CN1891146A - 改进的基于光学相干断层造影的成像方法 - Google Patents

改进的基于光学相干断层造影的成像方法 Download PDF

Info

Publication number
CN1891146A
CN1891146A CNA2006100941918A CN200610094191A CN1891146A CN 1891146 A CN1891146 A CN 1891146A CN A2006100941918 A CNA2006100941918 A CN A2006100941918A CN 200610094191 A CN200610094191 A CN 200610094191A CN 1891146 A CN1891146 A CN 1891146A
Authority
CN
China
Prior art keywords
oct
speckle
blood vessel
rapid wear
conduit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2006100941918A
Other languages
English (en)
Inventor
马丁·克利恩
马库斯·菲斯特
托马斯·里德尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of CN1891146A publication Critical patent/CN1891146A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6847Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive mounted on an invasive device
    • A61B5/6852Catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0062Arrangements for scanning
    • A61B5/0066Optical coherence imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • A61K49/1818Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/0209Low-coherence interferometers
    • G01B9/02091Tomographic interferometers, e.g. based on optical coherence
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Abstract

本发明涉及一种基于OCT导管的成像方法,用于可视化患者血管系统的血管易损斑中的分子功能性过程,其中在将造影剂注入到血管系统的血管内之后以及在将成像OCT导管引入具有易损斑的血管内之后,在发射光和吸收光的OCT导管头沿着该易损斑作连续受控运动时产生由造影剂标出的易损斑的OCT图像。

Description

改进的基于光学相干断层造影的成像方法
技术领域
本发明总的涉及基于导管的成像,如其在医学中用于对患者进行血管内检查。在此本发明尤其涉及一种基于OCT的方法,该方法实现并改进了功能性分子过程的可视化。
背景技术
光学相干断层造影(Optical Coherence Tomography,OCT)是一种成像方法,用于以大约15μm的分辨率显示直至2mm深的组织结构。与将声学结构过渡(Strukturuebergang)再现为图像的超声波诊断类似,在OCT中将光学结构过渡显示为二维深度断层图像。这些过渡通过相应的特定于组织的折射指数来表征。利用OCT进行的组织分析可以是无接触的,这尤其是在将该技术集成到导管和内窥镜中时可以实现对诸如心脏、食管、气管等的血管系统的高分辨率血管内检查。但是首先必须冲洗充满血液的要检查的血管,然后才能进行成像,因为在所采用的光波波长下无法透视血液。
为了进行血管内OCT成像,在将引入受检查血管或中空器官的OCT导管以连续受控运动的形式缓慢拉回的同时,在血管内壁反射或散射的激光又耦合到导管的光导体中,该激光被输入分析单元并进行成像分析和处理。通过该方式获得二维截面图像的“堆”,这些图像在原理上可以离线地、也就是在实际测量之后被组合成三维数据组。但大多能在显示屏上看见当前的二维截面图像,该图像通常具有非常高的空间分辨率。根据与导管之间的距离的不同,该空间分辨率在x、y方向上(横切导管轴的平面)可达40μm,在z方向上(导管轴)根据图像重复速率(帧速率;取决于从导管尖端射出的激光的旋转速度)同样可达40到100μm。图像的质量除其它之外还强烈取决于到拍摄的时刻被冲洗的血管在多大程度上没有残余的血液。通常,同样由于残余的血液以及方法本身而使图像(类似于超声波成像中的图像)中的噪声很大,有时甚至有很多伪影,由此致力于寻找最小病理变化的医生目前很难进行可靠的诊断。
WO 02/067767A2公开了采用不同的造影剂来可视化易损斑中的分子功能化过程,其中OCT也可以作为可能的成像方法引入。
US 2004/0258759A1同样公开了采用造影剂来改善光学相干断层造影方法中尤其是用于显示易损斑的成像。
DE10323217A1同样涉及OCT导管,还提到了在易损斑中的应用。
发明内容
本发明要解决的技术问题是提供一种方法,可以就形态对比度以及功能性分子过程来进一步改善基于导管的OCT成像。
根据本发明,提供了一种基于OCT导管的成像方法,用于可视化患者血管系统的血管易损斑中的分子功能性过程,其中在将造影剂注入到血管系统的血管内之后以及在将成像OCT导管引入具有易损斑的血管内之后,在发射光和吸收光的OCT导管头沿着该易损斑作连续受控运动时产生被造影剂标出的易损斑的OCT图像,其中在采用相同的造影剂的情况下通过事先进行的非介入式磁共振断层造影方法对易损斑以及与此相关的引入的位置进行定位。
在此,造影剂优选包括顺磁的氧化铁微粒。
根据本发明,还通过将健康血管段中的造影剂浓度与易损斑中的造影剂浓度进行比较来确定巨噬细胞的数量。
附图说明
下面参考附图借助实施例详细解释本发明的其它优点、特征和性质。
图1示意性示出光学相干断层造影的原理,
图2示意性示出基于导管的OCT方法的技术布置,
图3示出健康血管的二维OCT图像,
图4示意性示出早期阶段的冠状硬化(左侧),以及具有易损斑的发展了的冠状硬化(右侧)。
具体实施方式
下面借助图1解释光学相干断层造影的原理。该原理对应于迈克逊干涉计的功能:从一个多少有些相干的光源射出的光1(例如激光)通过半透射镜形式的分束器分为两个子光束2a、2b。子光束2a被导向干涉镜上,使得该子光束以反射光束3a的形式又到达分束器,穿过该分束器并作为光束4a到达检测器。相反,子光束2b立即穿过分束器,并对准具有反射和散射中心的待检查组织,在该反射和散射中心该子光束以被反射光束3b的形式又到达分束器,但这次被分束器反射并作为光束4b同等地到达检测器。对于干涉条件2a+3a=2b+3b来说,来自干涉断层的光束4b与光束4a发生干涉,这以检测器图像中的干涉图案来显示。
干涉断层的(穿透)深度通过干涉镜相对于分束器的位置d来限定,该位置优选可以周期性地改变以实现逐层的扫描。干涉断层的厚度以及与此相关的OCT成像的(组织结构)分辨率通过所采用的光的相干长度确定,并由此取决于所采用的光源的频谱。如果例如采用“理想”的激光器(A),该理想激光器发射出具有单频谱线的“无限长波群”(频谱A)形式的相干光,则相干长度是无限的,并在检测器中给出按照子图像A的干涉信号。如果采用具有一定频谱宽度的光源,如SLED(Super-luminescent Light Emitting Diode,超场致发光二极管(频谱B)),则在检测器中干涉图案被限制为按照子图像B的对应于相干长度的区域。在没有位于干涉断层区域内的组织结构上被反射或散射、但还是通过分束器耦合的光不满足干涉条件,因此不发生干涉。这种光只是被识别为用于调制实际干涉信号的同等的背景。
因此在技术上通过在改变干涉镜位置的同时平移和/或旋转子光束2b/3b,可以扫描待检查的组织区域。在此类似于超声波技术将深度扫描(d的变化)称为所谓的A扫描。
为了获得二维图像横向扫描该组织。用取对数后的灰度或假颜色值显示单次A扫描的振幅值。然后将产生的图像称为B扫描。对于由多个100个单次A扫描组成的一个B扫描来说,大约需要1秒的测量时间。
图2中示出执行基于导管的OCT成像的技术布置。作为宽带光源采用SLED,其相干光通过玻璃纤维被引入纤维光学分束器中。该分束器一方面将该光的包含相干的部分分成投影到干涉镜上的一束光,和通过旋转的耦合镜耦合到沿着径向OCT导管轴旋转的玻璃纤维中、在导管尖端通过垂直于该径向导管轴的一个镜子去耦合、然后垂直地投影到组织上的一束光。另一方面该分束器将被干涉镜和该组织反射的、在区域I中部分发生干涉的光引入检测器,该检测器的测量信号经过放大、滤波,并借助计算机进一步处理为适于在屏幕上显示。
基于导管的成像的目的在于,要尽可能无损地显示中空器官的内部、尤其是血管的内部。这在基于导管的OCT成像中这样来实现,在导管尖端从玻璃纤维中射出的光被与导管的径向轴呈放射状地(以90°角)去耦,并因此在径向引入导管时垂直地投影到血管的内壁上。
通过旋转径向的导管玻璃纤维,扫描圆柱形(或环形)的片段。深度扫描通过比纤维的旋转速度(大约0.5-20MHz)快很多倍的干涉镜的运动来进行。为了扫描感兴趣的更长的组织片段,利用必要时自动的回拉机械装置同等缓慢(0.5-2mm/s)地拉回OCT导管,因此导管尖端径向运动,而且同时纤维旋转,干涉镜同时变形(类似于螺旋CT成像中的卧榻运动)。
这例如在检查健康冠状动脉的情况下会产生具有按照图3的断层图像的图像序列。可以看到OCT导管在其中左下角(自成像)的内腔(暗成像的血管内腔)。高亮显示的是血管壁,其将血管明显地与周围的组织分隔开来。亮度的程度通过光折射指数的变化来给出。因此亮的结构代表强烈反射的区域,或折射指数不连续过渡的区域。
在图3中可以看见整个血管壁的事实是因为在获取图像之前去除了血液、并由对所采用的OCT光波波长(λ≈1300±20nm;短波红外光)来说是透明的介质(例如氯化钠溶液)来代替的原因。在对血管的OCT成像中去除血液是这样来实现的,在引入OCT导管之后吹起一个在导管上顺流设置的吸附气球,该吸附气球在要检查的位置前使血流停止。通过该导管在末梢向气球注入消毒之后的氯化钠溶液,由此净化、也就是冲洗了血管中的血液。在另一种实施方式中(例如在更为复杂的血管解剖结构中),还可以采用两个或更多的吸附气球。
特别富有启发性的是在血管的动脉粥样硬化狭窄处的基于导管的OCT成像,该狭窄在血管破裂的情况下会导致致命的心肌梗塞(不稳定的心绞痛,急性心肌梗塞)。这种狭窄首先是由于在血管的血管壁上和/或中的沉积物而形成的,一般称为“斑”。由于这样的斑,内腔被剧烈减小(图4,左侧的图),这影响了血流并因此影响了对连接的器官的供血。在发展和更为危险的阶段,在这样的斑中形成脂肪沉积(脂肪核,Lipid Pool),具有在内腔和脂肪核之间的薄纤维盖,该脂肪沉积一般会导致发炎,并因此引起巨噬细胞的聚集。这样的斑易导致破裂或侵蚀(血栓)(图4,右侧图),因此称为“易损斑”,还称为“不稳定的动脉硬化(Artherosklerose)”和“后期的动脉硬化”。
利用基于导管的OCT不仅可以对血管内腔成像,也可以对血管壁成像,并进行动脉硬化(图4)的阶段划分。
本发明现在在于将OCT与特定造影剂的使用结合起来,以一方面普遍提高形态对比度,另一方面使分子功能性过程可见。
根据本发明,造影剂例如由小的顺磁氧化铁微粒(Super Paramagnetic IronOxyde-SPIO)构成,这些微粒的直径在平均150到250nm的范围内。但在原理上,可以采用这种数量级的任何特殊分子作为造影剂,只要该分子能在待检查结构中以在该结构中表现出比周围环境更高的浓度的方式聚集,而且只要该分子具有与周围环境不同的光折射指数。
尤其是巨噬细胞具有这样的特性,优先摄取这样的微粒(尤其是SPIO微粒),由此在OCT中、还可以在其它成像方法中(如MRT)看见这样的微粒。由于这种增加的摄取,可以识别出巨噬细胞具有新陈代谢,即活跃的,并且最后能分解出最终将引起心肌梗塞的纤维盖。
由于巨噬细胞数量和摄取的微粒之间存在关系,因此可以通过比较健康血管段中(例如在通往检查区域的路径上)的微粒浓度和待检查的病发区域中(例如在易损斑中)的微粒浓度来确定数量,也就是推导出那里具有的巨噬细胞,并因此推断发病阶段。由此通过基于造影剂来可视化巨噬细胞,明显简化了借助OCT对易损斑进行的诊断分析。
由于在介入式OCT检查之前要事先利用非介入式方法(例如MRT或US)进行检查,因此在补充两种检查方法的含义下优选采用对两种方法都同样可用的造影剂。
由于大部分造影剂只能很缓慢地分解,并因此在体内停留的时间很长,例如为了首先非介入式地找到血管段的动脉硬化,可能有意义的是在OCT检查之前进行的MRT检查中就注入造影剂。

Claims (3)

1.一种利用OCT导管的成像方法,用于可视化患者血管系统中血管的易损斑中的分子功能性过程,其中在将造影剂注入到血管系统的血管内之后以及在将成像OCT导管引入具有易损斑的血管内之后,在发射光和吸收光的OCT导管头沿着该易损斑作连续受控运动时产生被造影剂标记的易损斑的OCT图像,其中在采用相同的造影剂的情况下通过事先进行的非介入式磁共振断层造影方法对易损斑以及与此相关的引入位置进行定位。
2.根据权利要求1所述的方法,其特征在于,所述造影剂包括顺磁的氧化铁微粒。
3.根据权利要求1或2所述的方法,其特征在于,通过将健康血管段中的造影剂浓度与易损斑中的造影剂浓度进行比较来确定巨噬细胞的数量。
CNA2006100941918A 2005-06-27 2006-06-27 改进的基于光学相干断层造影的成像方法 Pending CN1891146A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005029897.4 2005-06-27
DE102005029897A DE102005029897A1 (de) 2005-06-27 2005-06-27 Verbessertes OCT-basiertes Bildgebungsverfahren

Publications (1)

Publication Number Publication Date
CN1891146A true CN1891146A (zh) 2007-01-10

Family

ID=37544917

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2006100941918A Pending CN1891146A (zh) 2005-06-27 2006-06-27 改进的基于光学相干断层造影的成像方法

Country Status (4)

Country Link
US (1) US20070038125A1 (zh)
JP (1) JP2007007398A (zh)
CN (1) CN1891146A (zh)
DE (1) DE102005029897A1 (zh)

Families Citing this family (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9867530B2 (en) 2006-08-14 2018-01-16 Volcano Corporation Telescopic side port catheter device with imaging system and method for accessing side branch occlusions
US8108030B2 (en) 2006-10-20 2012-01-31 Board Of Regents, The University Of Texas System Method and apparatus to identify vulnerable plaques with thermal wave imaging of heated nanoparticles
WO2009009802A1 (en) 2007-07-12 2009-01-15 Volcano Corporation Oct-ivus catheter for concurrent luminal imaging
US9596993B2 (en) 2007-07-12 2017-03-21 Volcano Corporation Automatic calibration systems and methods of use
WO2009009799A1 (en) 2007-07-12 2009-01-15 Volcano Corporation Catheter for in vivo imaging
WO2009121067A1 (en) * 2008-03-28 2009-10-01 Volcano Corporation Method and apparatus for simultaneous hemoglobin reflectivity measurement
US8062316B2 (en) 2008-04-23 2011-11-22 Avinger, Inc. Catheter system and method for boring through blocked vascular passages
US9125562B2 (en) 2009-07-01 2015-09-08 Avinger, Inc. Catheter-based off-axis optical coherence tomography imaging system
EP2424608B1 (en) 2009-04-28 2014-03-19 Avinger, Inc. Guidewire support catheter
CA2763324C (en) 2009-05-28 2018-10-23 Avinger, Inc. Optical coherence tomography for biological imaging
WO2011003006A2 (en) 2009-07-01 2011-01-06 Avinger, Inc. Atherectomy catheter with laterally-displaceable tip
WO2011038048A1 (en) * 2009-09-23 2011-03-31 Lightlab Imaging, Inc. Apparatus, systems, and methods of in-vivo blood clearing in a lumen
CN102802492B (zh) * 2010-03-16 2015-02-11 泰尔茂株式会社 导丝及导管组装体
JP5592137B2 (ja) * 2010-03-30 2014-09-17 テルモ株式会社 光画像診断装置及びその表示制御方法
US11382653B2 (en) 2010-07-01 2022-07-12 Avinger, Inc. Atherectomy catheter
US10548478B2 (en) 2010-07-01 2020-02-04 Avinger, Inc. Balloon atherectomy catheters with imaging
CA2803992C (en) 2010-07-01 2018-03-20 Avinger, Inc. Atherectomy catheters with longitudinally displaceable drive shafts
US11141063B2 (en) 2010-12-23 2021-10-12 Philips Image Guided Therapy Corporation Integrated system architectures and methods of use
US11040140B2 (en) 2010-12-31 2021-06-22 Philips Image Guided Therapy Corporation Deep vein thrombosis therapeutic methods
EP3135232B1 (en) 2011-03-28 2018-05-02 Avinger, Inc. Occlusion-crossing devices, imaging, and atherectomy devices
US9949754B2 (en) 2011-03-28 2018-04-24 Avinger, Inc. Occlusion-crossing devices
US9360630B2 (en) 2011-08-31 2016-06-07 Volcano Corporation Optical-electrical rotary joint and methods of use
EP2768406B1 (en) 2011-10-17 2019-12-04 Avinger, Inc. Atherectomy catheters and non-contact actuation mechanism for catheters
US9345406B2 (en) * 2011-11-11 2016-05-24 Avinger, Inc. Occlusion-crossing devices, atherectomy devices, and imaging
WO2013172972A1 (en) 2012-05-14 2013-11-21 Avinger, Inc. Optical coherence tomography with graded index fiber for biological imaging
WO2013172970A1 (en) 2012-05-14 2013-11-21 Avinger, Inc. Atherectomy catheters with imaging
EP2849660B1 (en) 2012-05-14 2021-08-25 Avinger, Inc. Atherectomy catheter drive assemblies
KR101380458B1 (ko) 2012-07-24 2014-04-14 서울대학교병원 (분사무소) 경동맥의 영상화를 위한 혈관 내 2세대 광 가간섭 단층촬영 방법 및 장치
US10335173B2 (en) 2012-09-06 2019-07-02 Avinger, Inc. Re-entry stylet for catheter
US9498247B2 (en) 2014-02-06 2016-11-22 Avinger, Inc. Atherectomy catheters and occlusion crossing devices
US11284916B2 (en) 2012-09-06 2022-03-29 Avinger, Inc. Atherectomy catheters and occlusion crossing devices
US10070827B2 (en) 2012-10-05 2018-09-11 Volcano Corporation Automatic image playback
US9286673B2 (en) 2012-10-05 2016-03-15 Volcano Corporation Systems for correcting distortions in a medical image and methods of use thereof
JP2015532536A (ja) 2012-10-05 2015-11-09 デイビッド ウェルフォード, 光を増幅するためのシステムおよび方法
US9307926B2 (en) 2012-10-05 2016-04-12 Volcano Corporation Automatic stent detection
US9324141B2 (en) 2012-10-05 2016-04-26 Volcano Corporation Removal of A-scan streaking artifact
US9292918B2 (en) 2012-10-05 2016-03-22 Volcano Corporation Methods and systems for transforming luminal images
US10568586B2 (en) 2012-10-05 2020-02-25 Volcano Corporation Systems for indicating parameters in an imaging data set and methods of use
US9858668B2 (en) 2012-10-05 2018-01-02 Volcano Corporation Guidewire artifact removal in images
US11272845B2 (en) 2012-10-05 2022-03-15 Philips Image Guided Therapy Corporation System and method for instant and automatic border detection
US9367965B2 (en) 2012-10-05 2016-06-14 Volcano Corporation Systems and methods for generating images of tissue
US9840734B2 (en) 2012-10-22 2017-12-12 Raindance Technologies, Inc. Methods for analyzing DNA
EP2931132B1 (en) 2012-12-13 2023-07-05 Philips Image Guided Therapy Corporation System for targeted cannulation
US10942022B2 (en) 2012-12-20 2021-03-09 Philips Image Guided Therapy Corporation Manual calibration of imaging system
US10939826B2 (en) 2012-12-20 2021-03-09 Philips Image Guided Therapy Corporation Aspirating and removing biological material
US11406498B2 (en) 2012-12-20 2022-08-09 Philips Image Guided Therapy Corporation Implant delivery system and implants
CA2895770A1 (en) 2012-12-20 2014-07-24 Jeremy Stigall Locating intravascular images
WO2014099899A1 (en) 2012-12-20 2014-06-26 Jeremy Stigall Smooth transition catheters
EP2934310A4 (en) 2012-12-20 2016-10-12 Nathaniel J Kemp RECONFIGURABLE OPTICAL COHERENCE TOMOGRAPHY SYSTEM BETWEEN DIFFERENT IMAGING MODES
US10413317B2 (en) 2012-12-21 2019-09-17 Volcano Corporation System and method for catheter steering and operation
EP2934280B1 (en) 2012-12-21 2022-10-19 Mai, Jerome Ultrasound imaging with variable line density
CA2896006A1 (en) 2012-12-21 2014-06-26 David Welford Systems and methods for narrowing a wavelength emission of light
US10058284B2 (en) 2012-12-21 2018-08-28 Volcano Corporation Simultaneous imaging, monitoring, and therapy
US9612105B2 (en) 2012-12-21 2017-04-04 Volcano Corporation Polarization sensitive optical coherence tomography system
EP2934323A4 (en) 2012-12-21 2016-08-17 Andrew Hancock SYSTEM AND METHOD FOR MULTI-PASS PROCESSING OF IMAGE SIGNALS
WO2014100162A1 (en) 2012-12-21 2014-06-26 Kemp Nathaniel J Power-efficient optical buffering using optical switch
WO2014100606A1 (en) 2012-12-21 2014-06-26 Meyer, Douglas Rotational ultrasound imaging catheter with extended catheter body telescope
EP2936426B1 (en) 2012-12-21 2021-10-13 Jason Spencer System and method for graphical processing of medical data
US9486143B2 (en) 2012-12-21 2016-11-08 Volcano Corporation Intravascular forward imaging device
US10226597B2 (en) 2013-03-07 2019-03-12 Volcano Corporation Guidewire with centering mechanism
US9770172B2 (en) 2013-03-07 2017-09-26 Volcano Corporation Multimodal segmentation in intravascular images
US11154313B2 (en) 2013-03-12 2021-10-26 The Volcano Corporation Vibrating guidewire torquer and methods of use
EP2967391A4 (en) 2013-03-12 2016-11-02 Donna Collins SYSTEMS AND METHODS FOR DIAGNOSING CORONARY MICROVASCULAR DISEASE
US11026591B2 (en) 2013-03-13 2021-06-08 Philips Image Guided Therapy Corporation Intravascular pressure sensor calibration
US10758207B2 (en) 2013-03-13 2020-09-01 Philips Image Guided Therapy Corporation Systems and methods for producing an image from a rotational intravascular ultrasound device
US9301687B2 (en) 2013-03-13 2016-04-05 Volcano Corporation System and method for OCT depth calibration
US10219887B2 (en) 2013-03-14 2019-03-05 Volcano Corporation Filters with echogenic characteristics
US10292677B2 (en) 2013-03-14 2019-05-21 Volcano Corporation Endoluminal filter having enhanced echogenic properties
US20160030151A1 (en) 2013-03-14 2016-02-04 Volcano Corporation Filters with echogenic characteristics
EP2967507B1 (en) 2013-03-15 2018-09-05 Avinger, Inc. Tissue collection device for catheter
EP2967371A4 (en) 2013-03-15 2016-12-07 Avinger Inc CHRONIC TOTAL OCCLUSION CROSSING DEVICES USING IMAGING
WO2014142958A1 (en) 2013-03-15 2014-09-18 Avinger, Inc. Optical pressure sensor assembly
EP3019096B1 (en) 2013-07-08 2023-07-05 Avinger, Inc. System for identification of elastic lamina to guide interventional therapy
MX2016010141A (es) 2014-02-06 2017-04-06 Avinger Inc Cateteres de aterectomia y dispositivos de cruce de oclusion.
MX2017000303A (es) 2014-07-08 2017-07-10 Avinger Inc Dispositivos para oclusion transversal cronica total de alta velocidad.
WO2016187141A1 (en) * 2015-05-15 2016-11-24 The Regents Of The University Of California Dynamic contrast optical coherence tomography and endogenously-derived constrast agents
CN104881872B (zh) * 2015-05-27 2018-06-26 浙江大学 一种光学微血管造影图像分割及评价方法
US10568520B2 (en) 2015-07-13 2020-02-25 Avinger, Inc. Micro-molded anamorphic reflector lens for image guided therapeutic/diagnostic catheters
JP6927986B2 (ja) 2016-01-25 2021-09-01 アビンガー・インコーポレイテッドAvinger, Inc. 遅延補正を備えたoctイメージングカテーテル
KR101746763B1 (ko) 2016-02-01 2017-06-14 한국과학기술원 망막 또는 맥락막 내 혈관조영 광가간섭 단층촬영 장치 및 이를 이용한 질병 진단방법
WO2017173370A1 (en) 2016-04-01 2017-10-05 Avinger, Inc. Atherectomy catheter with serrated cutter
EP3463123A4 (en) 2016-06-03 2020-01-08 Avinger, Inc. CATHETER DEVICE WITH DETACHABLE DISTAL END
JP7061080B2 (ja) 2016-06-30 2022-04-27 アビンガー・インコーポレイテッド 賦形な遠位先端を有するアテレクトミーカテーテル
US11513080B2 (en) * 2016-09-09 2022-11-29 Hamilton Sundstrand Corporation Inspection systems for additive manufacturing systems
CN108158561A (zh) * 2018-02-13 2018-06-15 天津恒宇医疗科技有限公司 一种新型oct导管用接口
CN108309243A (zh) * 2018-02-13 2018-07-24 天津恒宇医疗科技有限公司 一种oct导管用密封装置
WO2021076356A1 (en) 2019-10-18 2021-04-22 Avinger, Inc. Occlusion-crossing devices

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5323780A (en) * 1992-08-07 1994-06-28 University Of Florida Research Foundation, Inc. Artifact-free imaging contrast agent
AU2002252105A1 (en) * 2001-02-21 2002-09-12 Imetrx, Inc. Methods and systems which use annexin for bioprofiling body lumen
DE10297689B4 (de) * 2001-05-01 2007-10-18 The General Hospital Corp., Boston Verfahren und Gerät zur Bestimmung von atherosklerotischem Belag durch Messung von optischen Gewebeeigenschaften
DE10323217A1 (de) * 2003-05-22 2004-12-16 Siemens Ag Optisches Kohärenztomographiesystem zur Untersuchung des menschlichen oder tierischen Gewebes oder von Organen
US7217410B2 (en) * 2003-06-17 2007-05-15 The Board Of Trustees Of The Universtiy Of Illinois Surface modified protein microparticles
US7610074B2 (en) * 2004-01-08 2009-10-27 The Board Of Trustees Of The University Of Illinois Multi-functional plasmon-resonant contrast agents for optical coherence tomography
EP1793731B1 (en) * 2004-08-24 2013-12-25 The General Hospital Corporation Imaging apparatus comprising a fluid delivery arrangement and a pull-back arrangement

Also Published As

Publication number Publication date
JP2007007398A (ja) 2007-01-18
US20070038125A1 (en) 2007-02-15
DE102005029897A1 (de) 2007-01-04

Similar Documents

Publication Publication Date Title
CN1891146A (zh) 改进的基于光学相干断层造影的成像方法
US11766176B2 (en) Apparatus, devices and methods for obtaining omnidirectional viewing by a catheter
Patwari et al. Assessment of coronary plaque with optical coherence tomography and high-frequency ultrasound
Regar et al. Optical coherence tomography
Suter et al. Intravascular optical imaging technology for investigating the coronary artery
JP5727531B2 (ja) 血管セグメントを画像化する方法および装置
Tearney et al. Optical biopsy in human gastrointestinal tissue using optical coherence tomography.
Brezinski et al. Assessing atherosclerotic plaque morphology: comparison of optical coherence tomography and high frequency intravascular ultrasound.
US9332942B2 (en) Systems, processes and computer-accessible medium for providing hybrid flourescence and optical coherence tomography imaging
US11382516B2 (en) Apparatuses, methods, and storage mediums for lumen and artifacts detection in one or more images, such as in optical coherence tomography images
JP2016507272A (ja) 機能的利得の測定技術及び表示
US9858668B2 (en) Guidewire artifact removal in images
JP2018094395A (ja) 診断用スペクトル符号化内視鏡検査装置およびシステム、ならびにこれらと共に使用するための方法
Meissner et al. Intravascular optical coherence tomography: comparison with histopathology in atherosclerotic peripheral artery specimens
Brezinski Optical coherence tomography for identifying unstable coronary plaque
Sharif et al. Current status of vulnerable plaque detection
Poneros et al. Diagnosis of Barrett's esophagus using optical coherence tomography
US10602934B2 (en) Probe for detecting atherosclerosis
US11972561B2 (en) Auto-pullback triggering method for intracoronary imaging apparatuses or systems using blood clearing
EP3949835A2 (en) Auto-pullback triggering method for intracoronary imaging apparatuses or systems using blood clearing
Schmitt et al. Limiting ischemia by fast Fourier-domain imaging
Petersen et al. Design of an OCT imaging system for intravascular applications
Phipps et al. Intravascular OCT imaging artifacts
Li et al. Intravascular Dual-Modality Imaging (NIRF/IVUS, NIRS/IVUS, IVOCT/NIRF, and IVOCT/NIRS)
Zheng et al. Comparison of artifact generation with catheter bending using different PS-OCT approaches

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20070110