CN1866663B - 向汽车电气用户设备供电的蓄能系统 - Google Patents

向汽车电气用户设备供电的蓄能系统 Download PDF

Info

Publication number
CN1866663B
CN1866663B CN2006100785017A CN200610078501A CN1866663B CN 1866663 B CN1866663 B CN 1866663B CN 2006100785017 A CN2006100785017 A CN 2006100785017A CN 200610078501 A CN200610078501 A CN 200610078501A CN 1866663 B CN1866663 B CN 1866663B
Authority
CN
China
Prior art keywords
energy
storage battery
capacity cell
storage system
moment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2006100785017A
Other languages
English (en)
Other versions
CN1866663A (zh
Inventor
安格罗·普萨蒂
迈克尔·帕内斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Agenzia Nazionale per le Nuove Tecnologie lEnergia e lo Sviluppo Economico Sostenibile ENEA
Marelli Europe SpA
Original Assignee
Agenzia Nazionale per le Nuove Tecnologie lEnergia e lo Sviluppo Economico Sostenibile ENEA
Magneti Marelli SpA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agenzia Nazionale per le Nuove Tecnologie lEnergia e lo Sviluppo Economico Sostenibile ENEA, Magneti Marelli SpA filed Critical Agenzia Nazionale per le Nuove Tecnologie lEnergia e lo Sviluppo Economico Sostenibile ENEA
Publication of CN1866663A publication Critical patent/CN1866663A/zh
Application granted granted Critical
Publication of CN1866663B publication Critical patent/CN1866663B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0814Circuits or control means specially adapted for starting of engines comprising means for controlling automatic idle-start-stop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/003Starting of engines by means of electric motors said electric motor being also used as a drive for auxiliaries, e.g. for driving transmission pumps or fuel pumps during engine stop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/04Starting of engines by means of electric motors the motors being associated with current generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0862Circuits or control means specially adapted for starting of engines characterised by the electrical power supply means, e.g. battery
    • F02N11/0866Circuits or control means specially adapted for starting of engines characterised by the electrical power supply means, e.g. battery comprising several power sources, e.g. battery and capacitor or two batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N15/00Other power-operated starting apparatus; Component parts, details, or accessories, not provided for in, or of interest apart from groups F02N5/00 - F02N13/00
    • F02N15/02Gearing between starting-engines and started engines; Engagement or disengagement thereof
    • F02N15/022Gearing between starting-engines and started engines; Engagement or disengagement thereof the starter comprising an intermediate clutch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N2011/0881Components of the circuit not provided for by previous groups
    • F02N2011/0885Capacitors, e.g. for additional power supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N2011/0881Components of the circuit not provided for by previous groups
    • F02N2011/0896Inverters for electric machines, e.g. starter-generators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Abstract

一种用于向汽车电气用户设备提供动力的蓄能系统(15),该蓄能系统(15)包括蓄电池(20)、与所述蓄电池(20)接线端子并行连接的电容元件(21)、在所述蓄电池(20)和所述电容元件(21)之间串行连接到所述蓄电池(20)上的电感元件(22);在充电和放电瞬间,有效地调节所述蓄电池(20)和所述电容元件(21)之间的功率和能量流;所测蓄电池(20)容量(Ah)和所测电容元件(21)电容量(F)之比小于1;所测蓄电池(20)容量(Ah)和所测电感元件(22)电感量(μH)之比小于1。

Description

向汽车电气用户设备供电的蓄能系统
技术领域
本发明涉及一种向汽车电气用户设备供电的蓄能系统。
本发明可以应用于汽车工业,并在汽车工业中产生良好的效果。下面仅结合示例,对本发明给予介绍。
背景技术
目前,人们普遍认为需要采取更有效的技术来解决私家汽车和公共客车所带来的一些问题。尤其是,人们愈来愈将注意力集中在从根本上降低能源消耗,真正减少污染和噪声辐射,特别是城市地区。所有这些问题都是人们普遍关心的。而且,目前汽车工业无不都在研究和开发能够提供至少部分解决方案,减少对人类生存环境影响的汽车。
正因为如此,安装高效、低污染驱动系统的创新型汽车正在逐渐得到普遍使用。在这方面,人们特别感兴趣的是开发了所谓的“混合”型汽车,即HEVs(HybridElectric Vehicles)。这类汽车型号多种多样,它们集成了一种电力系统、可逆储能系统和由电机与内燃机组成的驱动系统;依据混合程度,依次分类为“轻度HEV(MildHEV)”、“中度HEV(Medium HEV)”和“完全HEV(Full HEV)”。
目前,最普遍使用的汽车是属于最小混合或“轻度HEV”或者“轻度混合电力汽车”类。这类混合动力汽车,是在传统型号的汽车上加装了一种电力驱动装置,可在非常短的距离上,或者特别是在短期应用环境下使用。重要的是,甚至采用混合动力程度很低的汽车也能具有降低能耗,减少污染排放等优点,特别是在城市地区行驶的车辆。
普通汽车通常都使用一个12伏铅酸蓄电池,该蓄电池能够提供400-800瓦的平均功率和1500-3500瓦的峰值功率(只有在起动发动机时才需要)。另一方面,“轻度HEV”装备能够提供2500-3500瓦的平均功率和8000-11000瓦的峰值功率(只有在起动发动机时才需要)的蓄电池(或蓄电池组)。
在“停止一起动”模式下,当汽车是停止的或将要停止时(通常是由于交通原因,例如遇到红灯或交叉路口需要让行时),内燃机切断,而当司机踩下油门时,内燃机则又起动了。在起动期间,汽车的电动起动机就消耗掉相当大的电能,结果大大地增加了汽车蓄电池的压力,减少了蓄电池的电荷。因此,在“停车-起动”模式下,由于内燃机高频率地启动,特别是在城市交通环境下,汽车蓄电池的使用强度加大了。
同样,在再生制动模式下,由于蓄电池不得不在很短的时间内吸收大量的电能,从而对汽车蓄电池带来很大的压力。在再生制动模式下,汽车的减速通常会产生电能,该电能是存储在汽车蓄电池内,这样就至少回收了部分动能。然而,这部分动能在普通汽车上,则会因为采用传统制动系统,而以热的形式被散发掉。
在汽车蓄电池中,控制当内燃机起动时急剧释放瞬间过程中出现的功率和能量流,是一件需要慎重处理的事情,特别是当蓄电池同时向其它几个电气设备供电时。事实上,考虑到此阶段所需要的高瞬态功率,电气设备同时工作时造成的电池能量下降,可严重地影响内燃机的起动。
为了解决这些问题,人们提出了多种选择方案。所有这些解决方案主要都是基于以蓄电池和超级电容相结合而组成的蓄能系统。在已知的这类蓄能系统中,能量流是通过预先设定的控制逻辑来控制的,该控制逻辑电路要求制作和使用特别的电子控制电路,因此,就使得系统更加复杂,同时,增加了生产和日常维护的成本费用。
发明内容
本发明的目的是提供一种蓄能系统,为电动汽车电气用户设备提供动力,以便解决上述问题。该发明生产成本低,且容易生产,尤其在充电和放电瞬间,能有效地控制功率和能量流。
按照本发明,提供一种蓄能系统,向汽车电气用户设备提供动力。该蓄能系统包括:
蓄电池;
与蓄电池接线端子并行连接的电容元件;
在蓄电池和电容元件之间串行连接到蓄电池上的电感元件;
蓄能系统,其特征在于:在蓄电池20的充电和放电瞬间,可以有效地调节蓄电池和电容元件之间的功率和能量流:
所测蓄电池电容量和所测电容元件电容量之比小于1;
所测蓄电池电容量和所测电感元件电感量之比小于1。
附图说明
下面结合附图,通过示例对本发明若干非限定性的实施例进行了介绍:
图1是混合机汽的传动系中机械连接电机和内燃机的四种可能方案;
图2是按照本发明具有蓄能系统的混合机车传动系示意图;
图3是热起动期间在一个标准汽车蓄电池的接线端子处测量的电压和电流的时间关系图;
图4是图3的详图;
图5和图6是热起动期间依据本发明的蓄能系统的电压和电流时间图表;
图7是冷起动期间在一个标准汽车蓄电池的接线端子处测得的电压和电流的时间图表;
图8和图9是冷起动期间依据本发明的蓄能系统的电压和电流时间图表;
图10是再生制动期间一个标准汽车蓄电池接线端子处测得的电流的时间图表;
图11和图12是再生制动期间依据本发明的蓄能系统的电压和电流时间图表。
具体实施方式
图1中的序号1表示混合机车(图中未示)的整个传动系。传动系1包括内燃机2,该内燃机2具有一个通过插入离合器5与变速箱4相连接的驱动轴3;变速箱4带有通过离合器5的插入而与驱动轴3形成机械连接的输入轴6,和机械连接到混合机车的驱动轮(图中未示)的输出轴7。传动系1还包括既可作为电动机使用又可作为发电机使用的可逆电机8。
在不同的实施例中,可逆电机8可安装在内燃机2的驱动轴3上,在离合器5的上游(图1a);也有安装在变速箱4的输入轴6上,在离合器5的下游处(图1b),也有安装在变速箱4的输出轴7上(图1c),或连接到副轴9上,形成一个角度,与内燃机2的驱动轴3构成一个整体(图1d)。
图2是图1d结构的示例,在这个示例中,可逆电机8连接到副轴9上,形成一个角度,与内燃机2的驱动轴3构成一个整体。更具体地说,副轴9连接在内燃机2的驱动轴上,与离合器5和变速箱4相对,并通过一个三角皮带传动机构11与滑轮10相连接,皮带传动机构同时将动能传输给辅助负载,而辅助负载是通过液压动 力转向泵12和空调压缩机13来确定。最好通过电磁离合器14将滑轮10连接到内燃机2的驱动轴3。
可逆电机8是一个交流电机,它通过双向电子变换器16与直流蓄能系统15电连接,从而使可逆电机8能够作为发电机和电动机工作。许多车上的直流电气设备17(内外照明设备、空调、收音机等)也都连接到蓄能系统15并由蓄能系统15直接供电。
重要的是,图2的传动系1的结构,即使在内燃机2关闭的情况下,借助电磁离合器14可使车上的所有功能维持工作(动力转向、空调、电气设备等)。因此,传动系1能够在“停止-起动”模式下工作;在这种模式下,在汽车停止不动或将要停止时,内燃机2可以停车(一般都是在交通行驶车流拥堵情况下,诸如遇到红灯或交通路口让行时),当司机踩下油门时,内燃机可以重新起动。
此外,电子变换器16是双向的,图2中的传动系1可以在再生制动模式下工作,此时汽车的减速通常会产生电能,该电能便储存在蓄能系统15中,从而至少可回收部分动能。然而,这部分动能在普通汽车上,则会因为采用传统制动系统,而以热的形式被散发掉。
蓄能系统15包括带有两个外部接线端子19的箱体18。在外部接线端子19上,连接有蓄电池20(例如一个12伏的铅酸电池)、与蓄电池20并联的电容元件21和与蓄电池20端部串行连接的电感元件22,该电感元件22接在蓄电池20和电容元件21之间。
正如后面将要详细介绍并通过测试结果验证的那样,电感元件22在蓄电池20的充电和放电瞬间,可以在蓄电池20和电容元件21之间进行功率和能量流的差动分配,与此同时,仍不影响这两个元件的互补特性。
为了有效地在蓄电池20的放电瞬间(即蓄电池20提供电能时)和蓄电池20的充电瞬间(即蓄电池20吸收电能时)调节蓄电池20和电容元件21之间的功率和能量流,所测蓄电池20容量(Ah)和所测电容元件21的电容量(F)之比小于1,且所测蓄电池20容量(Ah)和所测电感元件22的电感量(μH)之比小于1。
更具体地说,当所测蓄电池20的容量(Ah)和所测电感元件22的电感量(μH)之比小于0.5,最好是小于0.25时,则可以实现蓄电池20的充电和放电瞬间蓄电池20和电感元件21之间功率和能量流的最佳调节。
在一个优选实施例中,首先确定了电容元件21的电容量,然后,电感元件22 的电感量再根据电容元件21的电容量的函数来确定。电容元件21的电容量一般是按照这种原则确定,即电容元件21应能储存足够的电能,从而在预先确定的放电瞬间初始时间间隔期间单独向汽车电气用户设备(电气设备17和作为电动机使用的可逆电机8)供电。
电容元件21的规格,应满足以下要求:
-电容元件21可承受的最大电流大于在蓄电池20的放电瞬间初始时间间隔期间电容元件21所要求的最大供电电流;
-电容元件21可承受的最大电压大于最大放电电压;
-电容元件21可提供的电能大于在蓄电池20的放电瞬间初始时间间隔期间电气用户设备所需要的电能;
-在所述蓄电池20的放电瞬间初始时间间隔结束时,电容元件21接线端子处的电压大于电气用户设备最小供应电压;
因此,按照下述公式,电容元件21的规格如下:
E TRANS = 1 2 · C · ( V NOM 2 - V MIN 2 )
式中:
ETRANS在蓄电池20的放电瞬间初始时间间隔期间,电气用户设备所需要的电能;
C电容元件21的总电容量;
VNOM电容元件21接线端子处的额定静止电压;
VMIN电气用户设备的最小电源电压
电容元件21的电容量规格也可以这样确定,即在预先确定的蓄电池20充电瞬间初始时间间隔期间,可使电容元件21能够吸收汽车电气用户设备所提供的能量(即在再生制动期间通过作为发电机使用的可逆电机8提供)。
在这种情况下,按照下列公式,电容元件21的规格可以是:
E TRANS = 1 2 · C · ( V MAX 2 - V NOM 2 )
式中:
ETRANS在蓄电池20充电瞬间初始时间间隔期间电气用户设备所提供的能量;
C电容元件21的总电容量;
VNOM电容元件21接线端子处的额定静止电压;
VMAX在蓄电池20充电瞬间初始时间间隔期间电容元件21接线端子处的最大 充电电压。
电感元件22的电感量可按照下列公式给出:
L=RT·τ
式中:
L电感元件22的电感量;
RT总电阻,等于蓄电池20内部电阻RB和电感元件22电阻RL之和;
τ蓄电池20和电感元件22所确定的串联支路的时间常数,该时间常数范围在蓄电池20的放电瞬间预定初始时间间隔的1/3到1/5之间。
一般来讲,蓄电池20和电感元件22所确定的串联支路的时间常数,可以估算为蓄电池20的放电瞬间预定初始时间间隔的1/4。
蓄电池20的放电瞬间的初始时间间隔的长短,是以蓄电池20的放电瞬间蓄能系统15所需供电电流时间模式的函数和该放电瞬间蓄电池20所提供的最大供电电流的函数来确定的。具体地说,蓄电池20的放电瞬间初始时间间隔的长短等于供电电流所必需的时间间隔,该供电电流是蓄能系统15在蓄电池20的放电瞬间所需要的,与蓄电池20的放电瞬间蓄电池20的预定最大电流相等。
在一个优选实施例中,电容元件21至少包括一个由若干超级电容器元件组成的模组,例如“双层电容器”,和平衡电路(图中未详细示出)。由于电容元件21自放电所造成的散能效果总的来讲可以忽略不计(大约1Wh/日),所以一般都不需要散能设备,但是,显而易见,这种散能设备可以很容易地集成到蓄能系统15中。
在蓄能系统15正常工作期间,由于电容元件21的干预,蓄电池20的放电或充电瞬间最初得到支撑;然而,一旦初始瞬间结束,蓄电池20就可以提供和吸收所涉及的电能。
已经对上述蓄能系统15的使用进行了若干次比较试验,下面简要介绍其中一些试验的结果。
其中一些试验是在 汽车上进行的。该车使用的汽油内燃机是直列式4缸发动机,1200cc。该车首先安装了标准的44Ah电容量、12伏铅酸蓄电池,随后又安装了上述的事宜规格的蓄能系统15。
首先,在标准蓄电池接线端子处进行了电流和电压的测量,记录了热起动和冷起动的能量吸收情况。接着,又对蓄能系统15接线端子19处的电流和电压进行了 测量,记录了热起动和冷起动的能量吸收情况。
图3示出了该车在热起动时标准蓄电池接线端子处所测量的电压V和电流A的图表。可以看出,在起动时,在不同的时间出现了两个典型的阶段:起动瞬间阶段和稳态阶段。
图4示出了图3图表瞬间阶段的详细说明。参见图4,内燃机的起动是在大约750ms内完成。通过观察图4中电压和电流吸收图形,能够确定瞬间持续时间,在这个图例中,瞬间持续时间是大约250ms。因此,表示内燃机2起动的时间是:总起动时间750ms,其中瞬间时间250ms,稳态阶段是500ms。
下面几张表列出了根据图4测量结果计算出的各个不同阶段的功率和能量。
  电流   电压   功率   能量
  [A]   [V]   [W]   [J]
  最大   357   11.8   3213
  最小   19   8.8   224
  中等   188   10.0   1856
  总数   465
表1-放电瞬间0-250ms
  电流   电压   功率   能量
  [A]   [V]   [W]   闭
  最大   201   10.8   1970
  最小   73   9.6   788
  中等   112   10.4   1160
  总数   580
表2-稳态阶段250-750ms
  电流   电压   功率   能量
  [A]   [V]   [W]   [J]
  最大   357   11.8   3213
  最小   19   8.8   224
  中等   137   10.3   1392
  总数   1045
表3-总起动时间0-750ms
如表1所示,在瞬间阶段,相当于工作的前250ms,蓄电池20所承受的最大电流等于357A。
为了使这种比较尽可能的具有代表性,测试汽车上的蓄能系统15包括与标准蓄电池相似的蓄电池20,即44Ah,12伏铅酸电池。测试汽车上的蓄能系统15的电容元件21包括六个串行连接的超级电容器元件,例如“双层电容器”,每个电容器2.5伏,因此,当可逆电机8作为一个发电机以大约14伏的电压工作时,它也可以在再生制动阶段和再充电阶段工作。
关于电容元件21的其它功能,确定电容元件21应能够支持蓄电池20的放电瞬间(相当于蓄电池工作时的前250ms)和内燃机的整个起动阶段(持续750ms)。在表1和表3所示的这两个工作要求和测量结果的基础上,电容元件21的特性如下:
  每个元件的电压   2.5V
  每个元件的电容量   12.5F
  元件数/链接方式   6/串行
  最大电压   15V
  总电容量   75F
  平衡电路/类型   是/主动
  散能设备   无
表4-电容元件21
关于电容元件21自放电所造成的蓄能系统容量下降,可从12伏放电到9伏(在20小时内)的44Ah铅酸蓄电池20,产生大约590Wh的能量。既然电容元件21自放电所散失掉的电能大约为1.0Wh/日,也就是,相对于蓄电池20的容量而言是可以忽略不计的,无需提供任何设备来平衡电容元件21的自放电。
如表2所示,在大约500ms的稳态阶段,电气负载吸取了大约110A的平均电流。电感元件22的作用是,一旦电容元件21所支持的蓄电池20的大概250ms的初始放电瞬间时间超过时,它必须能够使蓄电池20仍能保持稳态工作。假设由蓄电池20和电感元件22所组成的蓄能系统在等于大概四个时间常数的时间间隔之后到达稳定状态时,而且,假设瞬态时间是250ms时,所获得的时间常数等于大约62ms(250/4)。
考虑到由蓄电池20和电感元件22所组成的系统的总电阻大约为16mohm,而且在给定的时间常数下,电感元件22的值是1.0mH;在这个情况下,蓄电池20将可以提供最大110A的电流,也关于电感元件22。另一方面,如表1所示,在标准设置中,蓄电池20所提供的最大电流是大约360A。
下表5示出了电感元件22的特性值:
  电感量   1.0mH
  最大放电电流   110A
  最大充电电流   110A
  电路时间常数   60ms
  芯线材料   无定形的
表5-电感元件22
如上所述,在起动内燃机2时蓄电池20的放电瞬间期间,蓄能系统15的性能如图5和图6所示,这两张图分别示出了电流图形和电压图形。更具体地说,图5示出了电流吸收的图形,尤其是放电电流Ac、蓄电池电流Ab和电容元件21的电流Au。
最大放电电流等于约355A,最初是由电容元件21来支持,后者可提供280A的电流;在这个初始阶段,蓄电池电流大约75A。在首次起动瞬间之后所发生的蓄电池最大电流大约120A,一旦起动完成,即回落到70A。在整个起动阶段,电容元件21的电流反映了负载所引入的电流变化,与此同时,蓄电池20在起作用,它提供了一个更稳定的、递减电流,相当于负载的持续部分。
在同一个放电瞬间,如果不提供电感元件22,那么最大蓄电池电流将大约是250A,而电容元件21的最大电流将会只有110A;在这个情况下,与依据本发明的蓄能系统15的30毫秒相比,蓄电池20将会在大约3ms的时间内提供最大电流。蓄能系统15包括了一个安装在电容元件21上游的电感元件22。此外,如果没有电感元件22,蓄电池20在该时间的十分之一时间内将会承受该电流2.2倍的瞬间电流。
图6示出了蓄电池电压Vb和电容元件21接线端子处电压Vu的图形,同时也说明了电容元件21在支持蓄电池20的放电瞬间时的最初电流分配情况。事实上,与标准蓄电池配置时3.4伏电压相比,蓄电池电压Vb经历了大约0.7伏(从12.4V到11.7V)的最大变化。蓄电池20的电压也维持在比铰稳定的大约12伏电压上, 而电容元件21承受了所有变化。
正如图3(标准蓄电池)和图5(蓄能系统15)中的电流图形所清楚展示的那样,在瞬间阶段相当于工作的最初250ms标准蓄电池所承受的最大电流是357A;然而,当蓄电池20置于蓄能系统15内时,蓄电池20所承受的最大电流大约为110A。电容元件21和电感元件22的组合所产生的这种负载平衡效果使得高比能(Wh/kg)的蓄电池20得以应用,而且在给定数量的电能情况下,可以使用比较轻的蓄电池20。铅酸电池20的比能电平的提高是40%(更确切地说,电源蓄电池为25Wh/kg,电能蓄电池为3Wh/kg)。
另外,又进行了进一步的试验,模拟在内燃机2冷起动时蓄能系统15的性能。人们知道,对于蓄电池20来讲,由于所储存容量的减少和内燃机2增加的阻力(摩擦力和泵吸),这是一个十分不利的条件。更具体地说,内燃机2的实际起动是在变化周期的非发火起动阶段之后,这种情况通常随着温度的下降而增加。
图7示出了在冷起动内燃机(在被空车搁置一个晚上后)时,标准蓄电池接线端子处测量的电量,即,没有使用电容元件21和电感元件22。另外,在这种情况下,所测量的起动电流表示蓄能系统15所需要的放电电流。
图8和图9示出了在冷起动内燃机(在被空车搁置一个晚上后)时,蓄能系统15的电压和电流性能图形。图8示出了电流性能。更具体地说,通过提供240A的电流,蓄能系统15相当于初始最大电流瞬间的情况,大约340A,与此同时,这个阶段最大蓄电池电流Ab只有大约120A。
当冷起动一个标准蓄电池时,平均蓄电池电流大约160A,最大峰值电流在230A至180A之间,峰峰幅度为80A。另一方面,在由电容元件21和电感元件22组成的蓄能系统15中,蓄电池峰值电流值在大约120A和100A之间,幅度在30至40A之间。
图9所示的电压特性也反映了与电容元件21和电感元件22结合在一起的蓄电池20是如何独立承受小于标准蓄电池20的压力。如图9所示,蓄电池电压Vb在11.4和11.8V之间,而一个标准蓄电池的电压则达到了初始最低值8.8V,在工作结束时增加到小于10.5V。
传动系1的图2结构提供了汽车正常使用期间向蓄能系统15再充电,其方式与普通的车载交流发动机一样,另外,当制动和/或减速时用于回收汽车产生的部分能量。在这些使用条件下,可逆电机轴处所获得的机械能被转换成电能,以提供给蓄 能系统。这个再生阶段提供了用于支持车载电气系统和负载的动力,维持蓄能系统15的足够电荷。
在 电动汽车的减速和制动期间,又对电量进行了测量。图10示出了该电动汽车在减速时和再生制动期间所测定的再充电电流,尤其是在35km/h到零时的情况,平均减速为0.80m/s2(等于城市交通的正常行驶情况)。两个阶段都是分别在大约70A和150A的恒定电流时进行的。应该指出的是,在确定电感元件22的规格时,考虑了瞬间电流过载的情况,即超过110A和达到最大150A的情况。当汽车减速和制动时对蓄能系统15的性能参照这些电流测量模式进行了评定。
图11示出了 
Figure DEST_PATH_GA20185121200610078501701D00092
电动汽车减速和再生制动期间蓄能系统15的电流图形;在上述两种工作结束时在上升模式下,蓄电池电流Ab只达到最大生成电流值,在此时间内,电容元件21的时间电流Au降到零。此外,生成的电流的任何变化都是在电容元件21的电流范围内,而蓄电池电流则保持稳定。图12示出了蓄电池20的充电瞬间蓄电池电压Vb和电容元件21的电压Vu。在整个再生制动阶段,蓄电池电压保持在12和13伏之间,而电容元件21在工作结束时达到最大生成电压14.3伏。生成电压的任何变化仅是在电容元件21的电压内。
所建议的规格被开发用于在这里仅通过例子的方式描述的应用。因此,人们知道除了上述的情况以外,可在设计系统用途中,根据变化情况,确定系统各个部件的规格,但同时还要符合所介绍的工作原理。这些变化对于本领域技术人员来说是很显然的。
从上述说明中可以很清楚地看到,在蓄能系统15中,蓄电池20和电容元件21工作方式不同,采用互补的方式工作,从而增强蓄能系统15整体的效能和可靠性;这种彼此不同且又互补的工作方式,实际上是通过电容元件21上游的电感元件22来实现的。实际上,蓄电池20的放电或充电瞬间所产生的峰值功率主要靠电容元件21来保持,不论其自己的电荷状态和/或蓄电池20的电荷状态如何。为此,蓄能系统15提供了最大可使用功率,即使在老化和/或部分电荷状态引起蓄电池20性能下降的情况下,也是如此。
更具体来讲,瞬态期间蓄电池20和电容元件21的不同、互补工作方式增加了蓄电池20的工作寿命,就能量密度而言,一般来讲,对承受高功率使用和频率充电和放电峰值的各种蓄电池来讲,大大降低了蓄电池20性能的损失。此外,在瞬态期 间蓄电池所提供和吸收的峰值功率比较低,这是由于电容元件21的干预,这样,减少了蓄电池20所承受的压力,延长了蓄电池20的工作寿命。
换句话说,蓄电池20、电容元件21和电感元件22的结合,可以提供蓄电池20的充电和放电瞬间的高效能量转换,大大减少了蓄电池20吸收或提供的峰值电流,从而减少了蓄电池20的焦耳效应损失,提高了给定储存或提取电荷的蓄电池20的容量。
重要的是,在蓄电池20的充电或放电瞬间,蓄电池20和电容元件21的差动、互补响应可解决冷启动内燃机2时所遇到的以及蓄电池20电容量下降时所引起的各种问题。也就是说,启动瞬间实际上是由电容元件21来支持的,随着温度的降低,内部电阻的增加也就很低,因此,也同时提高了临界冷使用条件下蓄能系统15的可靠性。
需要提及的另一个重要方面是,所提出的蓄能系统15不需要配备用来调节能量流的电子接口部件,因此,生产成本低。事实上,蓄能系统15包含了专有的被动电气部件,因此本身的可靠性比较高。
最后,倘若具有电容元件21和电感元件22的负载平衡效果,蓄电池20的规格可以达到高比能特性,这样就可在更宽的电池荷电状态(state-of-charge,SOC)范围内使用。因此,对于给定数量的可用电能来讲,可以使用规格较小、成本低的蓄电池20。
一般来讲,任何类型的蓄电池20与超级电容器的结合,同重量相等但只包括一个蓄电池20的蓄能系统15相比,可以使比能水平WM/kg和峰值功率密度W/wg翻一番。更具体地来讲,与超级电容器相结合的铅酸电池可以最大限度地提高频繁充电或放电条件下蓄电池的工作寿命。
重要的是,蓄能系统15可以安装在一个与标准蓄电池相同外形和尺寸的箱体18内,因此,可以用来替代传统的蓄电池,甚至可以以成套修配用零部件的形式提供。
上面所介绍的蓄能系统15是基于“轻度混合动力汽车”类别汽车,但是,就其诸多优点而言,很显然,它也可以很方便地应用于其它类型的车辆。
例如,蓄能系统15可以用在频繁启动-停止工作、具有重要连续工作辅助功能的机械和设备上,从而产生良好的效果。

Claims (17)

1.一种用于向汽车电气用户设备提供动力的蓄能系统(15),该蓄能系统(15)包括:
蓄电池(20);
与所述蓄电池(20)接线端子并行连接的电容元件(21);
在所述蓄电池(20)和所述电容元件(21)之间串行连接到所述蓄电池(20)上的电感元件(22);
所述蓄能系统(15),其特征在于:在所述蓄电池(20)的充电和放电瞬间,可以有效地调节所述蓄电池(20)和所述电容元件(21)之间的功率和能量流;
所测蓄电池(20)容量(Ah)和所测电容元件(21)电容量(F)之比小于1;和
所测蓄电池(20)容量(Ah)和所测电感元件(22)电感量(μH)之比小于1。
2.根据权利要求1所述的蓄能系统(15),其特征在于:所测蓄电池(20)容量(Ah)和所测电感元件(22)电感量(μH)之比低于0.5。
3.根据权利要求1所述的蓄能系统(15),其特征在于:所测蓄电池(20)容量(Ah)和所测电感元件(22)电感量(μH)之比低于0.25。
4.根据权利要求1所述的蓄能系统(15),其特征在于:首先确定所述电容元件(21)的电容量,然后,所述电感元件(22)的电感量作为所述电容元件(21)的电容量的函数来确定。
5.根据权利要求4所述的蓄能系统(15),其特征在于:所述电容元件(21)的电容量应能使所述电容元件(21)储存足够的能量以在所述蓄电池(20)的放电瞬间预先确定的初始时间间隔期间独立地向汽车电气用户设备供电。
6.根据权利要求5所述的蓄能系统(15),其特征在于:所述电容元件(21)的规格应满足以下要求: 
-在所述蓄电池(20)的放电瞬间的初始时间间隔期间,所述电容元件(21)可承受的最大电流大于所述电容元件(21)的最大供电电流;
-所述电容元件(21)可承受的最大电压大于最大充电电压;
-在所述蓄电池(20)的放电瞬间初始时间间隔期间,所述电容元件(21)能够提供的能量大于电气用户设备所要求的能量;
-在所述蓄电池(20)的放电瞬间初始时间间隔结束时,所述电容元件(21)接线端子处的电压大于电气用户设备的最小电源电压。
7.根据权利要求6所述的蓄能系统(15),其特征在于:所述电容元件(21)的规格可按照下述公式确定:
Figure FA20185121200610078501701C00021
式中:
ETRANS  在所述蓄电池(20)的放电瞬间初始时间间隔期间,电气用户设备所需要的能量;
C       所述电容元件(21)的总电容量;
VNOM    所述电容元件(21)接线端子处的额定静止电压;
VMIN    电气用户设备的最小电源电压。
8.根据权利要求4所述的蓄能系统(15),其特征在于:所述电容元件(21)的电容量规格应在所述蓄电池(20)的充电瞬间的预先确定初始时间间隔期间能使所述电容元件(21)吸收汽车的电气用户设备所提供的能量。
9.根据权利要求8所述的蓄能系统(15),其特征在于:所述电容元件(21)的规格按照下式确定:
式中: 
ETRANS  在所述蓄电池(20)的充电瞬间的初始时间间隔期间,电气用户设备所提供的能量;
C       所述电容元件(21)的总电容量;
VNOM    所述电容元件(21)接线端子处的额定静止电压;
VMAX    在所述蓄电池(20)的充电瞬间初始时间间隔期间,所述电容元件(21)接线端子处的最大充电电压。
10.根据权利要求1所述的蓄能系统(15),其特征在于:所述电感元件(22)的电感量可按下式给出:
L=RT·τ
式中:
L  所述电感元件(22)的电感量;
RT 等于所述蓄电池(20)内部电阻RB和所述电感元件(22)电阻RL之和的总电阻;
τ所述蓄电池(20)和电感元件(22)所确定的串联支路的时间常数,该时间常数范围在所述蓄电池(20)的放电瞬间预定初始时间间隔的1/3和1/5之间。
11.根据权利要求10所述的蓄能系统(15),其特征在于:所述蓄电池(20)和所述电感元件(22)所确定的串联支路的时间常数等于所述蓄电池(20)的放电瞬间预定初始时间间隔的1/4。
12.根据权利要求1所述的蓄能系统(15),其特征在于:所述蓄电池(20)的放电瞬间的初始时间间隔的长短是在所述蓄电池(20)的放电瞬间所述蓄能系统(15)需提供的供电电流的时间模式的函数和在所述蓄电池(20)的放电瞬间所述蓄电池(20)所提供的期望最大供电电流的函数。
13.根据权利要求12所述的蓄能系统(15),其特征在于:所述蓄电池(20)的放电瞬间的初始时间间隔的长短等于在所述蓄电池(20)的放电瞬间所述蓄能系统(15)所提供的供电电流所必需的时间间隔,以使所述蓄能系统(15)所提供的电流等于所述蓄电池(20)的放电瞬间所述蓄电池(20)所提供的期望最大电流。 
14.根据权利要求1所述的蓄能系统(15),其特征在于:所述电容元件(21)包括由若干超级电容器元件组成的模块。
15.根据权利要求14所述的蓄能系统(15),其特征在于:所述超级电容器属于“双层电容器”类型。
16.根据权利要求1所述的蓄能系统(15),其特征在于:所述电容元件(21)包括平衡电路。
17.根据权利要求1所述的蓄能系统(15),其特征在于:包括箱体(18),用来安装所述蓄电池(20)、所述电感元件(22)和所述电容元件(21),并包含用于与汽车电气系统连接的接线端子(19)。 
CN2006100785017A 2005-05-02 2006-05-08 向汽车电气用户设备供电的蓄能系统 Expired - Fee Related CN1866663B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ITRM2005U000055 2005-05-02
IT000055U ITRM20050055U1 (it) 2005-05-02 2005-05-02 Sistema di accumulo energetico integrato.

Publications (2)

Publication Number Publication Date
CN1866663A CN1866663A (zh) 2006-11-22
CN1866663B true CN1866663B (zh) 2011-09-14

Family

ID=36809245

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2006100785017A Expired - Fee Related CN1866663B (zh) 2005-05-02 2006-05-08 向汽车电气用户设备供电的蓄能系统

Country Status (10)

Country Link
US (1) US7745953B2 (zh)
EP (1) EP1720231B8 (zh)
CN (1) CN1866663B (zh)
AT (1) ATE448593T1 (zh)
BR (1) BRPI0601566A (zh)
DE (1) DE602006010265D1 (zh)
ES (1) ES2335798T3 (zh)
IT (1) ITRM20050055U1 (zh)
PL (1) PL1720231T3 (zh)
PT (1) PT1720231E (zh)

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070261902A1 (en) * 2006-05-15 2007-11-15 George Margoudakis Electric motor vehicle
US20120207620A1 (en) 2007-07-12 2012-08-16 Odyne Systems, LLC. Hybrid vehicle drive system and method and idle reduction system and method
US9878616B2 (en) 2007-07-12 2018-01-30 Power Technology Holdings Llc Hybrid vehicle drive system and method using split shaft power take off
US9061680B2 (en) 2007-07-12 2015-06-23 Odyne Systems, Llc Hybrid vehicle drive system and method for fuel reduction during idle
US8978798B2 (en) 2007-10-12 2015-03-17 Odyne Systems, Llc Hybrid vehicle drive system and method and idle reduction system and method
US8408341B2 (en) 2007-07-12 2013-04-02 Odyne Systems, Llc Hybrid vehicle drive system and method and idle reduction system and method
US8818588B2 (en) * 2007-07-12 2014-08-26 Odyne Systems, Llc Parallel hybrid drive system utilizing power take off connection as transfer for a secondary energy source
FR2933647B1 (fr) * 2008-07-10 2010-08-20 Peugeot Citroen Automobiles Sa Systeme de stockage d'energie pour vehicule automobile de type electrique ou hybride et systeme de recharge comportant un tel systeme de stockage.
US8106529B2 (en) * 2009-08-31 2012-01-31 Cnh America Llc Farm implements with capacitor for peak electric loads
US8281807B2 (en) * 2009-08-31 2012-10-09 Medrad, Inc. Fluid path connectors and container spikes for fluid delivery
US9475901B2 (en) * 2009-12-08 2016-10-25 Transitions Optical, Inc. Photoalignment materials having improved adhesion
US8242739B2 (en) * 2010-07-20 2012-08-14 Tesla Motors, Inc. Leakage current reduction in combined motor drive and energy storage recharge system
CN103534135B (zh) * 2011-03-16 2016-10-19 约翰逊控制技术公司 用于组合能源系统中过充电保护和充电平衡的系统和方法
US9447765B2 (en) 2011-07-11 2016-09-20 Ford Global Technologies, Llc Powertrain delta current estimation method
US10480477B2 (en) 2011-07-11 2019-11-19 Ford Global Technologies, Llc Electric current based engine auto stop inhibit algorithm and system implementing same
US9834194B2 (en) 2011-08-08 2017-12-05 Ford Global Technologies, Llc Method and system for enabling electrical loads during an engine auto start
EP2785570B1 (en) 2011-12-02 2022-09-14 Power Technology Holdings, LLC System for and method of fuel optimization in a hybrid vehicle
US11225240B2 (en) 2011-12-02 2022-01-18 Power Technology Holdings, Llc Hybrid vehicle drive system and method for fuel reduction during idle
US9303613B2 (en) 2012-02-24 2016-04-05 Ford Global Technologies, Llc Control of vehicle electrical loads during engine auto stop event
US20130266825A1 (en) 2012-03-13 2013-10-10 Maxwell Technologies, Inc. Ultracapacitor and battery device with standard form factor
DE102012217184A1 (de) * 2012-09-24 2014-06-12 Bayerische Motoren Werke Aktiengesellschaft Energiemanagement für Kraftfahrzeug mit Koppelspeichervorrichtung
JP2014066136A (ja) * 2012-09-24 2014-04-17 Mazda Motor Corp エンジンの制御装置
RU2632543C2 (ru) * 2013-01-11 2017-10-05 Ниссан Мотор Ко., Лтд. Устройство рулевого управления и способ рулевого управления
US9174525B2 (en) 2013-02-25 2015-11-03 Fairfield Manufacturing Company, Inc. Hybrid electric vehicle
CN103163377A (zh) * 2013-03-13 2013-06-19 中国南方电网有限责任公司调峰调频发电公司 通过电感电容串联放电检测蓄电池内阻的方法
WO2014182096A1 (ko) * 2013-05-08 2014-11-13 주식회사 엘지화학 자동차용 충전 시스템 및 이를 포함하는 자동차
WO2015074074A1 (en) 2013-11-18 2015-05-21 Odyne Systems, Llc Hybrid vehicle drive system and method using split shaft power take off
US9248824B2 (en) 2014-01-24 2016-02-02 Ford Global Technologies, Llc Rear defrost control in stop/start vehicle
WO2015164399A1 (en) 2014-04-22 2015-10-29 Maxwell Technologies, Inc. System and methods for improved starting of combustion engines
WO2016004079A1 (en) * 2014-06-30 2016-01-07 Black & Decker Inc. Battery pack for a cordless power tools
US10390954B2 (en) * 2015-02-17 2019-08-27 Biocomposites Limited Method to introduce an implantable device to fill a bone void whilst minimising pressurisation
CA3021187C (en) * 2015-05-01 2023-06-27 Blackburn Energy, Llc Method and system for auxiliary power generation
US11447108B1 (en) * 2017-10-30 2022-09-20 Creed Monarch, Inc. Braking control system and method to sysnchronize the operation of the braking of a towed vehicle
DE202018100148U1 (de) * 2018-01-11 2019-04-12 WeightWorks GmbH Energiespeichervorrichtung, Kraftfahrzeug bzw. Überwachungssystem mit einer solchen Energiespeichervorrichtung und Verwendung einer solchen Energiespeichervorrichtung
EP3626489A1 (en) 2018-09-19 2020-03-25 Thermo King Corporation Methods and systems for energy management of a transport climate control system
EP3626490A1 (en) 2018-09-19 2020-03-25 Thermo King Corporation Methods and systems for power and load management of a transport climate control system
US11034213B2 (en) 2018-09-29 2021-06-15 Thermo King Corporation Methods and systems for monitoring and displaying energy use and energy cost of a transport vehicle climate control system or a fleet of transport vehicle climate control systems
US11273684B2 (en) 2018-09-29 2022-03-15 Thermo King Corporation Methods and systems for autonomous climate control optimization of a transport vehicle
US10875497B2 (en) 2018-10-31 2020-12-29 Thermo King Corporation Drive off protection system and method for preventing drive off
US11059352B2 (en) 2018-10-31 2021-07-13 Thermo King Corporation Methods and systems for augmenting a vehicle powered transport climate control system
US10926610B2 (en) 2018-10-31 2021-02-23 Thermo King Corporation Methods and systems for controlling a mild hybrid system that powers a transport climate control system
US11022451B2 (en) 2018-11-01 2021-06-01 Thermo King Corporation Methods and systems for generation and utilization of supplemental stored energy for use in transport climate control
US11554638B2 (en) 2018-12-28 2023-01-17 Thermo King Llc Methods and systems for preserving autonomous operation of a transport climate control system
US11072321B2 (en) 2018-12-31 2021-07-27 Thermo King Corporation Systems and methods for smart load shedding of a transport vehicle while in transit
US11458802B2 (en) 2019-09-09 2022-10-04 Thermo King Corporation Optimized power management for a transport climate control energy source
US11135894B2 (en) 2019-09-09 2021-10-05 Thermo King Corporation System and method for managing power and efficiently sourcing a variable voltage for a transport climate control system
US10985511B2 (en) 2019-09-09 2021-04-20 Thermo King Corporation Optimized power cord for transferring power to a transport climate control system
US11214118B2 (en) 2019-09-09 2022-01-04 Thermo King Corporation Demand-side power distribution management for a plurality of transport climate control systems
US11420495B2 (en) 2019-09-09 2022-08-23 Thermo King Corporation Interface system for connecting a vehicle and a transport climate control system
US11203262B2 (en) 2019-09-09 2021-12-21 Thermo King Corporation Transport climate control system with an accessory power distribution unit for managing transport climate control loads
US11376922B2 (en) 2019-09-09 2022-07-05 Thermo King Corporation Transport climate control system with a self-configuring matrix power converter
EP3790157A1 (en) 2019-09-09 2021-03-10 Thermo King Corporation Optimized power distribution to transport climate control systems amongst one or more electric supply equipment stations
EP3789221A1 (en) 2019-09-09 2021-03-10 Thermo King Corporation Prioritized power delivery for facilitating transport climate control
US11489431B2 (en) 2019-12-30 2022-11-01 Thermo King Corporation Transport climate control system power architecture

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5256956A (en) * 1988-12-27 1993-10-26 Isuzu Motors Limited Power supply apparatus for automotive vehicles
CN1154765A (zh) * 1994-06-10 1997-07-16 诺思路·格鲁曼公司 电力车辆蓄电池充电器
US6202615B1 (en) * 1997-03-06 2001-03-20 Isad Electronic Systems, Gmbh & Co., Kg Methods and apparatus for starting an internal combustion engine
US6340877B1 (en) * 1999-12-28 2002-01-22 Honda Giken Kogyo Kabushiki Kaisha Rechargeable cell support device with insulating rings

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5705902A (en) * 1995-02-03 1998-01-06 The Regents Of The University Of California Halbach array DC motor/generator
JP3279476B2 (ja) * 1996-04-18 2002-04-30 株式会社小糸製作所 放電灯の点灯装置
DE10017590A1 (de) * 2000-04-08 2001-10-11 Mannesmann Vdo Ag Stromversorgungseinrichtung
JP3687528B2 (ja) * 2000-11-15 2005-08-24 松下電工株式会社 電源装置及び放電灯点灯装置
WO2004009397A1 (en) * 2002-07-19 2004-01-29 Ballard Power Systems Corporation Apparatus and method employing bi-directional converter for charging and/or supplying power
US20050003710A1 (en) 2003-07-03 2005-01-06 Delco Remy America, Inc. Power module for motor vehicles

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5256956A (en) * 1988-12-27 1993-10-26 Isuzu Motors Limited Power supply apparatus for automotive vehicles
CN1154765A (zh) * 1994-06-10 1997-07-16 诺思路·格鲁曼公司 电力车辆蓄电池充电器
US6202615B1 (en) * 1997-03-06 2001-03-20 Isad Electronic Systems, Gmbh & Co., Kg Methods and apparatus for starting an internal combustion engine
US6340877B1 (en) * 1999-12-28 2002-01-22 Honda Giken Kogyo Kabushiki Kaisha Rechargeable cell support device with insulating rings

Also Published As

Publication number Publication date
EP1720231A1 (en) 2006-11-08
CN1866663A (zh) 2006-11-22
BRPI0601566A (pt) 2007-08-07
ATE448593T1 (de) 2009-11-15
ES2335798T3 (es) 2010-04-05
EP1720231B1 (en) 2009-11-11
PT1720231E (pt) 2010-02-03
EP1720231B8 (en) 2010-02-03
ITRM20050055U1 (it) 2006-11-03
US7745953B2 (en) 2010-06-29
US20070001616A1 (en) 2007-01-04
PL1720231T3 (pl) 2010-04-30
DE602006010265D1 (de) 2009-12-24

Similar Documents

Publication Publication Date Title
CN1866663B (zh) 向汽车电气用户设备供电的蓄能系统
Rajashekara History of electric vehicles in General Motors
Emadi et al. Power electronics intensive solutions for advanced electric, hybrid electric, and fuel cell vehicular power systems
CN101356071B (zh) 混合动力车辆
CN101357633B (zh) 串联式混合动力车辆的驱动方法和系统
Ahluwalia et al. Fuel economy of hybrid fuel-cell vehicles
US20100006351A1 (en) Electric vehicle with contra-recgarge system
CN101734251A (zh) 一种增程式电动汽车控制系统及其控制方法
CA2647638A1 (en) Plug-in hybrid vehicle with fast energy storage
CN101237159A (zh) 用于电动车辆的插入式蓄电池充电用升压器
WO2008063329A2 (en) Plug-in hybrid accessory drive system
CN104176044A (zh) 混合动力车在串联状态下的能量管理方法和混合动力车
CN103144526A (zh) 一种使用复合电源动力系统的混合动力汽车
CN102874122A (zh) 一种增程式电动车发动机启停控制方法
KR101634930B1 (ko) 마일드 하이브리드 장치 및 제어 방법
Nagashima et al. Construction of highly-accurate simulation model in automobile's power system
JPH09233608A (ja) ハイブリッド電気自動車
Unnewehr et al. Hybrid vehicle for fuel economy
CN101257225B (zh) 汽车用无刷直流发电机/电动机系统
Amjad et al. A novel approach for energy management in plug-in hybrid electric vehicle (PHEV)
CN108725356B (zh) 一种车辆电源组件及其布置方法
CN2617620Y (zh) 电动车用独立空调发电装置
CN102490621B (zh) 一种混合动力系统充电的方法
Anton et al. Design guidelines for series-hybrid powertrains
Zhang et al. Overview of power networks in hybrid electric vehicles

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20110914

Termination date: 20180508

CF01 Termination of patent right due to non-payment of annual fee