materials of plastics material the heat-exchange apparatus employing tubular conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/04Arrangements for sealing elements into header boxes or end plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/10Temperature control
    • B01D2311/103Heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/34Energy carriers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Geometry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

本发明涉及包括空心导管或空心多孔薄膜的封装交换装置,其中壳体包括凹进的沟或槽。凹进的沟或槽在封装工艺过程中由封装材料填充并与封装材料形成一体的末端结构。在壳体内侧形成的槽或沟在较宽范围的机械和热力条件下保持封装材料与壳体的完整性。

Description

封装的交换装置及其制造方法
相关申请的交叉引用
本申请要求2003年12月22日提交的系列号为60/531,666的美国临时申请和2004年7月7日提交的系列号为60/586,363的美国临时申请的权益和优先权,每个申请的内容在此全部引入作为参考。
技术领域
本发明涉及一种封装的交换装置及其制造方法。
背景技术
空心纤维和薄壁空心管已知被用在质量传递、热交换以及横向流动式颗粒过滤装置上。在这些应用中空心管或多孔纤维提供了较高的表面-体积比,从而以比用类似成分的平板材料制成的装置更小的体积进行更高的热量和质量传递。
空心纤维或空心管包括外径和外表面、内径和内表面、以及在管或纤维的第一和第二表面或侧面之间的多孔或无孔材料。内径限定了纤维或管的中空部并用于运送流体之一。对于所称的管侧接触,第一流体相流过有时被称为内腔的中空部并与环绕管或纤维的第二流体相保持分隔。在外壳侧接触中,第一流体相环绕管或纤维的外径和外表面并且第二流体相流过内腔。在交换装置中,封装密度与在装置中可用的有效空心纤维或空心管的数量有关。
在采用液体加热或冷却的情况下,半导体制造上应用的实例包括硫酸和过氧化氢光致抗蚀剂剥离溶液、用于氮化硅和铝金属蚀刻溶液的热磷酸、氢氧化铵和过氧化氢SC1洗涤液、盐酸和过氧化氢SC2洗涤液、热去离子水洗液、以及加热有机胺基的光致抗蚀剂剥离剂。与流体的质量交换例如在过滤过程中从流体中清除颗粒、将类似臭氧或氢的气体加入水中、或将类似氧气的溶解气体从流体例如铜电镀液中清除的情况下很重要。
交换装置一直通过利用烧结在外壳的内径表面上的薄层封装材料制备外壳或壳体而得到封装。包括空心纤维介质的装置组件随后通过以下步骤得到封装,即用热塑性树脂包围组件,并在受控环境中升高温度以熔化树脂,由此使在装置一端环绕介质的空间被填充。树脂充分地流入外壳内以密封介质并粘附到已经在较早的步骤中烧结有封装材料的外壳的侧壁上。以前采用的其它封装方法包括:在外壳外部用空心管封装该装置并对封装区进行机械加工以形成接合面并将封装材料热接合在壳体上;在外壳外部用管对装置进行封装,对封装区进行机械加工以形成配合凸缘和密封表面,它们可采用O形圈或其它接触密封方法与外壳机械连接,这些部件可通过扣环、螺纹紧固件和/或辅助接合操作被固定在一起。另外的方法包括:在每个纤维中插入销、封装组件并在封装后取出销。一些交换装置通过用粘合剂填充内腔内径并在封装和机械加工后排出粘合剂而制成。
发明内容
本发明的实施方式是包括粘结在一个或多个热塑性封装空心导管上的壳体、外壳或套管的交换装置,所述壳体、外壳或套管可包括例如在壳体表面上的槽或沟的结构。当存在槽时,热塑性封装材料对壳体表面上的槽的至少一部分进行填充并粘结在所述槽的一部分上以与封装空心导管形成一体的末端结构。该一体的末端结构随后被切开以在装置的每个封装末端露出导管的中空部。所述结构是封装装置可以被用在更高的温度和压力下同时保持封装装置的流体完整性。本发明的交换装置和用于制造它们的方法包括需要降工作介质封装在包含工艺流体的壳体内的任何装置,包括但不局限于完全粘结的薄膜接触器、气体接触器、臭氧接触器、脱气器、热交换器、加热器、气体洗涤器、空心纤维过滤器、以及它们的组合。该装置可采用热塑性材料包括全氟化热塑性材料制成。优选地交换装置由一个或多个全氟化热塑性材料制成。
本发明通过在封装材料和例如在壳体外壳上的沟或槽之类的结构之间形成机械互锁和/或熔合粘结而提高了所述封装装置的强度。互锁和/或粘结作为在密封表面上具有机械强度的模制件,防止了配合部分的分离。槽和它们的附加表面区域(它们中的一些不与壳体壁平行)促使封装树脂在槽的表面的至少一部分上的熔合和粘附。理论上不希望槽和它们的附加表面区域被粘结,可以相信这一粘结增加了通过壳体外壳的热或压力膨胀形成的径向力的剪切分量。该剪切分量被认为是提高了装置的强度。
本发明的一种实施方式是一种包括热塑性壳体的交换装置,所述热塑性壳体具有一个或多个热塑性空心导管,所述空心导管可包括空心管、多孔空心纤维、或它们的组合,它们通过热塑性树脂被流体密封在壳体或套管的至少一端。热塑性树脂通过熔合和/或机械粘结流体密封在诸如在壳体上的突起、槽、或它们的组合之类的一个或多个结构上的壳体的一个端部。壳体的这些结构和树脂形成了一体的末端结构,其中树脂、导管、以及壳体在壳体的一部分上熔合。一体的末端结构可以被机械加工或切割以打开导管的中空部。交换装置可具有在包括槽的表面的壳体内侧的烧结热塑性涂层。交换装置壳体可包括与外壳侧流体连通的流体接头和与装置的内腔或孔侧流体连通的流体接头。交换装置由多种热塑性材料制成,优选的热塑性材料是例如但不局限于FEP、PFA、MFA或它们的组合的全氟化聚合物。交换装置可包括但不局限于封装导管,所述封装导管可以是空心管、多孔空心纤维、带皮空心纤维、热塑性管、共挤成形空心管或它们的组合。优选地封装空心管的末端通过在封装工艺之后进行的切割而被开口。封装树脂与壳体槽的机械互锁和/或熔合起到了将外壳和封装区域附连在一起的作用,尤其是在由于温度或压力而受到应力作用时。降低了壳体大于封装材料的膨胀或收缩,保持组件(壳体、封装材料以及空心导管)完整。
本发明的另一实施方式是一种包括热塑性壳体的交换装置,所述热塑性壳体具有封装在热塑性树脂中的一个或多个流体密封的空心导管,其中热塑性树脂占据了壳体内表面上的一个或多个槽的容积。在封装过程中,槽和树脂与空心导管形成了一体的末端结构,其中热塑性树脂和壳体熔合在槽的一部分上并且树脂和空心导管熔合以形成一体的末端结构。壳体内表面和槽可涂有烧结的热塑性材料,封装树脂可熔合在所述烧结的热塑性材料上。封装的空心导管可通过对该一体末端结构的一部分进行切割或机械加工而被开口以露出导管内腔。优选地交换装置被构造成使得流体接触表面被全氟化,更优选地交换装置由全部全氟化热塑性材料构成。
本发明的另一实施方式是一种用于与被用作清洗或涂覆基片的工艺流体交换能量或质量的设备。该设备可包括具有一个或多个热塑性空心导管的交换装置,所述空心导管在导管的第一端部熔合在热塑性树脂上。热塑性树脂可熔合在第一套管的内表面上或热塑性壳体的第一末端,或者熔合在第一套管内表面上的一个或多个结构上或熔合在热塑性壳体的第一末端上。热塑性空心导管的第二端部与热塑性树脂熔合。热塑性树脂可熔合在第二套管的内表面上或热塑性壳体的第二末端上,或者树脂熔合在第二套管内表面上的一个或多个结构上或热塑性壳体的第二末端上的结构上。工作或交换流体的供给源与交换设备的第一流体入口相连并且工艺流体的供给源与交换设备的第二流体入口相连。第一和第二流体入口通过空心管壁并通过粘结在壳体或套管上的封装材料分隔。与交换装置的第二流体入口流体连通的流体控制器可被用于向待由所述设备处理的一个或多个基片提供可控量的调节流体。流体控制器可向包含一个或多个基片的容器或溢流室提供调节流体或者其可直接向静止的、旋转的或平移的基片提供调节流体。流体控制器可以是但不局限于流体泵、分配泵或液体流量控制器。优选地交换流体是温控流体源。优选地待处理的基片包括硅。
本发明的另一实施方式是一种包括热塑性壳体的交换装置,所述热塑性壳体具有封装在热塑性树脂中的一个或多个流体密封空心导管。交换装置可包括一个或多个共挤成形热塑性空心导管,所述空心导管优选具有壳体或者一个或多个套管,其中空心导管通过诸如在壳体中的突起、槽或它们的组合之类的一个或多个结构粘结在壳体的一部分上。树脂可占据在壳体内表面上的一个或多个槽的容积并粘结在表面上。可以是槽的所述结构与树脂形成具有空心导管的一体末端结构,其中树脂和壳体熔合在槽的一部分或壳体上的涂层上以与一个或多个空心导管形成一体的末端密封。所述装置可被用于处理流体同时在热塑性材料的熔点或连续使用温度以下的温度下保持装置的流体完整性,例如在壳体和封装树脂或空心导管和树脂之间的粘结。这一温度可以取决于在空心导管壁任意一侧的流体压力。所述装置可被用于处理流体同时在至少50℃、优选至少140℃、更优选200℃以及最优选200℃或更大但在热塑性材料的熔点或连续使用温度以下的温度下保持装置的流体完整性,例如壳体和封装树脂或空心导管和树脂之间的粘结。优选地当流体压力在至少10磅/平方英寸(表压)、优选至少50磅/平方英寸(表压)、以及更优选70磅/平方英寸(表压)或更大的压力下时交换装置在所述这些温度下保持其流体完整性。对空心导管的封装密度是按体积的3%-99%、优选是按体积的20%-70%并且更优选是按体积的40%-60%的交换设备而言可以保持装置的完整性。
本发明的另一实施方式是一种制造交换装置的方法,所述方法包括使热塑性材料在壳体或套管的端部内流动,壳体或套管可选择地具有诸如在壳体或套管的内表面上的突起、槽或它们的组合之类的结构;热塑性材料在位于壳体或套管内的一个或多个空心导管之间流动。壳体中的槽可通过沿壳体或套管的表面或轴线的其他槽或排气沟互相连通。所述方法还包括在热塑性材料和空心导管之间形成不透流体的密封以及在热塑性封装树脂和壳体之间形成不透流体的密封以形成一体的末端结构。在采用槽时,优选地热塑性封装树脂占据壳体或套管中的槽的至少一部分,并且甚至更优选地是树脂与槽的一部分或涂覆壳体和槽表面的烧结的热塑性材料熔合。导管的中空部可以被切开或被机械加工以使流体可以流过空心导管。优选地壳体具有能够与在一个或多个壳体表面上的封装树脂熔合的热塑性材料涂层。
本发明的另一实施方式是一种处理流体的方法,所述方法包括使待处理的工艺流体在具有两侧面和介于它们之间的热塑性壁的至少一个空心导管的第一侧上流动,空心导管以不透流体的方式封装在热塑性材料内。热塑性封装材料粘结在用于装置的壳体上,壳体具有烧结、共挤成形、或模制在内表面的至少一部分上、一个或多个结构的一部分上、或它们的组合上的热塑性材料,热塑性材料可与封装树脂熔合。当在壳体上存在槽时,壳体槽的至少一部分粘结在热塑性材料上以在热塑性材料、空心导管以及壳体之间形成不透流体的密封。所述方法包括通过使交换或工作流体在空心导管的第二侧流动而与待处理的工艺流体交换能量、质量或它们的组合。能量、质量或它们的组合通过空心导管壁被传递到工艺流体或从工艺流体传递到交换流体。空心导管可以是一个或多个无孔空心管、带皮或不带皮的多孔空心纤维、共挤成形无孔空心管、共挤成形多孔空心管、或它们的组合。
在本发明实施方式中的交换装置的有利之处在于诸如槽之类的结构使空心导管可以粘结在壳体或套管上并使产生或溶解并在热塑性树脂熔体内聚结形成气泡的气体可以排出。热塑性树脂优选是全氟化热塑性树脂,其在大于大约100℃的温度下熔化。在本发明交换装置中采用的热塑性材料在封装工艺过程中熔合在空心导管的一部分上并熔合在壳体或槽上。本发明的交换装置可由粘结在一起的全部全氟化材料制成以消除对机械锁定销、硅树脂以及其它非全氟化聚合粘结树脂的需要。此外,本发明的交换器消除了对粘结在壳体上的加强肋的需要。消除加强肋降低了制造成本而且还可以在装置内采用大量的空心导管,从而产生更高的接触表面面积和封装密封以提高传递性能和效率。通过在本发明的交换装置中在空心导管所粘结的壳体、端盖或套管上提供诸如槽之类的结构,可采用易于购买或易于机械加工的部件形成多种装置包括浸入式交换器、可焊接的无间隙交换器、以及具有一个或多个不同端盖的交换器。有利地是,对于高纯度的应用,在本发明的交换装置中不需要在封装树脂上设有会存留流体和杂质的应力释放沟。这样极大地简化了制造工艺并可以在交换装置中采用大量的薄壁空心导管。
附图说明
在一定程度上,参照以下描述、附加的权利要求和附图将会清楚地了解到本发明实施方式的其它方面、特征、益处和优点,其中:
图1表示用于热量传递、质量传递或者它们组合传递的本发明的交换装置的方案;(A)表示带有端盖的壳体具有包括通过封装在热塑性树脂内而流体密封在壳体上的空心管或空心纤维或它们的组合的一个或多个空心导管,树脂和空心导管最初被粘结在壳体内以在壳体的每一端形成一体的末端结构。这种一体的末端结构随后被切开以使所述管具有开口;热塑性封装材料被示出对在壳体上形成的槽或沟的至少一部分进行填充;(B)表示具有粘结在分开的壳体或套管上的端盖的交换装置,所述壳体或套管通过粘结在热塑性树脂上的一个或多个空心导管相连,所述热塑性树脂粘结在所述壳体上;(C)表示不具有流体端盖的交换装置;
图2是在壳体或套管壁上的(A)梯形以及(B)矩形槽或沟的非限制性示意图,它们为外壳和封装件之间的接触面增加了机械效益、粘结以及增大的表面面积;为了实现粘结所述沟可用烧结的热塑性材料涂覆并可具有多种形状;
图3是包括一个或多个槽或沟的壳体或套管的端部的示意图,热塑性树脂填充所述沟的至少一部分并优选熔化在沟和壳体表面的一部分上;开口的空心管、多孔空心纤维或它们的组合被示出封装在树脂内以与壳体壁和槽一起形成流体密封;壳体壁和槽可使粉末状或模制的热塑性材料熔化在它们的表面;
图4是本发明的交换装置的示意图,优选具有在壳体上的槽以及被封装在热塑性树脂内的空心导管,所述树脂与壳体壁和槽粘结在一起,所述交换装置作为一种用于调节工艺流体的温度的设备的一部分,该设备被用于清洗、涂覆或化学改变浴盆上的基片或基片支架,例如是一种单晶片净化工具(未示出);
图5是本发明的一个或多个交换装置的示意图,优选具有在壳体上的一个或多个槽,具有封装在壳体内部的每一端以与热塑性树脂一起形成流体密封的空心导管,所述树脂与壳体壁、槽以及空心导管熔合在一起,所述交换装置被用作一种用于调节工艺流体并在排放前调节工艺流体的装置的一部分;
图6是交换装置的示意图,优选具有在壳体上的一个或多个槽以及被封装以在热塑性树脂中形成流体密封的空心管或空心纤维,所述树脂与壳体壁以及壳体上的槽粘结或熔合在一起;所述装置被用作一种用于在向可以是旋转、平移或固定的基片配送之前调节工艺流体的装置的一部分。在这一非限制性实施方式中,来自流体源可以用于清洗基片或用于对其进行涂覆的流体利用任意的颗粒过滤器被过滤并且在流体优选以逆流方式穿过交换器时,能量、质量或它们的组合通过交换器被加入到工艺流体中或从工艺流体中被清除。交换器通过与交换流体相互作用的空心管壁向工艺流体或从工艺流体传递能量。可采用温度、压力以及流量控制器控制配送在基片上的流体量。调节过的工艺流体、涂覆流体或清洗流体可通过泵配送到可以是固定、平移或旋转的基片上。所述装置可包括颗粒过滤器、阀、流量控制器以及泵,或者所述流体可来自增压源;
图7A是可被用于交换装置的壳体的端部或套管的端部的示意图,表示在外壳内部的一个或多个平行的槽,所述槽被示出具有与平行的槽互连的排气缝或沟;最终的交换装置包括一个或多个端部;图7B表示图7A的截面图;图7C表示壳体或套管的端部的截面,一个或多个空心管在热塑性树脂中被封装在套管上;图7D表示壳体或套管的端部的截面,一个或多个共挤成形的空心管在端部被熔合在一起并在热塑性树脂中被封装在套管上;
图8是可被用于测试交换装置泄漏、密封完整性和性能的测试歧管的示意图。
图9是交换装置壳体或套管端部的截面示意图,表示在壳体壁的一部分具有一个或多个槽,在壳体壁上的槽的深度从壳体内壁测量得到,一个或多个槽通过壳体壁上的缝或沟互连,粉末状热塑性材料被示出烧结在壳体或套管壁上;
图10是具有在壳体壁的一部分上的一个或多个平行槽的交换装置壳体或套管的端部的截面示意图,所述槽之间具有不同的壁高并且沿壳体轴线的一个或多个槽或缝与壳体或套管壁上的平行槽互连;
图11是交换装置的壳体或套管端部的截面示意图,所述交换装置具有一个或多个平行槽以及与壳体壁上的相邻平行槽互连的沿壳体轴线的一个或多个槽;在相邻槽之间的壁高沿壳体长度变化;空心导管例如空心管或纤维被示出封装在加热容器内;
图12(A)是共挤成形管截面示意图;(B)是具有内部PFA层和外部MFA层的共挤成形全氟化热塑性管的一部分截面图;(C)是图(B)中的共挤成形管截面的完整图;(D)是图(C)中的共挤成形管封装在热塑性树脂内并粘结在热塑性管上的截面图。
图13(A)是被熔合在封装树脂上的折叠空心管的一部分截面图;(B)是封装在全氟化热塑性套管中的共挤成形全氟化管的一部分截面图;(C)是图(A)中的被熔合在封装树脂上的折叠空心管的截面的完整图;(D)是图(B)中的封装在全氟化热塑性套管上的共挤成形全氟化管的截面的完整图;
图14表示本发明用于传热的交换装置的截面图;壳体包括一个或多个封装的空心导管,所述导管在中空部含有一个或多个电阻丝,树脂和空心导管被粘结在壳体壁的一个或多个槽上。
具体实施方式
在对本发明的组成和方法进行描述以前,应该认识到本发明并不局限于所述特定的分子、组成、方法或规程,因为这些可以改变。还将认识到在说明中采用的术语仅是为了描述特定的方案或实施方式,并不是要限制本发明的范围,本发明的范围仅由附加的权利要求来限定。
还必须指出,在此和在附加的权利要求中采用的单数形式“一个”和“该”  除非文中清楚地规定否则还包括复数形式。因此,例如,提到“空心管”是指一个或多个空心管以及本领域技术人员已知的其等效物,等等。除非限定否则在此所采用的所有技术和科学术语具有与本领域普通技术人员通常理解相同的意思。尽管在本发明的实施方式的实施或测试中可采用任何与在此描述类似或等效的方法和材料,但现在描述的是优选的方法、装置和材料。在此提及的所有公开的内容被引入作为参考。在此没有任何内容被认为是承认本发明不享有先于根据先有发明的那些内容的权利。
本发明的交换装置的方案包括在封装过程中在导管的第一端部熔合或粘结在热塑性树脂上的一个或多个热塑性空心导管。粘结在导管上的热塑性树脂可通过封装在第一套管的内表面上或封装在热塑性壳体第一端部的结构上而熔合或粘结在内表面和/或一个或多个结构上。热塑性空心导管的第二端部可以与热塑性树脂熔合或粘结,该热塑性树脂熔合到第二套管的内表面上或内表面上的一个或多个结构上,或热塑性壳体的第二端上的结构上。可通过切开树脂和在导管端部开口而使熔合导管的中空部被打开。粘结热塑性树脂的壳体或套管的表面还可包括如突起、槽或它们的组合这样的结构;优选该结构是在壳体或套管表面上的槽。交换装置的空心导管可以是空心管、多孔空心纤维、带皮的空心纤维、热塑性管、共挤成形空心管、或者它们的组合。
本发明的交换装置及其制造方法包括用热塑性树脂将工作介质例如薄壁空心管或多孔空心纤维封装在壳体或者一个或多个套管上。封装在壳体上的空心管或纤维通过它们的壁使待调节的工艺流体与利用工艺流体传递质量、能量或它们的组合的交换器或工作流体分隔。这种交换装置可包括但不局限于完全粘结的薄膜接触器、气体接触器、臭氧接触器、脱气器、热交换器、气体洗涤器、加热器、空心纤维过滤器、或者它们的组合。这些装置可被用于在由空心热塑性管分隔的流体之间交换或传递热量、质量或它们的组合。这些装置可以是浸入型式的或包括用于分开地包含工艺流体和交换流体的壳体。
交换装置的一种方案包括在导管的第一端部熔合在热塑性树脂上的一个或多个共挤成形热塑性空心导管;热塑性树脂被熔合在第一套管的内表面上或热塑性壳体的第一端。热塑性空心导管的第二端部与热塑性树脂熔合在一起,热塑性树脂被熔合在第二套管的内表面上或热塑性壳体的第二端。通过切割或研磨热塑性树脂和导管的一部分可使空心导管从封装的一体末端结构的端部开口以使流体流过。可选择地是交换装置壳体或套管包括一个或多个流体接头。共挤成形空心导管可包括与构成空心导管的一个或多个层混合或组合的导热材料。用于交换装置的热塑性壳体或套管被选择成具有使其在封装工艺过程中可以与封装树脂熔合的组分。其可包括由热塑性材料、在内表面上具有烧结材料的热塑性塑料、具有一个或多个热塑性层的共挤成形热塑性塑料、具有一个或多个热塑性部分的模制热塑性塑料制成的壳体或套管。优选地是壳体在壳体或套管壁的与封装材料接触的部分上具有热塑性塑料,所述热塑性塑料能够在粘结工艺过程中与封装材料熔合。壳体或套管可具有光滑表面或者可具有在其内表面上形成以与封装树脂粘结的一个或多个结构。
本发明的流体-流体相接触器或交换装置可由热塑性聚合材料并优选由全氟化热塑性聚合物制成。该装置被用于使待调节的流体与工作流体或交换流体接触。接触器或交换装置包括例如在图1A中所示的一束多个全氟化的热塑性空心纤维薄膜或空心管130。这些空心管可以是多孔或无孔的,并且每个具有第一端110和第二端122。薄膜和管具有内表面109和外表面111。对于空心薄膜和空心管来说内表面包括内腔或孔。空心导管可选自无孔空心管;具有多孔带皮内表面、多孔外表面和在它们之间的多孔支承结构的空心纤维薄膜;具有无孔带皮内表面、多孔外表面和在它们之间的多孔支承结构的空心纤维薄膜;具有多孔带皮外表面、多孔内表面和在它们之间的多孔支承结构的空心纤维薄膜;以及具有无孔带皮外表面、多孔内表面和在它们之间的多孔支承结构的空心纤维薄膜。该束导管和薄膜的每一端可被封装具有不透液体的全氟化热塑性密封,以形成具有环绕的全氟化热塑性壳体的一体末端结构,其中如图1A中的110和122所示纤维末端被开口以使流体流过。在一种实施方式中,壳体124可具有外壁以及带沟和槽104和116的内壁,所述沟和槽的一部分由热塑性封装树脂填充。壳体内壁在内壳体壁和空心管或空心纤维薄膜的外侧111之间限定了流体容积。壳体可具有第一流体入口102,以将第一流体供给到所述束的第一端110,与可在壳体入口112被供给的第二流体接触。壳体可具有第一流体出口接管118,以排出来自空心管130的第二或出口端122的接触过的第一流体。壳体流体入口接管112可用于供给第二流体,该第二流体要与通过空心纤维或空心管的壁的第一流体接触。第二流体占据了在壳体124的内壁和空心纤维薄膜或管130之间形成的容积。壳体可包括第二出口接管134以排出所接触的第二流体的。
制造基本上由热塑性聚合物并优选由全氟化热塑性聚合物制成以使第一流体与第二流体接触的流体-流体相接触器的方法包括形成一束具有第一端和第二端的多个全氟化热塑性空心导管例如空心纤维薄膜、空心管或它们的组合。空心导管具有外表面和内表面,内薄膜表面包括内腔或孔。可被用在所述装置及其制造方法中的空心纤维薄膜可选自由具有多孔带皮内表面、多孔外表面和在它们之间的多孔支承结构的空心纤维薄膜;具有无孔带皮内表面、多孔外表面和在它们之间的多孔支承结构的空心纤维薄膜;具有多孔带皮外表面、多孔内表面和在它们之间的多孔支承结构的空心纤维薄膜;以及具有无孔带皮外表面、多孔内表面和在它们之间的多孔支承结构的空心纤维薄膜。如图11所示,空心导管1106被定位并由全氟化热塑性壳体或全氟化热塑性套管1102的一端环绕,所述壳体或套管1102具有带沟或槽1112的内壁以及外壁1104。空心导管1106采用全氟化热塑性材料1108在定位于壳体内的所述束的每一端被封装,或者所述束的每一端被封装在不同的壳体套管上(图1C所示的结构),以与空心导管的末端形成不透液体的全氟化热塑性密封并与环绕的全氟化热塑性壳体形成一体的末端结构,包括利用热塑性树脂粘结在沟或槽1112和1116中的一个或多个上。优选地是在封装之后,空心导管的末端在壳体的两端或分开的套管的末端(图1C所示的结构)被开口以使流体流过空心导管。所述方法还可包括改进所述装置的壳体或者一个或多个套管以提供一个或多个粘结的端盖、导管或者一个或多个流体接头。可选择地是,所述装置可直接被粘结或焊接在流体流动线路或容器内。所述装置可被用作浸入装置或在流体流动线路上的管线。在非限制性实例中,图1A中的壳体124可具有粘结在壳体末端132上带有流体入口102的第一端盖136,以向所述束的第一末端110供给第一流体,与在入口112处供给的第二流体接触。壳体可具有粘结在壳体末端121上带有流体出口接管118的第二端盖120,以从空心导管130的第二或出口端122排出所接触的第一流体。壳体的流体入口接管112可被粘结在壳体124上并被用于供给第二流体与所述通过空心导管130的壁的第一流体接触。第二流体占据了在壳体124的内壁和空心导管130之间形成的容积。壳体可包括粘结在壳体124上的第二出口接管134以排出所接触的第二流体。
采用例如热塑性树脂封装材料举例来说但不局限于可从Ausimont USA Inc.Thorofare,NJ得到的Hyflon
Figure 048419560_0
MFA 940 AX树脂以单一步骤实现将空心导管线缆、空心纤维或空心管封装和粘结在壳体内。所述装置可通过将具有至少一个封闭端的一束空心管和/或空心纤维线缆长度的一部分垂直放置在罐内并离罐下表面大约1/8英寸-1/4英寸(0.318cm-0.635cm)而制成,所述空心导管和/或空心纤维线缆例如通过将空心管或空心纤维缠绕在构架并退火而制备。颗粒状的热塑性树脂可绕装置外壳的外侧放置,并且所述罐可被加热以熔化树脂。对于空心纤维温度可以是大约270℃-285℃,对于薄壁空心管和共挤成形空心管温度可以是大约280℃-305℃。树脂熔化并通过压头和毛细作用流入外壳内以及内腔之间。备选的方法是使一个临时凹槽形成在保持于容器中的热塑性聚合物的熔池内。空心导管被固定在限定的垂直位置,将热塑性聚合物保持在熔化状态,使得其流入临时凹槽内,环绕空心导管并沿空心导管垂直向上,填充空心导管和类似壳体或套管壁上的槽的一个或多个结构之间的孔隙空间。临时凹槽是一个以熔化的封装材料保持为一个凹槽足够长的时间以将所述空心导管束定位并固定在一定位置并且随后由熔化的热塑性材料填充的凹槽。凹槽的临时性由封装材料被保持的温度、在空心导管束放置过程中封装材料被保持的温度、以及封装材料的物理性质来控制。空心导管的末端可通过密封、插塞或在优选实施方式中通过形成为一环而被封闭。
尽管在图12A中所示的和图12C中所示的具有一层或多层热塑性材料的共挤成形空心导管、空心管以及空心纤维可采用如上所述的方法被封装,但也可以通过将多个这些空心导管以彼此接触且大致平行的关系放置在壳体和套管中,而被熔合在一起并熔合到套管或壳体上。加热的流体被导入这些共挤成形空心导管的末端内部以将导管的下部的熔化的外热塑性层熔合在一起,并且加热的流体被导入壳体壁以在套管内形成空心导管的一体粘结的流体密封结构。可选择地具有类似在其表面上的槽和突起的结构的壳体或套管可具有熔合在其内表面上或者模制在其内表面上可与空心导管粘结的热塑性材料层。备选地是,在第一步被粘结在一起的熔合的管可利用热塑性树脂被封装在壳体内。
用于封装空心管的另一方法包括将壳体末端或套管上的多个热塑性空心管或纤维的一部分熔化在热塑性封装树脂内以形成封装树脂、空心管和壳体一体的末端结构。壳体或套管的内部可具有一个或多个可熔合突起、在壳体或套管表面上的一个或多个沟或槽。备选地是,共挤成形壳体的内层可具有熔合在封装树脂上的热塑性材料层。如图11所示,该工艺可包括将组件(壳体1102、空心管1106以及树脂1108)放置在加热杯1136中并在在加热杯1136中利用外部加热块或其他加热源加热封装树脂1108直至树脂1108、空心管1106以及壳体1102在不损失空心管1106的结构的情况下能够熔合在一起。对于类似FEP、PFA和MFA的全氟化热塑性材料,这一温度范围在大约265℃-大约305℃,优选的范围是在大约280℃-大约305℃,直至熔融物变得透明并且没有截留的气泡。在加热过程中,树脂熔融物向上并在纤维之间流动和在外壳内流动,直至外壳内侧的高度与外壳外侧的高度相等或几乎相等。备选地是,一杆被插入熔融物内以形成凹槽或空腔。具有槽或沟1112和1116的壳体1106和空心管束1106随后被插入空腔内。此时,空心管束和壳体都不接触封装树脂。熔化的树脂1108将在重力作用下流动以在一定时间内填充壳体上的孔隙和沟,从而封装空心管并同时粘结在壳体上。在冷却以后可对壳体的相对端(未示出)或另一套管重复所述的封装工艺。在被封装的末端冷却之后,它们于是可以被切开并露出中空客的内腔。被封装的末端可通过机器和钻被研磨以打开空心管并如图7C所示远离壳体或套管的端部727形成凹进的封装区域725。空心管130分别与封装树脂106和114形成流体密封108和126。封装表面可以进一步采用热风器被抛光以熔化掉任何污点或粗糙的封装表面。对于具有大量(例如2000或更多)空心管的组件,该组件可能具有封装缺陷,这些缺陷可采用清理烙铁被修复以熔化和封闭破损区域,或者借助于烙铁将新的树脂熔化在所述缺陷上。
图1A表示具有壳体或套管的交换装置,所述壳体或套管具有位于壳体壁上的一个或多个槽并且所述壳体封闭空心管。交换装置可具有流体入口接头102,其是可被粘结、螺纹连接、焊接、或通过其它适当的方式连接在壳体或套管124上的端盖136的一部分。壳体124位于壳体或套管内的一个或多个沟或槽,例如104和116(为了表示清楚其它槽未示出)。来自封装件、空心管或其组合的热塑性树脂例如106和114将一个或多个空心管130粘结到壳体的槽104和116上。如在108和126处所示的,树脂106和114与空心管130粘合并与壳体槽104和116形成不透流体的密封。每个空心管包括粘结在壳体或套管124上的入口110和出口122。壳体可选择地包括流体接头112和134,它们可以但并不局限于与壳体124粘结、螺纹连接、模压、或它们的组合。交换装置可具有流体出口接头118,它是被粘结、螺纹连接、焊接或通过其它适当的方法连接在壳体或套管124上的端盖120的一部分。空心管130可封装在热塑性树脂中以形成一体的末端结构,且管末端被切开,从而使空心管内腔具有与壳体末端132齐平的开口。备选地是可以对封装树脂和空心管机械加工以切断以及使管具有开口,并将壳体或套管末端132的材料去除缩回到位置128,以及将壳体或套管末端121的材料去除缩回到位置117。这种去除打开了一体的末端结构中的管并便于端盖与壳体或套管124的热粘结。空心管130可以是但不局限于多孔空心纤维、带皮空心纤维、无孔空心管、共挤成形空心管或它们的任意组合,优选所述管是热塑性的或包括热塑性材料。
图1B表示具有封装信空心导管166端部的壳体的浸入式交换装置。该装置可具有安装在壳体或套管148上的端盖168,在壳体或套管148的壁上具有一个或多个沟或槽142。端盖可具有被模压、熔化粘结、螺纹连接或采用其它方式安装在端盖上以提供流体入口的流体入口接头140。优选地是,壳体148是或包括一种热塑性材料,其可被粘结在一个或多个空心导管166上并粘结在一个或多个沟142内的热塑性树脂164上。空心导管166和热塑性树脂形成不透流体的粘结或密封146。每个空心导管包括粘结在壳体或套管148和158上的入口138和出口139。所述装置可具有被安装在壳体或套管158上的端盖156,在壳体或套管上具有一个或多个沟或槽150。端盖156可具有被模压、熔化粘结、螺纹连接或采用其它方式安装在端盖156上以提供流体出口的流体出口接头154。优选地,壳体158是或包括一种热塑性材料,其可被粘结在一个或多个空心管166并粘结在一个或多个沟150内的热塑性树脂152上。所述一个或多个空心导管166和热塑性树脂152形成不透流体的粘结或密封162。空心导管166可以是利用树脂封装以形成不透流体的密封的多孔空心纤维、空心管、共挤成形空心管或它们的结合。优选地,空心管是热塑性的或包含热塑性材料。在图1B中,空心管166被示出具有内层144(实线)和外层(由虚线表示,还参见图7C和图12A-D)。例如内层144可代表例如PFA热塑性材料,而外热塑性层160可以是类似与MFA封装树脂熔合的MFA热塑性材料,或热粘结在内空心管层144上的FEP热塑性材料。共挤成形管的外层可以仅涂覆空心管上的用树脂(未示出)封装的那些部分,或者它可以涂覆如图所示空心管的外侧。空心管166可以是一个或多个共挤成形热塑性管,优选是全氟化热塑性管,也可以是但并不局限于多孔或带皮的热塑性空心纤维,或者热塑性材料涂覆的金属或陶瓷管状材料。
图1C表示具有封装了可以是空心管或空心纤维的空心导管的一部分的套管或壳体186的交换装置。流体可以在170处进入装置并在184处从装置排出。流体入口接头或导管可与壳体186相连(参见图1A),或者所述装置可在入口端173和出口端181被焊接在流体处理歧管内。壳体186包括粘结在热塑性树脂172或180上的一个或多个沟或槽174和182。壳体可具有被粘结、模压、螺纹连接或采用其它方式连接在壳体186上的一个或多个流体入口接管178和流体出口接管196。被粘结在壳体186的沟174和182上的热塑性树脂172、180还粘结在一个或多个空心管192上,该空心管包括但不局限于多孔空心管、无孔空心管、共挤成形管或它们任意组合。每个空心管包括一个入口190和一个出口194,它们被粘结到壳体或套管186上。空心管被示出例如在176和188处被粘结在树脂上。如仅出于示意性目的所示,管末端和封装树脂可以被回切到壳体末端内侧。树脂172和空心导管192可通过机械加工去除被缩回到175并且树脂180和空心导管192通过机械加工缩回到183以使导管末端具有开口。凹进的末端可有助于随后将端盖粘结或焊接在壳体末端173和181上。
图2A以截面图表示在被用于与空心导管粘结的壳体、端盖或套管的一部分上的沟或槽的非限制性实例。这种槽包括但不局限于矩形槽(B)、梯形槽(A)、以及它们或其它形状的组合。槽的宽度、它们的深度、它们的相互间距、以及它们与壳体末端的间距可以不受限制地被改变。图2A表示具有在管的内部上的梯形槽204的圆柱形套管的一部分的截面图。这些槽可被研磨到或形成到壳体202的壁中,其从内壳体表面210达到深度208并从壳体或套管的外表面216开始达到距离212。图2B表示和矩形槽或沟一样的槽242。壳体中的槽可以被形成为与壳体或套管末端230具有间距224。壳体末端230可以被粘结在端盖上或焊接在流体导管上。槽的特征是具有由232和236之间的间距所示的开口。槽可以是等间距隔开的,例如244和246或者246和250,或者槽可以是由槽242和244之间更大距离所示的不等距间隔。槽距壳体内表面238(槽可以在外表面240上,未示出)可达到深度220。
图3表示交换装置壳体、套管或端盖的端部的截面图,在粘结或封装了不同类型的管的壳体、端盖或套管上具有一个或多个成形的沟或槽304。被示出为开口梯形的槽或沟304可以是在壳体或套管壁314上形成的任何形状。套管壁具有内表面316和外表面308。内表面316可包括能够与热塑性树脂和一个或多个空心导管熔合的热塑性层(未示出)。所述一个或多个沟304的表面与壳体314中的一个或多个空心管318和320一起粘结在热塑性树脂310上。壳体、套管或端盖的厚度,308和316之间的距离可被选定为满足交换装置实现其预定用途的压力和温度的安全等级。在图3中,318表示空心导管可以是封装在树脂310中以形成不透流体的密封的空心管、多孔或带皮空心纤维、共挤成形空心管、或它们的任意组合。在图3中,320表示用热塑性树脂310粘结在壳体314上的共挤成形空心管;330表示将相邻管粘结在一起的树脂。空心管320具有包括表面322的内部或内层以及外部或热塑性层326。外层和内层都可以是热塑性材料,优选地,外层326是能够与热塑性树脂熔合的热塑性材料,并且更优选地是,比内层322具有更低的熔化温度。用于共挤成形空心导管的一个或多个层的热塑性材料优选是全氟化热塑性材料。
交换装置可具有与壳体相连以接收和将工艺流体排入再循环回路或分配工具内的工艺流体入口和出口。交换装置可具有用于交换流体流动的交换流体或工作流体入口和出口接头;交换流体通过空心管壁上的材料并将壳体封装粘结在管上而与被处理的流体或工艺流体分开。交换流体通过空心管壁向工艺流体或从工艺流体交换或传递质量和/或能量。本发明的交换装置可被用在可选择地包括与交换装置上的工艺流体入口流体连通的再循环泵并可选择地包括用于保存通过工艺流体处理物品的容器的设备上。交换装置可被用作是分配系统或再循环流体流动线路的一部分。所述设备还可以进一步包括颗粒过滤器。该设备可与气体、包含流体的有机物、或包括超高纯度水的水流体交换质量和/或能量。优选地是,由工艺流体处理的基片或物品包括但不局限于金属例如铜和铝、包括砷或硅的半导体、或者包括铝、钡和锶的陶瓷。
图4表示包括本发明交换装置的设备,用于对清洗或涂覆基片用的流体进行调节的。该设备可包括流体导管、泵、阀、传感器、以及颗粒过滤器。例如,交换流体450可通过泵446被引导穿过可选择的调节阀412、穿过本发明的交换装置416、以及可选择的颗粒过滤器408,并通过导管404返回到保存容器448。用于清洗或涂覆基片434的工艺流体428例如硫酸和过氧化氢溶液可通过流体泵438穿过调节阀442被泵送到交换装置416,在该交换装置416内通过交换器上的空心管壁在流体450和工艺流体428之间发生能量交换。调节过的流体通过可选择的调节阀420和可选择的颗粒过滤器424排出交换装置416,并进入处理容器或溢流室444。处理容器444可包括排水阀432以将耗用的工艺流体从容器444中排除。
用于处理基片的设备或系统可采用如图5所示的一个或多个交换装置。交换装置516和544可被构造成是浸入式(未示出)、同向流动式、或反向流动式。处理浴或清洗浴流体526通过穿过交换装置516上的空心管与被示出是存储在容器556内的交换流体560接触而由本发明的交换装置516处理。交换流体560可采用闭环冷却器、电阻浸入式加热器、家庭用/工厂用热源或冷却水进行温度调节。备选地是,所述流体可以是被产生并供给到交换装置内以与工艺流体进行质量交换的化学流体。温度和/或化学调节的流体可被存储在容器内或直接供给到交换装置。在图5中,504是可被用于通过可选择的颗粒过滤器508和可选择的调节阀512将交换流体引导到交换装置516的交换流体泵。交换流体流过交换装置516并可通过阀564和导管554回到容器556。可选择地,交换流体也可从设备供给源被供给到交换装置516并通过导管554直接排向排出管(未示出)。来自容器550的工艺流体526可通过泵548引导穿过调节阀552并穿过交换装置516,工艺流体在所述交换装置处与交换流体560交换能量、质量或它们的组合。被调节的工艺流体通过可选择的阀518和可选择的颗粒过滤器522从交换装置排出并返回到工艺容器550以处理基片524。耗费的工艺流体526可以通过阀540被排出以通过交换装置544排除能量和/或有害化学物质并通过阀532将其引导到废物处理或清除桶内。耗费的工艺流体可通过与经阀528和536供给到交换装置544内的第二工作流体进行质量、能量或它们组合的交换而被处理。
交换装置还可以被用在对可用于化学处理或可从排泄流中排出的气体进行净化的方法和装置上。特别是,本发明提供了一种在放热洗涤反应过程中保持封装树脂和壳体密封完整性的装置,在所述反应中例如通过使排出流体的组分与封装在具有槽的壳体内的多孔空心纤维薄膜一侧上容纳的反应液体、凝胶或浆液起反应而使排出流体被净化,与壳体形成一体的末端结构的封装和空心导管可以被切开以使流体流过封装的空心导管。
本发明的交换装置可以被用于移动基片的清洗或涂敷。例如,图6表示旋转基片636的涂敷或清洗,来自供给源632的流体通过由交换装置618所进行的质量、能量或它们的组合的传递而得到处理或调节。可以采用泵642使来自容器646(或是未示出的家用设备供给源)的交换或工作流体650流过交换装置618。交换流体650通过交换装置618中的空心管与工艺流体632相互作用并通过阀614、可选择的颗粒过滤器610以及导管604返回容器。可通过附加的装置(未示出)包括加热器、冷却器、化学发生器(氢或臭氧)以及控制器完成对流体650的温度调节或化学改性。可采用压力源628或泵638将来自供给源632的流体供给到交换装置618。该流体可以通过安装在交换装置上游或下游的可选择的颗粒过滤器622得到处理。阀622和640可以是调节阀并且可以被用于控制流量和隔离交换装置。工艺流体632进入交换装置并通过空心管壁与工作流体650传递质量、能量或它们的组合。可采用泵632,该泵可以是分配泵、分配导管或喷嘴630,使调节过的工艺流体被配送到旋转或平移的基片上。
在图7A中示出了壳体、套管、或者部分端盖的示例,其中在壳体的内壁或外壁上具有一个或多个沟。在图7A中,在套管726的内表面上示出了具有与槽或沟720相互连接的排气缝716的外壳或套管。图7B表示与槽720相互连接的排气缝716的截面图。排气缝可以使类似空气的气体在封装过程中从树脂中放出。壳体可以是封装一个或多个空心管的一部分的管或套管,并且管或套管可以通过在内壁上熔化粉末状热塑性涂层共挤成形或模制热塑性材料而得到预处理,热塑性材料可以但不局限于在图9中由936所示的套管上的MFA。壳体可以但不局限于圆柱形管、具有任何数量的侧边包括六边形、矩形的导管或三角形导管。壳体或套管可以是热塑性材料或者可以是涂有热塑性材料的陶瓷或金属管。热塑性材料可以是氟聚合物。在优选的实施方式中,壳体或套管的内壁或外壁上包括可以粘结到空心管上的一个或多个沟。
图7C表示在图7A和图7B中所示的套管726的端部的截面图。图7C表示一个或多个空心导管,特别是在热塑性材料制的或由热塑性涂覆的壳体或套管726中用热塑性树脂722封装的共挤成形空心管708,其中在壳体壁上具有一个或多个槽738,740,742和744。共挤成形空心管具有内层704和一个或多个外层706(为了表示清楚其它的层未示出)。在封装过程中,共挤成形管的外层706与树脂熔合、混合或结合以将空心管粘结在树脂722和壳体726上。在图7C中,710表示共挤成形管的外层和形成任意限定的界面的封装树脂,所述界面将未熔化的外管层706与粘结在空心管708和壳体726上的熔化树脂隔开。用于内槽738的一个或多个排气槽或缝712、以及排气缝716可以形成在壳体中以在封装过程中从槽740,742和744中排出气体。这些缝716的表面可以与热塑性树脂722粘结。在封装过程中,壳体中的一个或多个槽738,740,742或744与封装树脂粘结。可以通过改变罐中热塑性树脂的量和壳体在罐中的放置来改变槽被树脂填充的数量和程度。为了发挥交换装置的预定用途并且为了将空心管708粘结在树脂722以及壳体726上,足够数量的槽被粘结在树脂上以提供强度和完整性。这可以通过采用图8所示的测试装置和预期应用的使用条件来确定。如图1A-C所示,每个空心管708具有被示出与734处相连的入口和用于流体流过的出口724。由728表示外层706仍然存在的共挤成形管的内层部分。由736表示外层已经熔合在树脂722上的共挤成形管的内层部分。空心管的封装在封装树脂722上方的空心管之间形成区域732,供流体与共挤成形管708的外层流动接触。优选地,槽被布置成使得它们的高度从距套管或壳体744的出口最近的槽到距套管或壳体738内部最近的槽依次降低。相邻槽之间的壁可以是任何形状。如仅是示意性的图7C所示,槽通过三个梯形壁隔开,槽之间的壁高从742到738依次降低。在封装过程中形成的一体末端结构可以从壳体或套管726的末端727凹进以形成凹面725。壳体或套管的端面727可以被粘结在端盖、流体接头上,或被焊接在流体导管上。
图7D以截面图表示交换装置的端部,其中一个或多个共挤成形管758通过来自相邻空心管758上的热塑性树脂层756的一部分的熔化树脂786而相互粘结。熔合的空心管可以通过壳体与热塑性空心管上的树脂层756的熔合或者通过附加的树脂而粘结到具有一个或多个槽788,790,792或794的热塑性制的或热塑性涂覆的壳体或套管770(类似于726)上,从而形成将一个或多个空心管粘结在壳体770和一个或多个槽788,790,792或794上的热塑性材料776。共挤成形空心管具有内层754和一个或多个外层756(为了表示清楚其它的层未示出)。在粘结过程中,共挤成形管的外层756与来自相邻管的外层树脂熔合、混合或结合以将空心管786和可选择的壳体776粘结在一起;附加的热塑性树脂可被用于将一个或多个空心管粘结在壳体776上。在图7D中,760表示粘结的共挤成形管756的外层形成任意限定的界面的区域,所述界面使共挤成形管756完整的外层与共挤成形管外层与树脂786或776混合的部分隔开。一个或多个槽或排气缝766可以沿壳体轴线在壁上形成以在粘结或封装过程中从一个或多个居中形成的槽788,790,792或794中排出气体。这些槽或排气缝766可以具有与槽788,790,792或794相同或不同的深度、尺寸或形状。在封装过程中这些沟可粘结在热塑性树脂上。在粘结或封装过程中,壳体中的一个或多个槽788,790,792或794可以如图所示被填充封装树脂。可以通过改变罐中热塑性树脂的量和壳体在罐中的放置来改变槽被树脂填充的数量和程度。为了发挥交换装置的预定用途并且为了将空心管758粘结在壳体770上,足够数量的槽788,790,792或794被粘结在树脂776上以提供强度和完整性。如图所示,每个空心管75 8具有被示出连接在798处的入口和用于流体流过的出口796。由778表示外层756仍然存在的共挤成形管的部分。由784表示外层已经粘结在相邻空心导管或热塑性树脂上的共挤成形管的部分。空心管未熔合的区域在空心管之间形成空间782,供流体与共挤成形管的外层流动接触的。优选地,槽788,790,792或794被布置成使得它们的高度从距套管或壳体794的出口最近的槽到距套管或壳体788内部最近的槽依次降低。相邻槽之间的壁可以是任何形状。如仅是示意性的图7D所示,槽壁是梯形形状。
用于测量交换装置的完整性或性能的测试装置可包括交换装置、传感器、一种或多种测试流体、以及流体传送装置例如泵、导管以及阀。图8表示一个测试歧管的非限定性示例,其包括交换装置804,所述交换装置具有粘结在壳体或套管上的一个或多个空心管,所述壳体或套管具有一个或多个槽。测试中的空心管交换装置804或歧管的任何部分可以被隔离或放置在温控外壳(未示出)中。歧管可包括与可选择的传感器808流体相连的外壳流体出口806,所述可选择传感器可以是但不局限于压力计、测温探头、浓度监测器、质量分析器、流量计、或它们的组合。流体出口和传感器可以与优选是调节阀812的阀流体相连,所述阀与交换装置出口816流体相连。交换装置出口816与组成交换装置的管的空心内腔内的流体流体连通。来自出口816的流体与来自供给源834的流体通过交换装置的空心管交换质量、能量或它们的组合。由来自854处的传感器850测量得到的来自入口842的流体的状态变化和由传感器808测量得到的出口816处的流体的状态(质量、能量、化学成分)变化可以被用于表征交换装置804的性能或完整性。备选地是,可以在例如压力、温度或化学成分的测试状态下执行一段时间后通过检测在842或816处用于流体834的空心管来确定交换装置的完整性。对于无孔空心管,因材料通过管壁扩散或渗透而高于预期值的流体834的量是交换装置804完整性的损失指示。调节阀820可被放置成与空心管的外侧或外壳侧流体连通。阀820可与传感器822流体连通,所述传感器可以是但不局限于压力计、测温探头、浓度监测器、质量分析器、分光光度计、流量计、颗粒计数器、或它们的组合。流体调节装置826可以与交换装置流体相连。流体调节装置可以是冷却器、加热器、具有温度监测和控制(未示出)的气体发生器或用于调节流体834的其它装置。对于液体,化学相容的泵828和/或流量计可被用于以已知流速将流体供给到交换装置的空心管的外壳侧。备选地是,在测试过程中无需改变装置的流量和温度就可以使交换装置与流体增压源相连。可选择的传感器832可与测试流体供给源834流体相连,流体供给源834可以是溢流容器。交换装置804外壳侧的出口可具有调节阀838以控制流体流过装置的外壳侧。交换装置804的空心管内腔的入口842可以与可调节入口阀846相连。入口阀846可以与传感器850相连,所述传感器850通过来自供给源(未示出)的入口854测量交换装置804的测试流体入口的状态。传感器850可被用于将流体的入口状态与通过由传感器808测量的出口状态而测量的流体入口状态进行比较并且可以与交换装置中的空心管的流体流速和封装密度一起用于确定交换装置的效率或传递能力。
图9中更详细地示出了图7B中的具有槽和排气缝的套管或壳体的壁。可以是平行的一个或多个槽904被示出形成在套管的内壁上,所述槽914在壁中的深度916由内表面920和槽914底部之间来确定。沿壳体轴线延伸且由912表示的位于槽之间的槽或排气缝使相邻槽相互连接,提供了粘结表面,并在熔合粘结或封装过程中允许气体从热塑性树脂中排出。壳体、套管或端盖的壁908的厚度928限定在内壁920和外壁924之间。壳体、套管或端盖932的末端可以被焊接、熔合或粘结在如图1A中所示的其它流体传送装置、导管或容器上。内壁表面、槽表面或二者可以如虚白线所示用粘结在热塑性树脂上的热塑性粉末936进行预处理。
类似于图9但内壁具有锥形部分的具有槽和排气缝的套管或壳体的壁在图10中示出。一个或多个槽1 004被示出形成在套管的内壁上,在壁1008中的深度表示为1020。槽或排气缝1012使槽1004相互连接。所述缝在熔合粘结过程中允许从热塑性树脂中排出气体。可以设置可选择的槽1014用于从最内部的槽1006中排气。壳体、套管或端盖的内壁1016可以是锥形的,并且,位于槽之间且被示出是矩形的槽壁1028,1032和1036的高度也是锥形的。在相邻槽之间的矩形壁的高度大致等于槽底部1020和线1040之间的距离。所示的锥形使槽壁高度为1036>1032>1028。壳体、套管或端盖1032的末端可以被焊接、熔合或粘结在如图1A所示的其他流体传送装置、导管或容器上。内壁表面、槽表面或二者可以用热塑性粉末(为了表示清楚未示出)进行预处理。外壁表面1044可具有形成或加工在其表面中并位于壁1008(未示出)中的一个或多个槽。
在图11中示出了一个或多个空心导管1106封装在壳体上,所述壳体具有一个或多个槽1112和1116以及使相邻槽流体相连的槽或排气缝1132。在图11中,1102可以是具有槽1112和缝1132的壳体、套管或端盖,空心导管1106可利用被示为是1108表示的熔融物的热塑性树脂被封装到所述壳体、套管或端盖上。在图11中,树脂中的气泡1120被示出正在通过槽1116和1112之间的排气缝上升。在封装形成一体的末端密封的过程中,空心导管1126(类似1122的其它导管也由指向页面内的回路缠绕)通过受热罐1136被熔合在封装树脂1108、壳体上以及相互熔合,所述空心导管通过缠绕着空心导管的框架来封闭。在冷却熔融物以形成一体末端结构以后,可以通过切开封装树脂和导管末端使空心导管末端具有开口。
图12A是空心导管的截面示意图,所述空心导管在本发明的方案中是被用于交换装置的共挤成形空心管。该空心管可以是但不局限于圆形截面,管的形状可以改变成矩形、多边形或椭圆形。管可具有热塑性外层1204,其具有被示为在1208和1212之间的厚度和总的外部尺寸或直径1216。外层1204的熔点使其可以与封装树脂熔合但防止导管内层1228变形或破裂。所述层的厚度和均匀性在管的整个长度上可以变化,但是所述变化可以使管相互熔合或熔合到封装树脂上。该外层可以包括添加剂以改进空心管的交换性能。例如,导热材料例如碳可以被添加到外层1204中。空心管具有熔合或粘结在外层上的内层1228,其具有在1224和1 220之间测得的厚度以及内径1210。图12B是在图12C中所示的空心共挤成形全氟化热塑性管的部分截面视图。在图12B中,外层1232可以是类似MFA或FEP的全氟化热塑性材料,其显示为较暗的层1232,且热粘结在内层1234上,所述内层1234可以是类似PFA的更高熔点的全氟化热塑性材料。图12C示出外层的厚度和均匀性发生了变化。在图12D中示出了交换装置的部分视图,该交换装置是利用以热塑性树脂1236封装在热塑性套管或壳体1240中的共挤成形管1238来制备的。
图13A是具有壁1304的圆柱形热塑性壳体以及在一定温度下封装在不带槽的套管内的热塑性空心管的部分截面图,该温度会导致热塑性管破裂以及与热塑性树脂1308完全熔合。空心导管在粘结和封装过程中的破裂还可能会发生在管壁厚或成分的变化导致空心导管熔化温度变化的情况下。图13C是图13A的完全截面图。图13B是图13D的部分截面图。图13D表示一个或多个开口的热塑性共挤成形空心导管1322,该空心导管具有=封装在不带槽的套管上的MFA外层和PFA内层。图13D表示空心导管的外MFA层已经与MFA树脂1318熔合而内PFA导管不破裂的情况。这些封装的空心导管1322被切开,以便在与图13C相同的封装状态下提供粘结在热塑性套管或壳体1314上的开口空心管。空心导管内层更高的熔化温度可以被用于保持空心导管的形状并防止由于工艺条件、材料公差和材料成分的变化而导致的破裂。
图14示出了具有壳体1416的交换装置,所述壳体封闭一个或多个空心导管1422,所述空心导管利用壳体壁上的一个或多个槽1404和1412粘结在热塑性树脂1440上。壳体可包括形成、螺纹连接或以其它方式流体连接在壳体1416上的外壳侧流体入口1408和流体出口1426。一个或多个空心导管可包括在由1406和1410表示的末端与电路相连的电阻线或丝1402。电路包括电源和控制器(未示出)。空心导管1422内的线1402可通过电源和控制器被电阻加热,由此与在1408处流入装置的流体1432进行热能交换。流体1432被空心导管所封闭的电阻线1402加热并且可以在壳体流体出口1426作为受热流体1436从交换装置中排出。
交换装置可包括但不局限于一个或多个封装空心导管,其可以是粘结在热塑性壳体或套管上的多孔空心纤维、带皮空心纤维、热塑性管或它们的组合。本发明的交换装置可以由具有多种形状的内表面和外表面的多种空心导管制成,所述空心导管包括但不局限于空心管、矩形导管、三角形导管。空心导管通常具有外表面并可具有沿导管内部的一个或多个沟。空心导管壁的孔隙度可以从无孔变化到具有适用于过滤、液体-液体接触以及液体-气体接触的孔隙度的多孔。流过封装空心导管的中空部(被称为用于空心管和空心纤维的内腔或孔)的流体相可以向环绕空心导管外表面的流体传递质量或能量。具体为多孔薄膜的空心导管具有外部形状或尺寸以及内部形状或尺寸,它们之间具有多孔壁厚。空心无孔导管是这样、种导管,其具有外部形状或尺寸以及内部形状或尺寸,它们之间具有无孔壁厚。对于具有多孔或无孔壁的空心管状丝,内径限定了管的中空部或内腔并可被用于运送流体或交换介质之一。
空心薄膜或空心导管可以被编织或扭绞并在第一步可选择地被热退火,随后在冷却后各个管相互分离以形成自支承的螺旋形或非圆形单个管。热退火确定空心管的顶部和弯曲度,使得各个空心管或线缆无需校直就可以被分离并被处理。这些形状的空心管可以如上所述被封装在热塑性树脂中。
空心纤维薄膜的外表面或内表面可以具有外皮或不具有外皮。外皮是与薄膜的子结构成为一体的薄的致密表面层。在带皮薄膜中,阻止流体流过薄膜的阻力的主要部分在于薄皮。表面外皮可包含使子结构具有连续多孔结构的细孔,或者可以是无孔一体的薄膜状表面。在多孔带皮薄膜中,渗透主要由穿过细孔的连通流动产生。不均匀指的是细孔尺寸在薄膜厚度上的不一致;对于空心纤维导管,所述薄膜是纤维的多孔壁。不均匀的薄膜具有这样一种结构,即,细孔尺寸是穿过截面的位置的函数,所述截面通常在从一个表面横穿相对的表面的过程中尺寸逐渐增加。限定不均匀性的另一方式是一个表面上的细孔尺寸与相对表面的细孔尺寸的比率。
制造者用最通常的分类是合成热塑性聚合物的多种材料生产了适用于壳体、套管和端盖的导管例如管或厚壁沟;空心多孔薄膜导管;以及无孔空心导管。这些导管在被加热时可以流动和模制并且在被冷却时可以恢复到它们的初始固态属性。当空心导管所使用的应用条件变得更恶劣时,可以使用的材料变得有限。例如,在微电子行业中用于晶片涂层的有机溶剂型溶液将使最普通的聚合空心纤维薄膜或薄壁空心管溶解或溶胀以及变薄。在同一行业中的高温剥离浴包括可以破坏由普通聚合物制成的薄膜和薄壁空心管的高腐蚀性液体。高温和高压将使聚合空心薄膜和薄壁空心管变形和变薄。适用于壳体、套管和空心导管的全氟化热塑性聚合物可包括但不局限于全氟化烷氧基(来自Dupont的TeflonPFA,来自Daikin的NeoflonPFA,来自Dupont的TeflonPFA Plus)、全氟化甲基烷氧(来自Ausimont的Hyflon
Figure 048419560_4
MFA)、氟化乙烯基丙稀(来自Dupont的Teflon
Figure 048419560_5
FEP)以及它们的共聚物。这些全氟化热塑性材料耐化学作用和热稳定的,使得由这些聚合物、共聚物以及它们的共挤成形型式制成的空心薄膜和空心管与化学作用和热稳定性更差的聚合物相比具有明显的优势。其它所使用的有用的热塑性含氟聚合物包括均聚物和共聚物,它们包括从氟化单体,例如二氟乙烯(VF2)、六氟丙稀(HFP)、三氟氯乙烯(CTFE)、氟化乙烯(VF)、三氟乙烯(TrFE)、四氟乙烯(TFE),派生出的单体单元、以及其它可选择地是与一个或多个其它未氟化单体相组合得到的单体单元。改进的PTFE,PTFM适于作为内腔的外壳材料或包覆材料,因为其能够粘结和粘附在封装材料上,但仍然不是可熔化加工的。对于不太恶劣的条件,其它热塑性材料或它们的混合可被用在本发明的实施中并可包括但不局限于聚醚砜(PES)、超高分子量聚乙烯(UHMWPE)、高密度聚乙烯(HDPE)以及其它聚烯烃。本发明还可使用类似但不相同的材料例如聚丙烯外壳中的聚乙烯封装材料或PFA外壳中的MFA封装材料。可在由这些材料制成的壳体或套管上形成突起、槽或沟。
交换装置可以由壳体、空心导管以及包括几种热稳定、化学相容和机械上坚固的含氟聚合物的封装树脂制成。这些含氟聚合物例如包括由包含氟的单体单元形成的均聚物或共聚物。壳体和空心导管可以被共挤成形,并包括一个或多个含氟聚合物层,或者在内表面和外表面上具有不同的含氟聚合物层。
PFA和FEP是可采用热感应相分离(TIPS)工艺制成空心多孔薄膜的含氟聚合物的实例。在TIPS工艺的一个实例中,聚合物和有机液体在挤压机内被混合和加热到聚合物溶解的温度。通过穿过挤压模的挤压而形成薄膜,并且被挤压的薄膜被冷却以形成凝胶。在冷却过程中,聚合物溶解温度被降低到上临界溶解温度以下。在此温度点或此温度以下由均质受热溶液形成两个相,一个相主要是聚合物,另一相主要是溶剂。如果正确操作,富含溶剂的相形成了连续相互连通的孔隙。而后富含溶剂的相被抽出并且薄膜被干燥。
用于交换装置的壳体、端盖或套管可以是但不局限于圆柱形管的厚壁导管、具有任何数量的侧边的导管包括六边形、矩形或三角形导管。壳体、端盖或套管具有能够容纳粘结在壳体、端盖或套管内部的一个或多个空心薄壁导管的内部尺寸。壳体或套管可以是热塑性材料,优选是全氟化热塑性材料,但也可以是涂有热塑性材料的金属、复合热塑性材料或涂有热塑性材料的陶瓷材料,其具有槽,所述槽对粘结工艺和装置的预定用途表现出化学相容性。壳体或套管可以由共挤成形热塑性材料形成,其具有能够粘结在封装树脂或空心导管上的热粘结的内层和为壳体提供机械支承的外层。优选地,共挤成形热塑性壳体的内层具有比外层更低的熔化温度。备选地是,壳体或套管可以被模制成在粘结区域具有一个或多个热塑性部分或层。例如突起、槽、它们的组合这样的结构、或者壳体或套管的内表面可以涂覆或模制有热塑性内层例如MFA以提供与壳体或套管材料相粘结的粘附层。本领域普通技术人员已知可通过查看ASTM表来找到用于交换装置特殊用途的所允许的壳体、端盖或套管壁厚。在壳体、端盖或套管包括一个或多个槽结构的情况下,优选地导管壁中的这些槽或沟的深度小于壁厚的大约一半。
用于形成仅包括热塑性材料以及优选是全氟化热塑性材料的单个统一体的壳体、套管或端盖可以通过在封装和粘结步骤之前通过首先对壳体或者一个或多个套管的两端表面进行预处理而被制备。这一点可通过将粉末状热塑性封装材料熔融粘结或烧结在壳体、一个或多个套管以及它们内表面上槽或突起上而实现。壳体两端的内表面可被加热到接近它们的熔点或刚好处于熔点,并立即浸入到包含可从Ausimont USA Inc.Thorofare,NJ.得到的粉末状(聚四氟乙烯与全氟化甲基乙烯醚共聚物)MFA热塑性封装树脂的杯中。由于壳体受热表面的表面温度比封装树脂的熔点更高,因此封装树脂随后被熔合或烧结到热塑性壳体、任何沟、槽、或凸起的特征或它们的组合上,用于将封装树脂的、空心导管、或者它们的组合粘结到壳体上。壳体或套管表面上的凸起特征或突起的非限制性实例是在图9中示出的烧结的热塑性涂层936。壳体可用第二加热步骤被抛光以熔合任何多余的未熔化的热塑性粉末。优选地是壳体的每个末端或套管的每个这种预处理过程被处理至少两次。图9表示在具有一个或多个槽904和912的热塑性壳体的内侧形成的粘附热塑性涂层936。
本发明的空心导管交换装置,特别是包括一个或多个多孔和/或无孔空心管或其它形状的导管的交换装置是有利的,因为它们能被制成具有高流体接触表面积。高接触表面积是由于在这些装置中可获得非常高的空心导管封装密度。封装密度与装置的单位体积的有用薄膜表面量有关。其与可被封装在最终的接触器内的管、导管、纤维或它们的组合的数量有关。在外壳管、壳体或套管内的空心导管例如空心纤维、空心管、这些部件的线缆以及它们的组合的封装密度可为按体积3%-99%的范围内,优选是在按体积20%、70%的范围,更优选是在按体积40%-60%的范围。
空心纤维多微孔薄膜可被用于质量交换操作例如过滤、气体接触以及脱气。疏水的多微孔空心纤维薄膜通常被用于脱气器或接触器应用,同时待处理的液体不会浸湿薄膜。对于气体接触,流体在薄膜的一侧流动并且气体混合物优选比在另一侧流动的溶液处于更低的压力。在薄膜每一侧的压力被保持成使得流体压力不会超过薄膜的临界压力,并且使得气体不会在液体内起泡。临界压力是液体浸入细孔内所处的压力,其直接取决于被用于制造薄膜的材料,反过来决定于薄膜的细孔尺寸,并且直接取决于与气体相接触的液体的表面张力。接触式薄膜交换器典型的应用是从液体中排除溶解的气体,“脱气”;或者向液体中添加气态物质。例如,可向非常纯净的水中添加臭氧以清洗半导体晶片。
本发明的交换装置可以用接触封装空心管或导管的内表面或外表面的工艺流体进行操作,这取决于在具体的应用中谁更有利。导流片和其它插入件可以被安装在壳体或流体流动接头内部以影响流体在空心导管和壳体的外壳侧的分布。
封装是一种在壳体内围绕每个空心导管例如空心管或空心纤维形成不透液体的密封的工艺。管板或罐使用于交换器或接触器的壳体内部与环境隔开。封装材料粘结在包括具有表面结构例如突起、沟或槽的壳体上。这种粘结可包括在热塑性材料的焊接或熔合过程中熔融材料的物理混合、材料的机械互锁、以及材料的化学粘结。优选地,壳体和其槽之间的粘结提供了不透流体的密封。形成一体末端结构的粘结可以被形成在封装材料和壳体表面以及壳体槽表面之间。粘结可以是封装材料和壳体材料通过熔合、熔化或焊接而相连的结果。优选地,封装材料和壳体(包括壳体的任何涂层表面)是可通过多种加热方法例如但不局限于焊接、感应加热、超声波焊接、红外线加热和封装而被熔合或焊接在一起的热塑性材料。壳体和封装材料可以是相同或不同的材料,例如壳体可以是PFA而封装可以是MFA。封装材料在本发明中可以被热粘结在壳体容器和壳体内侧的沟、槽或突起结构上以提供一体的末端结构。壳体的内侧和沟可以涂覆一层封装树脂,其被烧结、模制或共挤成形在一个或多个内壳体表面上,以便于封装材料和壳体之间的粘结。
流体密封指的是封装树脂、热塑性壳体、空心导管以及它们的组合被焊接或熔合在一起或形成机械粘结,流体不会流过粘结区域。对于封装区域中类似纤维或管那样的空心导管,流体流过管的内侧并通过导管壁和封装材料与空心管或纤维外侧的流体物理分隔。
术语“统一的终端块体”或“一体的末端结构”表述的是粘结到一个或多个空心导管例如空心管、空心纤维、或这些部件的线缆以及壳体或套管上热塑性树脂的块体或池。树脂与壳体和导管的粘结可包括在树脂与壳体和导管的结构之间的机械粘结、化学粘结、焊接、或熔合粘结、或者它们的组合。图3表示熔合粘结在热塑性树脂310上并对壳体内表面316中的一个或多个沟304的一部分进行填充的空心导管318和320的实例,该部分用于形成统一终端块体结构的。图3表示统一的终端块体结构已经被切开以露出管的空心。热塑性树脂310占据槽304的一部分以及各管330之间的空间并形成粘结结构,该结构是在树脂、管、槽以及壳体壁之间机械和焊接粘结的组合。树脂还可以粘结在壳体和槽表面上的一层烧结的热塑性材料上(未示出)。
一体末端结构(多个结构)可被切开或机械加工并且露出空心导管的内腔。封装树脂和空心管末端可被开口,使得树脂和管末端与壳体或套管端部齐平,如对于图3或图7D所示的交换装置的单个末端部分所示那样。备选地是,如图1A、图1B和图7C所示那样,封装材料和管可以被去除并开口到位于一个或多个壳体或套管末端下方的区域。例如,如图1A所示,封装树脂106从壳体末端132或121被去除到达壳体末端128或117下方的区域。类似地在图1B中,封装树脂可从壳体末端163或153被去除到达由161或155所示的壳体末端下方或内侧区域。
多孔或带皮的空心纤维直径的范围可以是100μm-1000μm。壁厚应该最小,优选的厚度是25μm-350μm。空心纤维底座可包括厚度范围在1-25cm并且具有10cm-100cm深度、长度和宽度的纤维垫。底座可以是直径在1cm-25cm并且长度在20cm-300cm的圆形,并包含多个导流片以在整个纤维底座上分布气体。接触器内的空心纤维可以是直的或者可以被松散封装。空心纤维可以相当长并被缠绕成长度近乎等于装置长度,从而在封装工艺过程中有效地封闭纤维末端以使熔融树脂流动。
在本发明的交换装置中采用的空心导管是由热塑性材料制成的无孔空心管,其外径范围在0.007英寸-0.5英寸(0.017cm-1.27cm),更优选是在0.025英寸-0.1英寸(0.063cm-0.25cm)。对于热交换器或通过无孔空心管进行质量交换来说,优选地,空心管可具有的壁厚范围在0.001英寸-0.1英寸(0.0025cm-0.25cm),优选厚度是0.003英寸-0.05英寸(0.0075cm-0.0125cm)。为了通过无孔空心管进行质量交换(气体分离),空心管壁的厚度可以被做成较薄。空心管可以被单个使用,或者通过对它们进行编织、编辫或扭绞而使管被结合以形成由多个空心管组成的线缆。空心管可以相当长并被缠绕成长度近乎等于装置长度,从而在封装工艺过程中有效地封闭纤维末端以使熔融树脂流动。
热塑性空心导管可以包括可以被封装在套管或壳体内以形成交换装置的共挤成形热塑性管和多孔空心纤维。共挤成形管或多孔空心纤维例如可具有包括比共挤成形管的最内层或部分具有更低熔点或熔体流动指数的热塑性材料的一个或多个外层或部分。这种共挤成形管的各层彼此热粘结或熔合起来。这种共挤成形管的一个非限制性实例具有MFA外层和PFA内层。另一实例是具有FEP外层和PFA内部的空心管。共挤成形空心导管的一个或多个层可包括导热材料,优选地空心导管的一个或多个外层包括导热材料。例如共挤成形管的MFA外部可包括导热碳颗粒。在封装过程中,管的MFA中的导热颗粒将与相邻空心管的MFA或与热塑性封装树脂混合或结合。共挤成形管中未封装的区域保持MFA层具有如图2C所示的导热颗粒。这一导热层将与管外侧的流体接触并向管内腔的流体传递能量。
用于共挤成形管的一个或多个热塑性材料可以根据它们的化学和/或物理属性而选择,例如导热性以及在封装工艺中所用的使管适于相互粘结、粘结在树脂上或其结合的属性。例如,在封装过程中,管的外MFA层将熔化并与相邻空心管的MFA熔合、与罐中的树脂熔合,或者它们的组合,而管的内PFA层使内腔保持开放。封装温度或熔合温度可被选定成使得共挤成形管的一个或多个外层熔化并与相邻管或热塑性树脂熔合或结合但内层保持开放。对于具有外MFA层和内PFA层的管,优选的封装温度在大约290℃-305℃之间;其它共挤成形热塑性空心管的封装温度可以使用图8所示的测试总管通过常规试验来确定。
如图1A-C所示,交换装置可包括一个或多个共挤成形热塑性空心管。每个管具有用于流体流动的入口和出口,空心管通过与其它共挤成形热塑性空心管的粘结或粘结在热塑性树脂上而被流体密封。空心管的入口可以通过粘结到套管上而被流体密封以向管的中空部提供流体并且空心管的出口通过粘结在套管的另一部分或粘结在第二套管上而被流体密封以从管的中空部排出流体。如图7C详细所示,这些共挤成形管可以通过热塑性树脂722被粘结在一起并粘结在壳体上。交换装置可具有能封装住空心管的套管或壳体,例如在图1A中的124或在图1C中的186。空心管、封装树脂以及壳体优选是热塑性材料,甚至更优选是全氟化热塑性材料。
在本发明中采用的空心热塑性导管和共挤成形空心热塑性导管浸渍导热粉末或纤维以提高它们的导热性。有效的导热材料的实例包括但不局限于玻璃纤维、金属氮化物纤维、硅和金属碳化物纤维、或石墨。在本发明中采用的用于能量交换的空心热塑性管或浸渍过的热塑性空心管的导热性优选大于大约每米每开氏温度0.05瓦。共挤成形空心管可包括与空心管的任何层优选是外层混合或结合的导热材料。外层的热塑性材料可包括例如碳纳管、由石油沥青制成的具有大约500-1000W/mK导热值的石磨纤维、基于聚丙烯腈(PAN)的具有大约10W/mK导热值的碳纤维、类似氮化硼的具有大约60-80W/mK导热值的电绝缘陶瓷填料、具有大约300W/mK导热值的氮化铝、或者它们的混合。
在本发明各种实施方式的实施过程中,多孔和无孔空心管的组合件可以被封装在一起。这种装置可被用于限制所传递的物质的量同时使工艺流体和交换流体之间传递的能量值最大。例如调温的含水硫酸可在交换装置的外壳侧再次循环以调节清洁室内的空气温度并从空气中排除痕量有机胺。空气的温度调节可以通过无孔封装的空心管的数量来改变,同时与用于质量交换的含水硫酸洗涤溶液接触的空气量通过在装置中存在的多孔封装的纤维的数量和类型得到控制。
在本发明的实施过程中可采用导流片提高在空心管接触器或交换装置的任意一侧的流体的混合和分布(在图1中未示出)。空心纤维接触器或交换器可按一次通过模式或再次循环模式被用在如图4-6所示的工艺流体和/或交换流体中的任意一种或二者上。优选地,接触器在壳体的外壳和内腔侧具有两个或多个流体端口或接头。通常一个端口用作流体入口,而另一个用作流体出口。由于薄膜空心导管的多孔壁或空心导管的无孔壁,在接触器外壳侧的端口或流体接头与内腔侧入口和出口具有受限的流体流动。优选地,在管和/或纤维内的流体流动以及在管和/或纤维的外部的外壳侧流体流动如图8所示相互反向流动;优选地,流体以使流体相互横向流动最大化的方式流体。
图2B表示那些在封装区域244,246,250上,以及那些可以位于封装区域242外部的不同形式的槽。在封装区域的槽与封装树脂或热塑性材料粘结。如图2B所示,槽242可以被增加在封装区域外部。在封装区域外部可以存在一个或多个这些槽并且这些槽或沟可以位于壳体的内表面或外表面上。包括但不局限于244,246,250的槽与封装树脂粘结并被认为是处于封装区域中并且可以与封装树脂和空心管形成一体的结构。槽的数量和它们的表面面积可以不受限制的被改变。如果理论上不希望被粘结的话,则槽242可被用于通过铰接在这点上而降低罐和外壳界面上的径向压力。外壳可由趋于使热塑性外壳膨胀的工艺流体增压。在内径或外径上的应力释放可以使外壳绕这一特征弯曲,由此降低罐和壳体界面上的应力并保持其完整性。
如图2所示,槽或等效的沟可通过在壳体上机械加工或模制出槽而形成。在不受限制时,槽可以居中和如图2B所示以相等或不等间距隔开;槽可以是沿管内部的一个或多个螺旋线形式的,它们可包括沿壳体轴线的一系列槽沟;影线形式、交叉影线形式、它们的变形、或它们的组合。槽或沟优选离开壳体末端定位,使得封装材料可以封盖住一个或多个沟并与所述一个或多个沟粘结。沟和壳体壁可以被在此披露的施加在槽上用于与封装材料粘结的烧结的热塑性材料覆盖或涂覆。优选地,槽或沟的深度使壳体可以保持适于其用途的额定压力和温度等级。本领域技术人员已知的是查看ASTM表找到适于封装装置使用的允许壁厚。优选地,槽或沟的深度可以小于壳体或外壳壁的厚度的一半。
槽、沟或缝指的是在壳体、端盖或套管壁上的狭小开口或凹进并且它们可以互换使用。在优选的实施方式中,槽在图7C或图10中的壳体的一个端部被示出相互连通。沟或排气缝使气体可以在封装工艺过程中在槽内产生或被捕获以从沟中排出。气体从沟中排出可以使封装熔融物填充槽、使封装材料与壳体粘结和可选择地互锁。在槽之间的排气沟可具有使槽内的气体排出的容积并且优选地排气沟具有与槽相同的深度。槽之间的沟的数量和分布应该足以在封装过程中使壳体内存在的气体排出。可以根据例如壳体的尺寸、壳体的壁厚以及在封装工艺过程中需要被排出的气体量来改变沟的数量。排气沟的深度可以在沟之间被改变或倾斜以进一步便于气体从槽中排出。在交换装置中壳体可具有一个或多个带槽的端部。
槽和排气边缘以及槽的底部可具有但不局限于正方形、斜角或半径终端;壳体上最顶部或最底部槽的边缘可以被开缝或开通以具有向内壁倾斜的缝(未示出)。在交换装置端部上的一个或多个槽优选通过缝或沟互连并且交换装置可具有一个或多个端部。
槽或沟可具有使封装材料和壳体槽之间的接触和粘结的表面面积最大的形状。可以使槽的侧壁的深度和角度做成可改变封装材料和槽之间的粘结表面的量。在需要提高用于沟和封装材料之间粘结的剪切分量值的情况下,深而薄的沟是优选的。沟的附加表面面积(它们中的一些可不与壳体壁平行)使封装树脂熔合和粘附到槽的所有面或表面上。在使用中由装置的热或压力膨胀形成的径向力可通过封装树脂与槽表面的粘结使该力的一部分被转换成剪切分量,这样极大地提高了装置的强度。
尽管优选用槽和沟来使热塑性树脂粘结在本发明的壳体上,但也可以考虑形成并采用与沟或槽具有相同效果的永久粘结或熔合在壳体管内表面上的凸起结构,以实现将热塑性封装树脂粘结在壳体上的目的。为实现本发明目的,这种凸起结构被认为是槽或沟的等效物。粘结在内壳体壁上的烧结热塑性材料是壳体上的凸起表面结构或突起的非限制性实例。优选地,该结构形成了在凸起结构和封装树脂之间的粘结或熔合。优选地,该粘结将径向力的一部分转换成封装树脂和凸起结构之间的力的剪切分量。
沟或槽可以形成在壳体中,所述壳体包括端盖、套管或粘结在壳体壁上的它们中的任何一个。被用于与热塑性树脂粘结以及粘结在一个或多个空心管上的槽的深度和面积或壳体内壁上的凸起高度被选定成与树脂粘结并形成不透流体的密封,该密封保持空心管内部和外部流体之间的分隔。用于交换装置特殊用途的槽、排气沟的深度和面积或者壳体内壁上的凸起高度和面积可采用图8所示的测试歧管和用于交换装置的应用参数被确定,所述参数包括但不局限于温度、压力以及接触交换装置的流体的化学反应性。所述装置优选包括1-4个槽,更优选是2-3个槽,每个槽具有处于装置使用安全限度内的深度,优选是壳体壁厚的大约一半或更小,以及大约0.05cm-0.5cm的宽度开口或高度,优选是0.1cm-0.3cm。当它们被采用时,排气沟可以沿壳体或套管在槽之间形成。优选每个槽具有大约4-8个排气沟并且排气沟的深度与槽的深度相同或比它更小。
除壳体的沟和槽上之外,还可以考虑另外采用用于减小壳体和封装材料之间应力的附加装置。例如其内侧具有沟的壳体的外壁可通过机械加工变薄以缓解作用在封装材料和外壳之间的界面上的压力。变薄的材料将更容易服从材料的运动,从而可以通过柔性部件使温度和压力效应得到自补偿以保持熔合在壳体上的封装树脂之间的粘结的完整性。
交换装置可包括在每一末端封装在热塑性壳体上的一个和多个空心导管。一体交换装置通过封装在热塑性壳体上的空心管形成,封装密度大约40%-50%,但在壳体上不具有一个或多个槽,该交换装置被形成并用作热交换器,其数据总结在表1中。有理由期望具有相似数量的空心导管的本发明的交换装置将具有与表1所示相似的交换性能,其中该交换装置具有例如位于壳体中的共挤成形管或槽。
表1
外壳内径(英寸) #空心管大致13股/英尺 管长(英寸) 传热表面面积(英寸2) 入口管温度℃ 出口管温度℃ 管流速(lpm) 入口外壳温度℃ 出口外壳温度℃ 外壳流速(lpm)
 2.25  680  18  14.15  70.66  45.26  5.55  13.09  63.14  2.97
 2.25  680  18  14.15  70.02  35.77  3.80  13.05  58.83  2.97
 2.25  680  18  14.15  68.15  26.71  2.64  13.24  52.17  2.97
 2.75  1000  8  9.25  70.5  48.87  9.5  12.46  49.58  5.8
 2.75  1000  8  9.25  70.5  42.8  7.2  12.4  46.8  5.8
 2.25  680  27  21.22  70.1  22.91  4.4  14.5  46.5  6.6
在表1中给定的入口温度下流动时,通过封装在装置上的空心管壁,空心管内腔侧的水和空心管外壳侧的水之间的传热大致相同(在小于大约10%的试验误差范围内)。对于表1中具有2.25英寸直径和18英寸长的交换装置在不同管流速下通过外壳流体传递的计算热值Q范围从大约8,000瓦到10,000瓦;对于具有8英寸长以及2.75英寸直径的壳体在不同管流速下的Q值范围从大约13,900瓦到15,000瓦,并且对于具有27英寸长以及2.25英寸内径的装置Q值是大约14,700瓦。
本发明的一个优点是能封装在较小体积的装置内的空心导管的表面面积较大。例如,表1中装置具有大约40%-50%封装密度,具有每立方厘米的壳体体积大约11cm2传递表面面积。更高的封装密度会产生更大的值,更低的封装密度会产生更小的值。
本发明的一种实施方式是包括一个或多个封装的空心导管的交换装置,其能够通过空心导管壁从第一流体向第二流体传热,交换装置整体处于至少100℃的温度和至少50磅/平方英寸(表压)的压力,该温度在空心导管材料的连续使用温度或熔化温度以下;优选地交换装置在至少160℃的温度和至少70磅/平方英寸(表压)的压力下保持完整,该温度在空心导管材料的连续使用温度或熔化温度以下。优选地交换器的封装密度是按空心导管体积的20%-70%;更优选是按体积的40%-60%。由封装的空心导管构成的装置具有大约9平方英尺(0.85m2)的交换表面面积,能够在空心导管第一侧流动的流体和在空心导管第二侧流动的第二流体之间交换至少大约13,000瓦的能量;优选地第一流体在空心导管的第一侧以9.5lpm或更小的流速流动并且第二流体在空心导管的第二侧以5.8lpm或更小的流速流动。交换器能够在封装密度在20%-70%范围内的图2-5中列出结果所示的温度、压力和持续时间的多种测试状态下保持其流体完整性。在装置的空心导管与用于表1的交换器相似的情况下,有理由期望本发明的交换装置能够被形成并具有相似的交换性能。
对于采用多孔空心纤维制备的装置,具有如表1所示相似的封装密度的装置可以被形成并获得相似的传递表面面积(不包括内薄膜面积)。
将参照以下非限制性实施例对本发明的多个方面进行说明。
实施例1
该实施例比较了承受应力测试的多种封装交换装置的性能。
表2表示增加带槽界面的有利之处。原始PFA设计被示出在120℃丧失壳体与封装材料的完整性。温度/压力测试是对装置增加长期环境条件的方法。仅有MFA的装置被示出在150℃丧失粘结完整性。所有测试中具有改进界面的MFA装置直到并超过200℃都是完整的,具有改进槽或沟界面的PFA装置直到160℃的温度也是完整的。该装置在160℃以后承受破坏性测试以确定粘结的强度。粘结强度通过切断使装置外侧变薄并留下大约0.080”-0.100”壁厚而被确定。在封装区域上方大约0.25”的外壳上形成轴向和周向切割,留下0.5”宽0.25”长的突出部。突出部随后被用于以试图从封装材料上拉开外壳材料的方式在材料上拉起。粘结强度以这种方式可以通过力得到定性测试或通过诸如Instron的仪器得到定量测试。
该实施例的工艺通过消除在界面上的应力并将应力传递到夹在槽内的封装材料而提高装置的总体强度。理论上不希望限定为,槽和它们的附加表面区域(它们中的一些不与壳体壁平行)也增加了封装树脂对槽的至少一部分优选是所有表面或面的粘附,为通过壳体外壁的热或压力膨胀形成的径向力增加了剪切分量。该剪切分量极大地提高了装置的强度。
表2
测试条件 120℃70磅/平方英寸(表压),5h 130℃70磅/平方英寸(表压),5h  140℃70磅/平方英寸(  表压),5h  150℃70 磅/平方英寸(  表压),5h *160℃,5hrs *170℃,5hrs *180℃,5hrs
PFA原始 完整性丧失
PFA管w/应力槽释放 完整性丧失
PFA管w/带槽的ID 通过 通过 通过 通过 通过
MFA,原始 通过 通过 通过 完整性丧失
MFA管w/应力槽释放 通过 通过 通过 通过 通过 通过 通过
MFA管w/带槽的内径 通过 通过 通过 通过 通过 通过 通过
具有旋转夹具的管,MFA原始 通过 通过 通过 通过 通过 通过
具有旋转夹具的管,MFA带螺纹的内径 通过 通过 通过 通过 通过 通过
实施例2
该预示实施例表示本发明的封装装置可被用于包括但不局限于过滤、气体接触、热交换、气体洗涤以及它们的组合的热和/或质量交换。
封装装置可放置在用于对基片表面进行清洗或化学改性的设备中,所述设备包括但不局限于单晶片清洗工具、再循环清洗池。所述装置在处理前还可被用于对流体进行温度调节(例如被用于从光纤上清除聚合物涂层并从带有涂层的硅晶片上清除光致抗蚀剂的热硫酸。如图4所示,在容器448(或冷却器或来自未示出的房屋供给源的冷水)内的交换流体或工作流体450可被引导流过封装热交换器416的一侧。如果必要可包括泵446以使交换流体450再次循环,并且还可以采用颗粒过滤器408和阀412。来自清洗或工艺池的工艺流体428包括但不局限于溶剂、酸、碱、氧化剂、以及它们的有效组合和混合,这些工艺流体可以在交换装置内的空心管的外壳侧再次循环,并且工艺流体通过穿过空心管壁与交换流体450的接触得到温度调节(加热或冷却)。温度得到调节的流体428返回到工艺池或工具以用于基片434。如图5所示,本发明的封装交换装置528可被用于在于出口阀532处排放之前对工艺或清洗流体进行冷却。这种流体的实例包括但不局限于热硫酸或磷酸。
实施例3
该实施例表示封装薄膜装置以及使其适于在高温下使用的方法。
封装过滤装置具有内径为2.25”和长度为12.65”的MFA壳体并包含大约3000个MFA多孔空心纤维。该装置包含4个槽,每个槽具有0.25cm的深度和0.15cm的高度。排气沟被形成在槽之间。每个槽有大约6个排气沟并且排气沟的深度是大约0.15cm。封装熔融物是被加热到278℃持续3天的MFA。
在以下条件下测试所述装置的流体完整性。100℃-210℃温度的热流体在压力下以非常低的流速被供给到装置的外壳侧并且没有任何流体在管侧流动。两个端盖都被盖上。每天对装置进行视觉检查。在内腔侧的任何油的积聚都表示装置失效。试验结果在表3中列出。
可被用于测试这些装置的测试机构在图8中示出。在测试过程中流体在入口820进入并在外壳侧的出口838流出。所采用的流体是由Lube-tech lubrication Technologies,Inc.制造的传热流体HT3。其具有Chromalox热交换器样机#NWH0-34515的826被加热并且压力由出口流量阀838控制。阀838被关闭以限制流量并提高采用Omega压力计822测量的流体压力。流体在70磅/平方英寸(表压)压力下以大约0.46加仑/分钟的流速流动。由于流体降解,测试在210℃停止。测试结果总结在表3中。
表3对被制成在槽上具有排气缝的装置的完整性测试结果
测试 温度(℃) 压力(磅/平方英寸(表压)) 持续时间(小时) 装置完整性
1  100  160  100 通过
2  160  70  24 通过
3  170  70  24 通过
4  180  70  24 通过
5  190  70  24 通过
6  200  70  24 通过
7  210  70  8 通过
实施例4
该实施例表示封装在热塑性树脂中以形成粘结在热塑性套管上的空心管的共挤成形空心管。
在封装装置的制备过程中,工艺窗口可以改变并取决于MFA管的材料属性(熔点、熔体流动指数、管尺寸和几何形状)。这些属性在每批之间可以变化并可以通过改变和调节像温度和封装时间这样的工艺参数而得到适应。在封装过程中过热会导致管破裂并且加热不足又会使一些管在封装过程中不粘结。可采用多种技术防止管破裂,例如在纤维或管内腔放置金属线或用无机盐填充内腔。但是这些方法耗费劳力和成本,并会在装置中增加杂质。
共挤成形管可以被封装在套管或壳体以形成交换装置。本发明的一种实施方式是全氟化共挤成形管或产品例如由其制成的交换装置。共挤成形全氟化管可具有包括全氟化热塑性材料的一个或多个外层或部分,所述全氟化热塑性材料具有比共挤成形管的最内部分或层更低的熔点或熔体流动指数。共挤成形管的不同的全氟化层相互热粘结。这种共挤成形管的一个非限制性实例如图12A和图12C所示具有MFA外层和PFA内层。在管的挤压过程中两个全氟化热塑性层相互热粘结。所示管的总体尺寸是内径0.004”±0.002”(0.01±0.005cm)同时MFA外壁为0.003”±0.001”(0.0076±0.0025cm)和PFA壁0.003”±0.001”(0.0076±0.0025cm)。这种管可以从Zeus Industrial Products,Inc.,Orangeburg,SC,USA购买到。
采用五个具有3英寸(7.6cm)长的MFA外层/PFA内层的共挤成形空心导管制造交换器样本,所述空心导管插在3/8英寸(0.95cm)×3英寸(7.6cm)PFA外壳内。这一组装件放置在300℃熔化的MFA池内达到16小时。该样本被取出、冷却并切开以露出内腔。该样本在光学显微镜下被分析如图13B和图13D所示。MFA封装部分在罐中熔化并熔合,但如图所示,管在这些封装条件下并没有破裂。采用长度、壁厚和直径相似的全部MFA空心管制造的样本当封装在处于300℃的熔化的MFA池内时使空心管完全破裂。该样本在光学显微镜下被分析如图13A和图13C所示。该实施例表示当采用具有更高熔点的内层的共挤成形空心管时可以利用更大的加工范围制造封装的交换装置。可采用共挤成形空心管避免对导致封装过程中管最终破裂的空心管热塑性属性或加热设备的改变。
实施例5
该实施例表示被形成具有封装在壳体上的一个或多个共挤成形空心导管的交换装置的制造和完整性。
形成一束650纽绞并成环的共挤成形管,大约每英尺13股。管为8.7”长,具有0.0042”内径和0.006”壁厚。管由相互热粘结的MFA和PFA(Dupont 450HP)两种材料制成、外壁是MFA并且内壁是PFA。MFA层和PFA层都具有大约0.003英寸的厚度,总厚度大约0.006英寸。所述管束被放置在由MFA制成、具有2.25”内径、2.88”外径和8.7”长的外壳内。外壳在两端包含3个内槽。每个槽是0.25cm深和0.15cm宽。在每一末端的内壳或壳体壁被烧结有一个粉末状MFA层。
封装密度是大约40%。外壳被放置在具有4”内径、4”深的腔的加热器部件内。所述腔衬有铝箔层。外壳用夹具垂直固定在腔内。310克Ausimont的MFA 940AX树脂被注入外壳和腔壁之间的空间内。加热器部件随后被加热到297℃并在该温度下保持2天。2天后加热器部件被缓慢冷却到150℃并随后冷却至室温。具有管的外壳被取出。采用与上述相似的封装方法使管的反向端被密封在壳体的相对端上。穿过罐沿外壳直径在管束的成环末端上方的位置上形成切口以露出空心导管的中空部。多余的封装材料被取出。两个3/4”PFA流体接头热粘结在外壳上。
在以下条件下测试该装置的流体完整性,热流体处于140℃-200℃温度以及压力下。受热流体以6公升/分钟的流速被供给到装置的外壳侧,在管侧没有任何流体流动。装置的两端都未被封盖并暴露在空气下。每天对装置进行视觉检查。在管侧任何的油积聚都表示装置的失效。试验结果在表4中列出。测试装置大体上在图8中示出并在实施例3中得到描述。
测试结果表明具有粘结在壳体上的一个或多个空心导管的全氟化交换装置(所述壳体被制备具有一个或多个槽)在这些测试条件下保持完整。
表4对由具有带槽外壳的共挤成形管制成的装置完整性测试结果
时间 流体温度(℃) 流体压力(磅/平方英寸(表压)) 持续时间(小时) 装置完整性
1天 140  50  24 通过
2天 160  50  24 通过
3天 180  50  24 通过
4天 200  50  24 通过
5-10天 140  50  100 通过
实施例6
该实施例表示对共挤成形热塑性空心管(MFA外壁和PFA内壁)和由MFA制成的空心管的混合物进行封装以制造交换装置。
共挤成形管装置的实例。形成一束650股(13股/英尺)并成环的共挤成形管。该650管束的大致2/3是仅由MFA制成的空心管,650管束的大致1/3是由共挤成形MFA/PFA制成的空心管。所述管大约8.7”长,具有0.0042”内径和大约0.006”壁厚。两种管材料是:仅有MFA的空心管以及具有MFA外层和PFA(Dupont 450HP)内层的共挤成形空心管。对于共挤成形管,MFA和PFA层都具有大约0.003英寸的厚度,总厚度大约0.006英寸。所述管束被放置在由MFA制成、具有2.25”内径、2.88”外径和8.7”长的外壳内。外壳在两端包含3个内槽。每个槽是0.25cm深和0.15cm宽。每一末端内壳壁被烧结有具有粉末状MFA层。
封装密度是大约40%。外壳被放置在具有4”内径、4”深的腔的加热器部件内。所述腔衬有铝箔层。外壳用夹具垂直固定在腔内。大约310克Ausimont的MFA 940AX树脂被注入外壳和腔壁之间的空间内。加热器部件随后被加热到295℃并在该温度下保持48小时。2天后加热器部件被缓慢冷却到150℃并随后冷却至室温。具有管的外壳被取出。采用与上述相似的封装方法使管的反向端被密封在壳体的相对端上。在管束的成环末端上方的位置上穿过罐沿外壳直径形成切口。多余的封装材料被去除。两个3/4”PFA流体接头热粘结在外壳上。
在以下条件下测试该装置的流体完整性,100℃-140℃温度下受热的热油流体在压力下以6公升/分钟的流速被供给到装置的外壳侧,在管侧没有任何流体流动。装置的两端都未被封盖并暴露在空气下。每天对装置进行视觉检查。在管侧任何的油积聚都表示装置的失效。试验条件和结果在表5中列出。测试装置在图8中示出并在实施例3中得到描述。
表5对由具有带槽外壳的共挤成形管制成的装置的完整性测试结果
时间 流体温度(℃) 流体压力(磅/平方英寸(表压)) 持续时间(小时) 装置完整性
1天 100  50  24 通过
2天 120  50  24 通过
3天 140 50 24 对纤维通过,壳体流体接头失败
测试结果表明具有空心热塑性导管和空心共挤成形热塑性导管混合并且在壳体上具有一个或多个槽的本发明的交换装置在达到140℃的温度和50磅/平方英寸(表压)的压力下持续至少24小时保持完整。
尽管已经参照本发明的某些优选实施方式相当详细地对本发明进行了描述,但可以有其它方案。由此附加权利要求的精神和范围不应该局限于在本说明书中包含的说明和优选方案。

Claims (21)

1.一种交换装置,其包括:
一个或多个共挤成形热塑性空心导管,其在所述热塑性空心导管的第一端部熔合在第一热塑性树脂上;所述第一热塑性树脂熔合在第一套管的表面上或熔合在一个终端块体结构中的热塑性壳体的第一端的表面上;以及
所述一个或多个共挤成形热塑性空心导管的第二端部与第二热塑性树脂熔合;所述第二热塑性树脂熔合在第二套管的表面上或熔合在一个终端块体结构中的热塑性壳体的第二端的表面上,
其中所述共挤成形热塑性空心导管具有粘结或熔合在热塑性外层上的热塑性内层,所述共挤成形热塑性空心导管的热塑性外层的熔点或熔体流动指数比所述共挤成形热塑性空心导管的热塑性内层更低。
2.如权利要求1所述的交换装置,其特征在于,所述终端块体结构的共挤成形热塑性空心导管的末端被开口以使流体流动。
3.如权利要求1所述的交换装置,其特征在于,所述壳体或套管包括流体接头。
4.如权利要求1所述的交换装置,其特征在于,所述共挤成形热塑性空心导管的外层包括导热材料。
5.根据权利要求1所述的交换装置,其通过所述热塑性空心导管的壁从第一流体向第二流体传热,所述交换装置在至少100℃的温度和至少50磅/平方英寸的表压压力下是完整的,所述热塑性空心导管的封装密度按壳体内的热塑性空心导管体积在20%-70%之间。
6.如权利要求5所述的交换装置,其特征在于,所述热塑性空心导管具有9平方英尺也即0.85m2的交换表面面积,交换装置在热塑性空心导管的第一侧流动的第一流体和在热塑性空心导管的第二侧流动的第二流体之间交换至少13,000瓦的能量。
7.如权利要求6所述的交换装置,其特征在于,第一流体以9.5公升/分钟或更小的流速在热塑性空心导管的第一侧流动并且第二流体以5.8公升/分钟或更小的流速在热塑性空心导管的第二侧流动。
8.如权利要求5所述的交换装置,其特征在于,所述装置在160℃的温度和70磅/平方英寸的表压压力下是完整的。
9.如权利要求5所述的交换装置,其特征在于,所述装置在200℃的温度和50磅/平方英寸的压力下是完整的。
10.如权利要求5所述的交换装置,其特征在于,所述垫塑性空心导管为共挤成形全氟化空心导管。
11.如权利要求5所述的交换装置,其特征在于,所述空心导管由全氟化热塑性材料制成。
12.一种处理流体的方法,所述方法包括;
使待处理第一流体在根据权利要求1所述的交换装置内的一个或多个热塑性空心导管的第一侧流动;以及
使第二流体在根据权利要求1所述的交换装置中的热塑性空心导管的第二侧流动,以通过热塑性空心导管的第一侧和第二侧之间的壁在第一流体和第二流体之间进行质量、能量、或它们的组合的传递。
13.如权利要求12所述的方法,其特征在于,热能在所述第一流体和第二流体之间被传递。
14.如权利要求12所述的方法,其特征在于,位于所述热塑性空心导管的第一侧和第二侧之间的所述壁是无孔的。
15.如权利要求12所述的方法,其特征在于,位于所述热塑性空心导管的第一侧和第二侧之间的所述壁是多孔的。
16.一种设备,其包括:
根据权利要求1所述的交换装置;以及
与所述交换装置的第一流体入口相连的交换流体供给源以及与交换装置的第二流体入口相连的工艺流体供给源,第一和第二流体入口通过热塑性空心导管隔开,并且流体控制器与一第二流体出口流体相连,所述第二流体出口与第二流体入口流体连通,流体控制器向由所述设备处理的一个或多个基片提供调节过的流体。
17.如权利要求16所述的设备,其特征在于,与第二流体入口流体连通的第二流体出口向包含一个或多个基片的容器提供调节过的流体。
18.如权利要求16所述的设备,其特征在于,所述流体控制器是泵或液体流量控制器。
19.如权利要求16所述的设备,其特征在于,所述交换流体是温控流体源。
20.如权利要求16所述的设备,其特征在于,所述待处理基片包括硅。
21.如权利要求18所述的设备,其特征在于,所述泵是分配泵。
CN2004800419560A 2003-12-22 2004-12-21 封装的交换装置及其制造方法 Expired - Fee Related CN1922461B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US53166603P 2003-12-22 2003-12-22
US60/531,666 2003-12-22
US58636304P 2004-07-07 2004-07-07
US60/586,363 2004-07-07
PCT/US2004/042941 WO2005063366A2 (en) 2003-12-22 2004-12-21 Exchange devices with potted hollow conduits and methods of making

Publications (2)

Publication Number Publication Date
CN1922461A CN1922461A (zh) 2007-02-28
CN1922461B true CN1922461B (zh) 2012-12-26

Family

ID=34743000

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2004800419560A Expired - Fee Related CN1922461B (zh) 2003-12-22 2004-12-21 封装的交换装置及其制造方法

Country Status (8)

Country Link
US (1) US20070144716A1 (zh)
EP (1) EP1706699B1 (zh)
JP (1) JP4958561B2 (zh)
KR (2) KR101257959B1 (zh)
CN (1) CN1922461B (zh)
DE (1) DE602004031378D1 (zh)
TW (1) TWI333051B (zh)
WO (1) WO2005063366A2 (zh)

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100380083C (zh) * 2001-10-01 2008-04-09 安格斯公司 交换装置
US9168469B2 (en) * 2004-12-22 2015-10-27 Chemtor, Lp Method and system for production of a chemical commodity using a fiber conduit reactor
CN101282780B (zh) * 2005-10-13 2012-10-31 旭化成化学株式会社 多孔性多层中空纤维膜及其制造方法
US20070107884A1 (en) * 2005-10-27 2007-05-17 Sirkar Kamalesh K Polymeric hollow fiber heat exchange systems
GB0913645D0 (en) * 2009-08-05 2009-09-16 Nano Porous Solutions Ltd A method of forming a fluid separation filter for use in a fluid separation device
US8506685B2 (en) * 2009-08-17 2013-08-13 Celgard Llc High pressure liquid degassing membrane contactors and methods of manufacturing and use
JP5568289B2 (ja) * 2009-11-30 2014-08-06 新光電気工業株式会社 放熱部品及びその製造方法
US9643127B2 (en) 2010-01-15 2017-05-09 Board Of Regents Of The University Of Texas System Simultaneous removal of oil and gases from liquid sources using a hollow fiber membrane
US9688921B2 (en) 2013-02-26 2017-06-27 Board Of Regents, The University Of Texas System Oil quality using a microporous hollow fiber membrane
US9782726B2 (en) * 2010-01-15 2017-10-10 Board Of Regents, The University Of Texas System Non-dispersive process for oil recovery
WO2011102934A1 (en) 2010-01-22 2011-08-25 Donaldson Company, Inc. Pulse jet air cleaner systems; evacution valve arrangements; air cleaner components; and, methods
CN105597546B (zh) * 2010-02-22 2018-08-24 纳诺斯通沃特公司 用于制造膜组件的方法以及膜组件
US9909783B2 (en) * 2010-02-23 2018-03-06 Robert Jensen Twisted conduit for geothermal heat exchange
US20120055651A1 (en) * 2010-09-08 2012-03-08 Creative Hydronics International Baseboard Heater Radiator Cover
CN103153427B (zh) * 2010-09-28 2015-09-30 赛尔格有限责任公司 液体脱气薄膜接触器、元件、系统及相关方法
KR101340671B1 (ko) * 2011-12-27 2013-12-12 코오롱인더스트리 주식회사 여과막용 헤더 및 이것을 포함하는 여과막 모듈
US10376842B2 (en) 2012-06-14 2019-08-13 Board Of Regents, The University Of Texas System Non-dispersive oil recovery from oil industry liquid sources
WO2014012161A1 (en) * 2012-07-17 2014-01-23 Her Majesty The Queen In Right Of Canada As Represented By The Minister Of Natural Resources Method and composite for preparing heat exchangers for corrosive environments
US10711238B2 (en) 2012-10-02 2020-07-14 Repligen Corporation Method for proliferation of cells within a bioreactor using a disposable pumphead and filter assembly
WO2014110354A2 (en) 2013-01-14 2014-07-17 Cummins Filtration Ip, Inc. Cleanable filter
US9360758B2 (en) * 2013-12-06 2016-06-07 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device process filter and method
EP3127597B1 (en) * 2014-04-03 2021-10-20 Mitsubishi Chemical Corporation Hollow fiber membrane module and method of manufacturing hollow fiber membrane module
RU2569700C1 (ru) * 2014-07-30 2015-11-27 Закрытое Акционерное Общество "Аквафор Продакшн" (Зао "Аквафор Продакшн") Половолоконное мембранное устройство и способ его получения
US9303924B1 (en) 2014-10-14 2016-04-05 Neptune-Benson, Llc Multi-segmented tube sheet
US9149742B1 (en) * 2014-10-14 2015-10-06 Neptune-Benson, Llc Multi-segmented tube sheet
US9581395B2 (en) 2014-10-14 2017-02-28 Neptune-Benson, Llc Multi-segmented tube sheet
US9302205B1 (en) 2014-10-14 2016-04-05 Neptune-Benson, Llc Multi-segmented tube sheet
CN107847870B (zh) * 2015-07-09 2021-09-07 恩特格里斯公司 混合灌封树脂及其用途
US10751844B2 (en) * 2015-08-11 2020-08-25 Linde Aktiengesellschaft Method for connecting tubes of a shell and tube heat exchanger to a tube bottom of the shell and tube heat exchanger
DE102015015149B3 (de) * 2015-11-25 2017-01-26 Serumwerk Bernburg Ag Hohlfasermembran-Filtriervorrichtung und Verfahren zur Herstellung derselben
US10677536B2 (en) * 2015-12-04 2020-06-09 Teledyne Scientific & Imaging, Llc Osmotic transport system for evaporative cooling
DE102016102895A1 (de) * 2016-02-18 2017-08-24 Webasto SE Wärmetauscher, insbesondere Wasser-Luft-Wärmetauscher oder Öl-Wasser-Wärmetauscher
CN109414656A (zh) * 2016-04-11 2019-03-01 频谱股份有限公司 厚壁中空纤维切向流过滤器
US11235989B2 (en) 2016-06-24 2022-02-01 Toray Industries, Inc. Composite porous hollow fiber membrane, composite porous hollow fiber membrane module, and operation method for composite porous hollow fiber membrane module
DE102016224446A1 (de) * 2016-12-08 2018-06-14 Siemens Aktiengesellschaft Gehäusestruktur mit einer Kavität und einer mit dieser verbundenen Probenkammer und Verfahren zu deren Herstellung
DE102017203058A1 (de) 2017-02-24 2018-08-30 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Wärmeübertrager und Reaktor
PL3622226T3 (pl) * 2017-05-10 2022-03-07 Gea Food Solutions Weert B.V. Ulepszone środki grzejne dla owijarki przepływowej
CN108950709B (zh) * 2017-05-19 2020-12-18 中国石油化工股份有限公司 一种制备中空纤维膜的装置
JP7460530B2 (ja) * 2018-03-15 2024-04-02 インテグリス・インコーポレーテッド フッ素化フィルター膜、フィルターおよび方法
DE102018113341B4 (de) * 2018-06-05 2023-08-31 Hanon Systems Vorrichtungen zur Wärmeübertragung
JP6615969B1 (ja) * 2018-09-26 2019-12-04 日東電工株式会社 中空糸膜モジュール
US11242163B2 (en) 2020-03-25 2022-02-08 Hamilton Sundstrand Corporation Evaporators and evaporative cooling methods for garments

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0706818A1 (en) * 1993-04-20 1996-04-17 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Hollow fiber type filter
US6149422A (en) * 1996-02-07 2000-11-21 Anthony Joseph Cesaroni Bonding of tubes into articles
WO2003029744A2 (en) * 2001-10-01 2003-04-10 Mykrolis Corporation A thermoplastic heat exchanger and method of making the same
WO2003029775A2 (en) * 2001-10-01 2003-04-10 Mykrolis Corporation Thermoplastic apparatus for conditioning the temperature of a fluid

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US658496A (en) * 1900-04-25 1900-09-25 James Porteous Wagon or truck gear.
NL151792C (zh) * 1965-01-14
DE2204167A1 (de) * 1972-01-29 1973-08-09 Krupp Gmbh Waermetauscher und verfahren zu seiner herstellung
US4291096A (en) * 1979-03-12 1981-09-22 Extracorporeal Medical Specialties, Inc. Non-uniform cross-sectional area hollow fibers
US4414110A (en) * 1979-05-14 1983-11-08 Cordis Dow Corp. Sealing for a hollow fiber separatory device
US4334993A (en) * 1979-12-05 1982-06-15 Baxter Travenol Laboratories, Inc. Potted-typed seal with stress relief and method of making same
US4409093A (en) * 1981-05-04 1983-10-11 Exxon Research And Engineering Co. Process for reducing coke formation in heavy feed catalytic cracking
US4372853A (en) * 1981-06-03 1983-02-08 The United States Of America As Represented By The Department Of Energy Removable, hermetically-sealing, filter attachment system for hostile environments
DE3152899C2 (de) * 1981-10-29 1985-03-07 Espo Wierden B.V., Wierden Vorrichtung zur Herstellung eines Bauelementes für einen Röhrenwärmetauscher
US4898670A (en) * 1985-06-17 1990-02-06 A/G Technology Corporation Cartridge bonding
DE3673780D1 (de) * 1985-12-16 1990-10-04 Akzo Nv Verbinden von hohlprofilkoerpern mit einer kunststoffplatte, insbesondere zum herstellen von waermetauschern.
DE3614339A1 (de) * 1986-04-28 1987-10-29 Akzo Gmbh Waermetauscher und verfahren zum herstellen von waermetauschern
DE3614342A1 (de) * 1986-04-28 1987-10-29 Akzo Gmbh Waerme- und/oder stoffaustauscher und verfahren zum herstellen von waerme- und/oder stoffaustauschern
US4980060A (en) * 1987-07-13 1990-12-25 Asahi Kasei Kogyo Kabushiki Kaisha Hollow fiber membranes with fusion-bonded end portions
JPH0549875A (ja) * 1991-08-12 1993-03-02 Mitsubishi Rayon Co Ltd 中空糸膜モジユール
DE69305742T2 (de) * 1992-05-18 1997-04-10 Minntech Corp Hohlfaserfilterpatrone und verfahren zu deren herstellung
GB9211413D0 (en) * 1992-05-29 1992-07-15 Cesaroni Anthony Joseph Panel heat exchanger formed from tubes and sheets
GB2273459A (en) * 1992-12-21 1994-06-22 Anthony Joseph Cesaroni Bonding tubes to articles e.g in making panel heat exchangers.
US5323849A (en) * 1993-04-21 1994-06-28 The United States Of America As Represented By The Secretary Of The Navy Corrosion resistant shell and tube heat exchanger and a method of repairing the same
JPH08229359A (ja) * 1995-02-28 1996-09-10 Kanegafuchi Chem Ind Co Ltd 中空糸膜型ろ過モジュールの製造方法
GB9518260D0 (en) * 1995-09-08 1995-11-08 Univ Newcastle Polymer film heat exchanger
AU696221B2 (en) * 1995-09-21 1998-09-03 Asahi Kasei Kogyo Kabushiki Kaisha Hollow fiber membrane module
CA2244742C (en) * 1996-02-07 2005-08-23 Anthony Joseph Cesaroni Bonding of tubes of thermoplastic polymers
EP0941759A1 (en) * 1998-03-12 1999-09-15 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Method for producing an exchanger and exchanger
US6364008B1 (en) * 1999-01-22 2002-04-02 E. I. Du Pont De Nemours And Company Heat exchanger with tube plates
US6582496B1 (en) * 2000-01-28 2003-06-24 Mykrolis Corporation Hollow fiber membrane contactor
DE60020675T2 (de) * 1999-01-29 2006-05-04 Mykrolis Corp., Bedford Verfahren zur herstellung von hohlfiber-membranen
US6302197B1 (en) * 1999-12-22 2001-10-16 Isteon Global Technologies, Inc. Louvered plastic heat exchanger
JP2003159517A (ja) * 2001-11-27 2003-06-03 Ube Ind Ltd 中空糸分離膜モジュール
EP1520874B1 (en) * 2002-06-14 2011-12-28 Toray Industries, Inc. Porous membrane and method of manufacturing the porous membrane
US7122255B2 (en) * 2002-12-10 2006-10-17 E. I. Du Pont Canada Company Multilayered composite polyamide articles and processes for their preparation
US6899169B1 (en) * 2004-07-02 2005-05-31 Richard D. Cox Plastic heat exchanger

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0706818A1 (en) * 1993-04-20 1996-04-17 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Hollow fiber type filter
US6149422A (en) * 1996-02-07 2000-11-21 Anthony Joseph Cesaroni Bonding of tubes into articles
WO2003029744A2 (en) * 2001-10-01 2003-04-10 Mykrolis Corporation A thermoplastic heat exchanger and method of making the same
WO2003029775A2 (en) * 2001-10-01 2003-04-10 Mykrolis Corporation Thermoplastic apparatus for conditioning the temperature of a fluid

Also Published As

Publication number Publication date
TWI333051B (en) 2010-11-11
EP1706699B1 (en) 2011-02-09
JP4958561B2 (ja) 2012-06-20
KR20070008550A (ko) 2007-01-17
KR20120125658A (ko) 2012-11-16
JP2007516834A (ja) 2007-06-28
KR101257959B1 (ko) 2013-04-24
US20070144716A1 (en) 2007-06-28
DE602004031378D1 (de) 2011-03-24
KR101230694B1 (ko) 2013-02-07
CN1922461A (zh) 2007-02-28
WO2005063366A3 (en) 2005-12-29
EP1706699A2 (en) 2006-10-04
WO2005063366A2 (en) 2005-07-14
TW200532160A (en) 2005-10-01

Similar Documents

Publication Publication Date Title
CN1922461B (zh) 封装的交换装置及其制造方法
CN100380083C (zh) 交换装置
TW590790B (en) Liquid-gas phase contactor, method of using the same, liquid-gas contactor, and ozonated water producing device
CN100407084C (zh) 用于调节流体温度的装置
US6582496B1 (en) Hollow fiber membrane contactor
US20070289732A1 (en) Apparatus for conditioning the temperature of a fluid
JP4341947B2 (ja) 分離膜モジュール
KR100816232B1 (ko) 중공섬유막 접촉기
EP1146944A2 (en) Perfluorinated thermoplastic filter cartridge
US7347937B1 (en) Perfluorinated thermoplastic filter cartridge
CN107847870A (zh) 混合灌封树脂及其用途

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20121226

Termination date: 20161221