CN1858665A - 用以监控半导体生产设备中的处理工具的方法与系统 - Google Patents
用以监控半导体生产设备中的处理工具的方法与系统 Download PDFInfo
- Publication number
- CN1858665A CN1858665A CNA2006100582667A CN200610058266A CN1858665A CN 1858665 A CN1858665 A CN 1858665A CN A2006100582667 A CNA2006100582667 A CN A2006100582667A CN 200610058266 A CN200610058266 A CN 200610058266A CN 1858665 A CN1858665 A CN 1858665A
- Authority
- CN
- China
- Prior art keywords
- production
- data
- hardware parameter
- wafer
- process apparatus
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 202
- 238000000034 method Methods 0.000 title claims abstract description 184
- 239000004065 semiconductor Substances 0.000 title claims abstract description 58
- 238000012544 monitoring process Methods 0.000 title claims abstract description 27
- 238000012545 processing Methods 0.000 title abstract description 24
- 230000008569 process Effects 0.000 claims abstract description 95
- 238000004458 analytical method Methods 0.000 claims description 23
- 230000000694 effects Effects 0.000 claims description 19
- 230000007246 mechanism Effects 0.000 claims description 19
- 238000004891 communication Methods 0.000 claims description 9
- 238000012937 correction Methods 0.000 claims description 8
- 238000004364 calculation method Methods 0.000 claims description 3
- 230000002596 correlated effect Effects 0.000 claims description 2
- 235000012431 wafers Nutrition 0.000 abstract 2
- 238000012360 testing method Methods 0.000 description 7
- 230000014509 gene expression Effects 0.000 description 6
- 230000008859 change Effects 0.000 description 5
- 238000005229 chemical vapour deposition Methods 0.000 description 5
- 238000000151 deposition Methods 0.000 description 5
- 230000008021 deposition Effects 0.000 description 5
- 238000012423 maintenance Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 5
- 238000010219 correlation analysis Methods 0.000 description 4
- 230000000875 corresponding effect Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 241001269238 Data Species 0.000 description 2
- 238000003070 Statistical process control Methods 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005468 ion implantation Methods 0.000 description 2
- 238000010884 ion-beam technique Methods 0.000 description 2
- 238000012417 linear regression Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 238000004151 rapid thermal annealing Methods 0.000 description 2
- 230000035882 stress Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 238000013475 authorization Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 238000004452 microanalysis Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 230000010399 physical interaction Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 238000000611 regression analysis Methods 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000005477 sputtering target Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000005211 surface analysis Methods 0.000 description 1
- 239000013077 target material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B23/00—Testing or monitoring of control systems or parts thereof
- G05B23/02—Electric testing or monitoring
- G05B23/0205—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
- G05B23/0259—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the response to fault detection
- G05B23/0297—Reconfiguration of monitoring system, e.g. use of virtual sensors; change monitoring method as a response to monitoring results
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- General Factory Administration (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
Abstract
本发明提供一种用以监控半导体生产设备中的处理工具的方法与系统,该方法包括下列步骤:根据一制程设备相关的生产数据,以替一虚拟感测系统选取重要硬件参数;以及收集关于该制程设备的生产数据。该方法更包括下列步骤:于多个的半导体产品生产时,动态地维持该虚拟感测系统;以及运用该虚拟感测系统以及收集的该生产数据以预测一半导体产品经由该制程设备处理后的情况。本发明所述的用以监控半导体生产设备中的处理工具的方法与系统,提供一对于晶圆生产进行监控与控制的方式,以增进效率并降低成本。
Description
技术领域
本发明是有关于半导体生产技术,特别是有关于一种预测半导体生产结果的方法与装置。
背景技术
半导体集成电路晶圆是通过晶圆装配厂(wafer fabricationfacility,fab)中的多个的制程所制造。该等制程以及相关的生产机台可包括热氧化制程、扩散制程、离子注入制程、快速高温制程(Rapid Thermal Processing,RTP)、化学气相沉积制程(chemical vapor deposition,CVD)、外延制程、蚀刻制程、微影制程。于制造阶段中,运用量测工具(metrology tool)以监控产品(即晶圆)的品质及良率。当集成电路的线宽缩减时,监控的次数也必须对应的做增加。然而此会增加所需的量测工具、增加监控所需的人力、增加制程时间(cycle time)的延误,并进而增加成本。
因此,希望能在牺牲少许成本的条件下,运用一种系统与方法以增进对产品的品质或良率的监控、控制或预测。
发明内容
为了达成上述目的,本发明提出一种用以监控半导体生产设备中的处理工具的方法,该方法包括下列步骤:根据一制程设备相关的生产数据,以替一虚拟感测系统选取重要硬件参数;以及收集关于该制程设备的生产数据。该方法更包括下列步骤:于多个的半导体产品生产时,动态地维持该虚拟感测系统;以及运用该虚拟感测系统以及收集的该生产数据以预测一半导体产品经由该制程设备处理后的情况。
本发明所述的用以监控半导体生产设备中的处理工具的方法,更包括下列步骤:于选取该等重要硬件参数前,收集该生产数据;以及运用该等重要硬件参数与该生产数据为该虚拟感测系统执行一回归运算。
本发明所述的用以监控半导体生产设备中的处理工具的方法,其中该收集该生产数据之步骤更包括下列步骤:自一量测工具收集晶圆数据;以及自该制程设备收集制程设备数据。
本发明所述的用以监控半导体生产设备中的处理工具的方法,更包括下列步骤:运用来自该制程设备的制程设备数据,经由该虚拟感测系统预测一情况。
本发明所述的用以监控半导体生产设备中的处理工具的方法,其中该选取重要硬件参数的步骤更包括下列步骤:以一硬件参数进行估计;以及若该硬件参数与产品的该情况相关性微弱,排除该硬件参数。
本发明所述的用以监控半导体生产设备中的处理工具的方法,其中该动态地维护该虚拟感测系统的步骤更包括下列步骤:比较经由该虚拟感测系统预测的一第一产品情况与借该等量测工具所量测的一第二产品情况;以及根据一新的生产数据调整该虚拟感测系统。
本发明所述的用以监控半导体生产设备中的处理工具的方法,其中该调整该虚拟感测系统的步骤更包括下列步骤:重新选取重要硬件参数;根据该新的生产数据修正回归参数;以及根据该新的生产数据修正一产品效应表。
本发明亦提出一种用以预测一半导体晶圆生产结果的方法,该方法包括下列步骤:自一量测工具以及一制程设备收集生产数据,其中该生产数据包括晶圆数据与制程设备数据;根据该生产数据以选取重要硬件参数;利用该等重要硬件参数与该生产数据,通过执行一回归程序以形成一虚拟感测系统;适应性地修正该虚拟感测系统;以及利用来自该制程设备的制程设备数据,通过该虚拟感测系统,预测该晶圆生产结果。
本发明所述的用以预测一半导体晶圆生产结果的方法,其中该收集该生产数据的步骤包括下列步骤:自该量测工具收集该晶圆数据;以及自该制程设备收集该制程设备数据。
本发明所述的用以预测一半导体晶圆生产结果的方法,其中该选取重要硬件参数的步骤包括下列步骤:以某硬件参数进行估测;若该某硬件参数与该晶圆生产结果相关性微弱,排除该某硬件参数;以及重复上述两步骤直到该制程设备的该等重要硬件参数被辨别出为止。
本发明所述的用以预测一半导体晶圆生产结果的方法,其中该适应性地修正该虚拟感测系统的步骤包括下列步骤:比较通过该虚拟感应器系统预测的一晶圆生产结果与由该量测工具量测的一晶圆生产结果;重新选取重要硬件参数以及回归系数;以及修正一产品效应表。
本发明亦介绍一种半导体制程监控系统,包括:一重要硬件参数选择器,用以为一半导体制程设备选取重要硬件参数;以及一适应性模型,被动态地维护,用以预测一晶圆生产结果;其中该适应性模型包括该等重要硬件参数。
本发明所述的半导体制程监控系统,更包括:一数据收集器,用以收集生产数据;一回归分析模组,用以运用该重要硬件参数与该生产数据以执行回归分析;以及一通信接口模组,用以沟通预测得到的该晶圆生产结果。
本发明所述的半导体制程监控系统,其中该数据收集器运用一机制以自一制程设备收集制程设备数据,并运用另一机制以自一量测工具收集晶圆数据。
本发明所述的半导体制程监控系统,其中该重要硬件参数选择器运用一机制以便以硬件参数进行估测并排除呈弱相关的硬件参数。
本发明所述的半导体制程监控系统,其中该适应性模型包括:一第一机制,用以评估由该适应性模型预测的一第一晶圆生产结果与由该量测工具所量测的第二晶圆生产结果之间的差异;以及一第二机制,用以根据新的生产数据修正该适应性模型;其中该第二机制包括重新选取硬件参数、修正回归系数、以及修正一产品效应表的功能。
本发明所述的用以监控半导体生产设备中的处理工具的方法与系统,提供一对于晶圆生产进行监控与控制的方式,以增进效率并降低成本。
附图说明
图1为对晶圆生产结果进行精确预测的方法的实施例的流程图;
图2为自动选取重要硬件参数的方法的实施例的流程简图;
图3为建立并维护适应性模型的方法的实施例的流程简图;
图4为执行图1中的方法的虚拟感测系统的实施例的方块图;
图5为虚拟集成电路生产系统的方块图,其中运用到图4的虚拟感测系统。
具体实施方式
下述将提出许多实施例或范例以达成本发明于各式实施情形下的不同功能。为了简化本发明,下述将描述组件或配置的特定范例。这些范例仅用以举例说明,而并非对本发明的限定。此外,本发明将于各式范例中重复涉及数字与字母;这是为了说明并简化范例,而该等数字与字母并非用来表示各式实施例或其组态之间的关系。
图1为对晶圆生产结果进行精确预测的方法100的流程图。图4中所示为实现方法100的一虚拟感测系统(或软件感测器系统,softsensor system)400的一实施例的方块图。本揭露提供一方法与系统以借晶圆的制程设备数据(fabrication tool data)预测晶圆的生产结果。方法100与虚拟感测系统400将于下述参考图1与图4进行细部描述。
方法100自步骤112开始,该步骤收集生产过程的数据(生产数据),包括收集来自量测工具(metrology tool)424的晶圆相关数据,以及收集来自制程设备(fabrication tool)422的诸如硬件参数设定数据的制程设备数据。该收集数据的程序可借一数据收集器404以实现。
制程设备422可为一化学气相沉积(CVD)系统、一物理气相沉积(PVD)系统、一蚀刻系统、一热氧化(thermal oxidation)系统、一离子注入(ion implantation)系统、一化学机械研磨(CMP)系统、一快速热退火(rapid thermal annealing,RTA)系统、一微影(photolithography)系统、或其他的半导体制程设备。该制程设备的设定值可称为硬件参数(hardware parameter)。以物理气相沉积系统为例,其硬件参数可包括加热温度、水温、射频偏压反射功率(radio frequency bias reflected power)、射频侧反射功率(RF side reflected power)、射频顶反射功率(RF top reflectedpower)、反应室气压(chamber pressure)、蒸气分压(gas partialpressure)、以及块电压(chunk voltage)。该等硬件参数可包括其他不包括于制程处方(process recipe)的参数,例如溅镀目标厚度(sputtering target thickness)、以及物理气相沉积设备的目标与晶圆之间的间隔。该等制程设备数据可更包括其他数据,诸如设备编号、设备维修史、以及材质说明(例如物理气相沉积设备的溅镀目标材质)。
量测工具424可包括运用电、光学、或其他种类的分析工具、例如显微镜、微分析工具、线宽量测工具、光罩缺陷检测工具(maskand reticle defects tool)、粒子分布工具、表面分析工具、应力分析工具、接触点电阻量测工具(contact resistancemeasurement tool)、迁移率与载流子浓度量测工具、接面深度量测工具、薄膜厚度量测工具、栅极氧化层整体测试工具、C-V量测工具、聚焦离子束(focused ion beam)、以及其他测试与量测工具。晶圆数据可包括晶圆生产结果,例如经由量测工具所得的晶圆参数。该等晶圆参数可包括片电阻(sheet resistance)、反射性、应力、粒子浓度、以及临界尺寸(critical dimension)。晶圆数据更可包括其他数据例如晶圆编号及产品种类。
举例来说,一半导体晶圆,无论是单独一个或成一批次(batch)的型态,是经由不同制程步骤进行处理。一制程步骤可于制程设备422中实施,而其他制程步骤可于其他制程设备中实施。当晶圆于制程设备中处理时,制程设备422可依据制程处方而设定、调整、校正。制程处方中可定义多个的次级步骤。举例来说,一物理气相沉积设备的制程处方可定义下列的次级步骤:蒸气(gas)、升压(ramp)、沉积(deposition)、降压(pump down)。每个次级步骤中可定义出其固定的持续时间,并可将各式硬件参数设定为某一数值。当晶圆已经该制程设备的制程步骤处理完毕后,一至数个量测工具可被用来测试并量测晶圆的生产结果。该等生产数据包括晶圆数据与制程设备数据,可经由数据收集器404自量测工具424与制程设备422收集。
方法100此时可推进至步骤114,以便自动地选择重要硬件参数。此步骤可由重要硬件参数选择器406实行。步骤112所收集的生产数据可被发送至重要硬件参数选择器406或一回归分析模组408进行分析。其中的一晶圆参数可被选取并称之为第一晶圆参数。该第一晶圆参数可能为一组硬件参数的函数。更一般性地说,该第一晶圆参数可在某些次级步骤中高度相关于某些硬件参数,并进一步相关于其他硬件参数。举例来说,经由化学气相沉积设备沉积的薄膜厚度可高度相关于基材温度、射频偏压反射功率、射频顶反射功率、E-块电压(E-chunk voltage)。
重要硬件参数选择器406提供一机制以选取与该第一晶圆参数呈高度相关性的硬件参数(亦被称之为重要硬件参数)。于一实施情况中,步骤114为该第一晶圆参数(以及其他晶圆参数)自动选择重要硬件参数,该步骤可借图2中的方法200以实施,而图2为方法200的简化流程图。方法200将于下详加描述。
参考图2,方法200于步骤202开始。对于一特定的制程设备的特定晶圆参数(例如该第一晶圆参数),所收集的生产数据被发送至重要硬件参数选择器406或回归分析模组408(见图4)以供分析之用。于步骤204中,选取第一硬件参数并实施相关性分析(correlation analysis)。该相关性分析可包括由该回归分析模组408所实施的回归分析程序以估计该组特定的晶圆参数与该第一硬件参数的相关程度。若该等生产数据不足够或不重要时,重要硬件参数选择器406可要求更多或不同组的生产数据。于步骤206中,若该第一硬件参数与该特定晶圆参数的相关性低于一基准值时,该第一硬件参数可被排除。否则,该第一硬件参数被选取并称为重要硬件参数。接着方法114回到步骤204,于其中一组第二硬件参数被选取。步骤204与206可被重复实施以对该特定晶圆参数与该第二硬件参数之间的相关性进行分析。该第二硬件参数可能被视为其他的重要硬件参数,或者被排除。同样的步骤可在其余的硬件参数(或所有其余的可能的重要硬件参数)上重复进行,以迄于特定晶圆参数的所有的重要硬件参数皆被选取。
被选取的重要硬件参数可以形成回归式的基础,以表达该等重要硬件参数与特定的晶圆参数之间的关系。于步骤208,运用生产数据以估计回归式。回归式中可包括选取的重要硬件参数,其可为线性或非线性的关系。若该特定的晶圆参数无法被适当由回归式预测,可再次以该选取的重要硬件参数组进行估计。若该选取的重要硬件参数组于回归式中可与晶圆参数相关,方法200可推论所有的重要硬件参数已于步骤210中由晶圆参数中辨识出来。否则,方法200可回到第一步骤202以重复该等处理程序以重新选取重要硬件参数。
可选取部分重要硬件参数以进行初步的分析。方法200可采取一递回的尝试错误方式,于其中上述方法重复多次以致于逐渐收敛。同样地,该用以选取重要参数的基准值亦可被修正。于另一实施情况中,选取的重要硬件参数可形成一回归式,而一新的硬件参数可被加入该回归式以进行相关性分析。若相关性未显著提升(或甚至于降低),该硬件参数便被抛弃并排除。接着该选择程序可重复进行,直到所有硬件参数皆已进行该程序并且回归式收敛为止。
一硬件参数可与一特定次级步骤相关联。举例来说,该薄膜厚度可与于沉积次级步骤中的基材温度相关联,而可能不会与降压(pull-down)次级步骤中的基材温度相关联。因此选取一重要硬件参数亦可包括辨别与该等硬件参数相关的次级步骤。
再度参考图1,方法100前进至步骤116以凭借该等辨识出的重要硬件参数以实施回归分析,以便决定一至数个回归系数。该回归分析可由该回归分析模组408实施,并可于步骤116完成全部或完成一部分。辨识出的重要硬件参数及回归系数形成该第一晶圆参数的一回归式。该回归式可为线性回归式或非线性回归式。需要经由递回的尝试错误法找出一重要硬件参数如何与该第一晶圆参数相关的方式,或者其中部分过程可经由工程师的输入而决定。该第一晶圆参数可被采取作为一范例。每个后续的晶圆参数的回归式可经由相似的方式形成。
于步骤118中,一适应性模型(adaptive model)402,如图4中所示,已经建立并作动态的维护。当一第一晶圆参数的一回归式形成时,可选取一第二晶圆参数。与步骤112至步骤116相似的处理程序接着对于该第二晶圆参数重复一遍而形成一第二回归式。对于任何剩下的晶圆参数可进行相似的处理以形成多个的回归式,其中每一回归式对应于一至数个晶圆参数。此等回归式形成制程设备422的适应性模型以对晶圆参数或晶圆生产结果进行预测。该适应性模型更包括一产品效应表,其中储存一组对应于不同种类的晶圆产品的晶圆参数的偏移量。该产品效应表可运用该生产数据及诸如生产说明的生产数据而产生。
每一制程设备可有一适应性模型,该等适应性模型以上述的同样方式形成,以供晶圆生产结果的预测。此外,该适应性模型是经动态维护以适应该制程设备的特性并随着该制程设备的老化状态而随时调整。维护该适应性模型可包括基于新的生产数据调整模型,以及产生并维护对应于不同产品的产品效应表。该适应性模型的维护将在下述进一步描述,并参考于图3中的方法300的简化流程图。
方法300以步骤302开始,数据收集器404自量测工具424收集新的晶圆数据并自制程设备422收集新的制程设备数据,该等数据被送至适应性模型402进行分析并估计。于步骤304中,新的生产数据可用来估计该产品效应表。举例来说,可比较产品效应表与新的晶圆数据。若两者之间的差异增大或超出预定的基准值,便可修正该产品效应表以缩小差异。否则,便不需要变动产品效应表。
于步骤306,可执行一比较程序以比较来自量测工具424的新晶圆数据以及来自适应性模型402所预测的晶圆生产结果。若其间的差异增大并超过一预定基准值,方法300将推进至步骤310以修正该适应性模型。否则,该方法可于步骤308推论可继续进行晶圆生产结果的预测而不需修正适应性模型402。根据上述的处理,可运用一参数表示该适应性模型402的信赖水准。可依据该信赖水准以决定是否需要修正该适应性模型。
于步骤310中,方法300可运用新的生产数据自动选取重要硬件参数。步骤310可相似于图1中的步骤114,除了步骤310运用新的生产数据之外。否则,之前的生产数据可合并至新的生产数据以供选取之用。于另一实施情况中,目前的重要硬件参数可被用来作为初步的重要硬件参数,之后再将其调整以形成一群新的重要硬件参数。于步骤312中,可执行一回归分析以重新建立适应性模型402,包括使用新的重要硬件参数重新建立新的回归式及新的回归系数。之后该方法推进至步骤308以运用该更新后的适应性模型进行晶圆生产结果的预测。该信赖水准参数可被对应的更新。
该适应性模型是依据新的生产数据做动态性的修正。修正方式包括选取重要硬件参数、回归、以及产生产品效应表。每一适应性模型可在相关的制程设备维修或维护后、晶圆产品更动后、或一段时期经过后进行重新估计。该修正程序并不必然限于上述的方法300,只要该适应性模型能及时且正确地反映制程设备以及晶圆产品的变动。
再次参考图1,方法100进行至步骤120以实施晶圆生产结果的预测。当建立一制程设备的适应性模型并及时维护后,可经由该适应性模型402预测晶圆生产结果。该预测步骤可包括由该回归分析模组408所执行的一回归分析。该回归分析可包括当晶圆于制程设备中进行处理时,运用适应性模型以及该制程设备的重要硬件参数的值经由该等回归式以计算晶圆参数的值。该等制程设备参数的值可经收集后传送至虚拟感测系统400的相关模组以供分析之用。该预测更可包括依据该产品效应表与诸如晶圆的产品信息的晶圆数据计算一偏差值。预测所得的晶圆生产结果可被发送至该晶圆装配厂的所有人或顾客。
系统400更可包括一通信接口410以于系统400与相关的生产者或顾客间报告预测所得的晶圆生产结果。举例来说,所预测的晶圆生产结果可被发送至工程师426以供评估、生产监控、或改良制程。工程师426可经由通信接口410与系统沟通。通信接口甚至可能于晶圆生产结果超出预定的范围、包含明显的变动、或有其他重大变更时提供工程师一警告信息。所预测的晶圆结果可被发送至诸如工厂营运管制系统(Manufacturing Execution System,MES)的数据控制中心,于其中所预测的晶圆生产结果可被进一步处理、组织、或分配以供数据监控、评估、分析及控制,例如制程统计控制(statistical process control,SPC)。该预测的晶圆生产结果可被发送至下一制程步骤的制程设备,于其中制程处方与硬件参数经修正以补偿来自目前制程步骤的任何变动,以便让晶圆的品质、效能与良率均达到最佳化。
只要建立对应一制程设备的初始适应性模型,以进行晶圆生产结果的预测,该适应性模型的维持与执行便不需要依照上述方法100所描述的顺序。该适应性模型的维持与运行可以同时进行。因此该适应性模型大致表达了该制程设备所处理的晶圆产品的状态。
图4中的虚拟感测系统400仅仅作为本揭露中的一个范例。每一模组可包括软件及硬件以实现其功能。举例来说,制程设备的适应性模型402可包括诸如计算机的硬件以及存储器以供运作及储存数据。适应性模型可包括软件以供步骤的运行。适应性模型更可包括一数据库,其中包括所有的硬件参数、重要硬件参数、回归式、回归系数、产品效应表、以及信赖水准参数。每一模组可经精确调校,并连接至该半导体生产商的其他模组或其他单元。该系统可依不同方式设定组织,例如以较少或较多模组组成而不违背本发明的精神。系统400更可连接至网络430。举例来说,系统400可连接至或包含部分的图5的虚拟集成电路生产系统,其将于下述进行说明。
于是,晶圆生产结果可经由系统400以方法100进行预测。结合了来自量测工具的量测结果以及直接测试,可以以有限的量测工具及测量成本,以便有效地监控以增进制程效能并增进晶圆良率。本揭露中的方法与系统提供一对于晶圆生产进行监控与控制的方式,以增进效率并降低成本。
图5绘出一虚拟集成电路生产系统500,其可能连接至图4的系统400。虚拟集成电路生产系统500包括多个的实体502、504、426、424、422、400a、400b、516、...、N,该等实体经由通信网络518相连接。网络518可为单一网络或各式不同的网络,例如因特网或企业网络(Intranet),并可包括有线与无线通信信道。
于本例中,实体502表示一服务系统以提供服务,实体504表示一顾客,实体426表示一工程师,实体424表示一量测工具以供IC测试与量测,实体422表示一制程设备,实体400a表示与制程设备相关的一虚拟感测系统,实体400b表示一第二虚拟感测系统(其与其他的处理设备相关,该处理设备可能为一实体),而实体516表示另一虚拟集成电路生产系统(该虚拟集成电路生产系统属于辅助者或一商业伙伴)。每一实体可与其他的实体互动,并向其他实体提供服务或自其他实体接收服务。
为了说明起见,每一形成虚拟集成电路生产系统500的一部分的实体皆可被称为内部实体(即工程师、客服人员、系统的自动程序、设计设备或制程设备),而与虚拟集成电路生产系统500进行互动的实体(例如顾客)则被称为外部实体。实体可集中于一处或分散各处,部分实体可被并入其他实体。此外,每一实体可被分派一系统辨识信息,该信息使用于系统中以使信息依据各实体被授予的授权层级而进行存取。
虚拟集成电路生产系统500让各实体间而可相互沟通关于集成电路的生产情况。举例来说,于设计领域,顾客504可透过服务系统502存取其产品的设计的相关信息及使用设计设备。该等设备可让顾客504实施良率分析、观看电路布局信息、并得到类似的信息。于工程领域,工程师426可运用关于试产良率、风险分析、品质、可靠度等生产信息,而与其他工程师偕同工作。后勤领域可提供顾客504关于制造状态、测试结果、订单管控、以及交货日等信息。这些领域仅为例示,而虚拟集成电路生产系统500可视需要提供更多或更少信息。
另一由虚拟集成电路生产系统500提供的服务可整合不同设备为系统,例如整合量测工具424与制程设备422。此等整合让设备间能协调相互间的行动。举例来说,整合量测工具或设备424与制程设备422可使生产信息更有效率地合并入制程中,并可使来自量测工具的晶圆数据回报予制程设备422以改进制程。
因此,本揭露提供一方法,包括根据生产数据及该虚拟感测系统的动态维护,以替一虚拟感测系统选取重要硬件参数,以预测晶圆生产结果。
于部分实施情况中,于选取该等重要硬件参数前,先收集该生产数据。接着运用该等重要硬件参数与该生产数据为该虚拟感测系统执行一回归运算。于部分实施情况中,收集该生产数据的步骤更包括自一量测工具收集晶圆数据,以及自该制程设备收集制程设备数据。该实施情况更可包括运用来自该制程设备的制程设备数据,经由该虚拟感测系统预测一情况。
于部分实施情况中,该选取重要硬件参数的步骤更包括以一硬件参数进行估计,以及若该硬件参数与该产品情况相关性微弱,排除该硬件参数。
于部分实施情况中,该动态地维持该虚拟感测系统的步骤更包括比较经由该虚拟感测系统预测的一第一产品情况与借该等量测工具所量测的一第二产品情况,以及根据一新的生产数据调整该虚拟感测系统。该调整该虚拟感测系统的步骤更包括重新选取重要硬件参数,以及根据该新的生产数据调整回归参数。而该调整该虚拟感测系统的步骤更包括根据该新的生产数据调整一产品效应表。
于另一实施例中,本揭露提供一种用以预测一半导体晶圆生产结果的方法,该方法包括下列步骤:自一量测工具以及一制程设备收集生产数据,其中该生产数据包括晶圆数据与制程设备数据;根据该生产数据以选取重要硬件参数;利用该等重要硬件参数与该生产数据,通过执行一回归程序以形成一虚拟感测系统;适应性地修正该虚拟感测系统;以及利用来自该制程设备的制程设备数据,通过该虚拟感测系统,预测该晶圆生产结果。
于部分实施情况中,该收集该生产数据的步骤包括自该量测工具收集该晶圆数据,以及自该制程设备收集该制程设备数据。该选取重要硬件参数的步骤包括下列步骤:以某硬件参数进行估测;若该某硬件参数与该晶圆生产结果相关性微弱,排除该某硬件参数;以及重复上述两步骤直到该制程设备的该等硬件参数被辨别出为止。该适应性地修正该虚拟感测系统的步骤包括:比较通过该虚拟感应器系统预测的一晶圆生产结果与由该量测工具量测的一晶圆生产结果;亦可能包括重新选取重要硬件参数以及回归系数;亦可能包括修正一产品效应表。
于另一实施例中,本揭露提供一种半导体制程监控系统,包括:一重要硬件参数选择器,用以为一半导体制程设备选取重要硬件参数;以及一适应性模型,被动态地维护,用以预测一晶圆生产结果;其中该适应性模型包括该等重要硬件参数。
于部分实施情况中,该半导体制程监控系统,更包括:一数据收集器,用以收集生产数据;一回归模组,用以运用该重要硬件参数与该生产数据以执行回归分析;以及一接口模组,用以沟通预测得到的该晶圆生产结果。该数据收集器包括一机制以自一制程设备收集制程设备数据,以及一机制以自一量测工具收集晶圆数据。该接口模组包括提供晶圆生产结果预测值以供制程监控,提供晶圆生产结果预测值以供设备调整,提供晶圆生产结果预测值予下一制程步骤以供产品控制。
于部分实施情况中,该重要硬件参数选择器包括一机制以硬件参数进行估测并排除呈弱相关的硬件参数。该适应性模型包括:一第一机制,用以评估由该适应性模型预测的一第一晶圆生产结果与由该量测工具所量测的第二晶圆生产结果之间的差异;以及一第二机制,用以根据新的生产数据修正该适应性模型;其中该第二机制包括重新选取硬件参数、修正回归系数、以及修正一产品效应表的功能。
虽然本发明已通过较佳实施例说明如上,但该较佳实施例并非用以限定本发明。本领域的技术人员,在不脱离本发明的精神和范围内,应有能力对该较佳实施例做出各种更改和补充,因此本发明的保护范围以权利要求书的范围为准。
附图中符号的简单说明如下:
400:虚拟感测系统
402:适应性模型
404:数据收集器
406:重要硬件参数选择器
408:回归分析模组
410:通信接口
422:制程设备
424:量测工具
426:工程师
430:网络
502:服务系统
504:顾客
426:工程师
424:量测工具
422:制程设备
400a:虚拟感测系统
400b:虚拟感测系统
516:其他虚拟集成电路生产系统
518:通信网络
Claims (16)
1.一种用以监控半导体生产设备中的处理工具的方法,其特征在于,该用以监控半导体生产设备中的处理工具的方法包括下列步骤:
根据一制程设备相关的生产数据,以替一虚拟感测系统选取重要硬件参数;
收集关于该制程设备的生产数据;
于多个的半导体产品生产时,动态地维护该虚拟感测系统;以及
运用该虚拟感测系统以及收集的该生产数据以预测一半导体产品经由该制程设备处理后的情况。
2.根据权利要求1所述的用以监控半导体生产设备中的处理工具的方法,其特征在于,更包括下列步骤:
于选取该重要硬件参数前,收集该生产数据;以及
运用该重要硬件参数与该生产数据为该虚拟感测系统执行一回归运算。
3.根据权利要求2所述的用以监控半导体生产设备中的处理工具的方法,其特征在于,该收集该生产数据的步骤更包括下列步骤:
自一量测工具收集晶圆数据;以及
自该制程设备收集制程设备数据。
4.根据权利要求1所述的用以监控半导体生产设备中的处理工具的方法,其特征在于,更包括下列步骤:
运用来自该制程设备的制程设备数据,经由该虚拟感测系统预测一情况。
5.根据权利要求1所述的用以监控半导体生产设备中的处理工具的方法,其特征在于,该选取重要硬件参数的步骤更包括下列步骤:
以一硬件参数进行估计;以及
若该硬件参数与产品的该情况相关性微弱,排除该硬件参数。
6.根据权利要求1所述的用以监控半导体生产设备中的处理工具的方法,其特征在于,该动态地维护该虚拟感测系统的步骤更包括下列步骤:
比较经由该虚拟感测系统预测的一第一产品情况与借该量测工具所量测的一第二产品情况;以及
根据一新的生产数据调整该虚拟感测系统。
7.根据权利要求6所述的用以监控半导体生产设备中的处理工具的方法,其特征在于,该调整该虚拟感测系统的步骤更包括下列步骤:
重新选取重要硬件参数;
根据该新的生产数据修正回归参数;以及
根据该新的生产数据修正一产品效应表。
8.一种用以预测一半导体晶圆生产结果的方法,其特征在于,该用以预测一半导体晶圆生产结果的方法包括下列步骤:
自一量测工具以及一制程设备收集生产数据,其中该生产数据包括晶圆数据与制程设备数据;
根据该生产数据以选取重要硬件参数;
利用该重要硬件参数与该生产数据,通过执行一回归程序以产生一虚拟感测系统;
适应性地修正该虚拟感测系统;以及
利用来自该制程设备的制程设备数据,通过该虚拟感测系统,预测该晶圆生产结果。
9.根据权利要求8所述的用以预测一半导体晶圆生产结果的方法,其特征在于,该收集该生产数据的步骤包括下列步骤:
自该量测工具收集该晶圆数据;以及
自该制程设备收集该制程设备数据。
10.根据权利要求8所述的用以预测一半导体晶圆生产结果的方法,其特征在于,该选取重要硬件参数的步骤包括下列步骤:
以某硬件参数进行估测;
若该某硬件参数与该晶圆生产结果相关性微弱,排除该某硬件参数;以及
重复上述两步骤直到该制程设备的该重要硬件参数被辨别出为止。
11.根据权利要求8所述的用以预测一半导体晶圆生产结果的方法,其特征在于,该适应性地修正该虚拟感测系统的步骤包括下列步骤:
比较通过该虚拟感应器系统预测的一晶圆生产结果与由该量测工具量测的一晶圆生产结果;
重新选取重要硬件参数以及回归系数;以及
修正一产品效应表。
12.一种半导体制程监控系统,其特征在于,该半导体制程监控系统包括:
一重要硬件参数选择器,用以为一半导体制程设备选取重要硬件参数;以及
一适应性模型,被动态地维护,用以预测一晶圆生产结果;
其中该适应性模型包括该重要硬件参数。
13.根据权利要求12所述的半导体制程监控系统,其特征在于,更包括:
一数据收集器,用以收集生产数据;
一回归分析模组,用以运用该重要硬件参数与该生产数据以执行回归分析;以及
一通信接口模组,用以沟通预测得到的该晶圆生产结果。
14.根据权利要求13所述的半导体制程监控系统,其特征在于,该数据收集器运用一机制以自一制程设备收集制程设备数据,并运用另一机制以自一量测工具收集晶圆数据。
15.根据权利要求12所述的半导体制程监控系统,其特征在于,该重要硬件参数选择器运用一机制以便以硬件参数进行估测并排除呈弱相关的硬件参数。
16.根据权利要求12所述的半导体制程监控系统,其特征在于,该适应性模型包括:
一第一机制,用以评估由该适应性模型预测的一第一晶圆生产结果与由该量测工具所量测的第二晶圆生产结果之间的差异;以及
一第二机制,用以根据新的生产数据修正该适应性模型;
其中该第二机制包括重新选取硬件参数、修正回归系数、以及修正一产品效应表的功能。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/120,896 US7144297B2 (en) | 2005-05-03 | 2005-05-03 | Method and apparatus to enable accurate wafer prediction |
US11/120,896 | 2005-05-03 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1858665A true CN1858665A (zh) | 2006-11-08 |
CN100451888C CN100451888C (zh) | 2009-01-14 |
Family
ID=37297576
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2006100582667A Expired - Fee Related CN100451888C (zh) | 2005-05-03 | 2006-02-28 | 用以监控半导体生产设备中的处理工具的方法与系统 |
Country Status (3)
Country | Link |
---|---|
US (1) | US7144297B2 (zh) |
CN (1) | CN100451888C (zh) |
TW (1) | TWI288311B (zh) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101540270B (zh) * | 2008-03-20 | 2010-11-10 | 华亚科技股份有限公司 | 监控制程的系统和方法 |
CN101458515B (zh) * | 2007-12-13 | 2011-10-05 | 中芯国际集成电路制造(上海)有限公司 | 晶圆质量分析方法 |
CN102566450A (zh) * | 2010-12-08 | 2012-07-11 | 和舰科技(苏州)有限公司 | 机台程序控制管理方法和系统 |
CN101398686B (zh) * | 2007-09-27 | 2013-01-23 | 洛克威尔自动控制技术股份有限公司 | 通过嵌入式历史机数据实现的自适应工业系统 |
CN112433472A (zh) * | 2019-08-26 | 2021-03-02 | 长鑫存储技术有限公司 | 半导体生产控制方法及控制系统 |
CN113013049A (zh) * | 2016-05-04 | 2021-06-22 | 台湾积体电路制造股份有限公司 | 半导体制程及其制程设备与控制装置 |
CN117059511A (zh) * | 2023-10-11 | 2023-11-14 | 苏州瑞霏光电科技有限公司 | 一种晶圆材料内部应力分布检测方法及系统 |
Families Citing this family (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7954072B2 (en) * | 2006-05-15 | 2011-05-31 | Taiwan Semiconductor Manufacturing Company, Ltd. | Model import for electronic design automation |
US7634325B2 (en) * | 2007-05-03 | 2009-12-15 | Taiwan Semiconductor Manufacturing Company, Ltd. | Prediction of uniformity of a wafer |
US7974728B2 (en) * | 2007-05-04 | 2011-07-05 | Taiwan Semiconductor Manufacturing Company, Ltd. | System for extraction of key process parameters from fault detection classification to enable wafer prediction |
US8145337B2 (en) * | 2007-05-04 | 2012-03-27 | Taiwan Semiconductor Manufacturing Company, Ltd. | Methodology to enable wafer result prediction of semiconductor wafer batch processing equipment |
US20080312875A1 (en) * | 2007-06-12 | 2008-12-18 | Yu Guanyuan M | Monitoring and control of integrated circuit device fabrication processes |
US20090119077A1 (en) * | 2007-11-06 | 2009-05-07 | David Everton Norman | Use of simulation to generate predictions pertaining to a manufacturing facility |
US20090118842A1 (en) * | 2007-11-06 | 2009-05-07 | David Everton Norman | Manufacturing prediction server |
US7783999B2 (en) * | 2008-01-18 | 2010-08-24 | Taiwan Semiconductor Manufacturing Company, Ltd. | Electrical parameter extraction for integrated circuit design |
US8037575B2 (en) * | 2008-02-28 | 2011-10-18 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method for shape and timing equivalent dimension extraction |
US8001494B2 (en) * | 2008-10-13 | 2011-08-16 | Taiwan Semiconductor Manufacturing Company, Ltd. | Table-based DFM for accurate post-layout analysis |
US8437870B2 (en) * | 2009-06-05 | 2013-05-07 | Taiwan Semiconductor Manufacturing Company, Ltd. | System and method for implementing a virtual metrology advanced process control platform |
WO2011014206A1 (en) * | 2009-07-28 | 2011-02-03 | Skyworks Solutions, Inc. | Process, voltage, and temperature sensor |
US8805630B2 (en) * | 2009-08-25 | 2014-08-12 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method and system for modeling in semiconductor fabrication |
US8806386B2 (en) * | 2009-11-25 | 2014-08-12 | Taiwan Semiconductor Manufacturing Company, Ltd. | Customized patterning modulation and optimization |
US8745554B2 (en) * | 2009-12-28 | 2014-06-03 | Taiwan Semiconductor Manufacturing Company, Ltd. | Practical approach to layout migration |
US8623672B2 (en) * | 2010-02-19 | 2014-01-07 | Applied Materials, Inc. | Prediction and scheduling server |
US8406912B2 (en) | 2010-06-25 | 2013-03-26 | Taiwan Semiconductor Manufacturing Company, Ltd. | System and method for data mining and feature tracking for fab-wide prediction and control |
US8793106B2 (en) * | 2011-09-23 | 2014-07-29 | International Business Machines Corporation | Continuous prediction of expected chip performance throughout the production lifecycle |
US9002498B2 (en) * | 2012-02-02 | 2015-04-07 | Taiwan Semiconductor Manufacturing Co., Ltd. | Tool function to improve fab process in semiconductor manufacturing |
WO2013133974A1 (en) * | 2012-03-08 | 2013-09-12 | Applied Materials, Inc. | Fitting of optical model to measured spectrum |
US20230076947A1 (en) * | 2012-04-13 | 2023-03-09 | View, Inc. | Predictive modeling for tintable windows |
US9011202B2 (en) * | 2012-04-25 | 2015-04-21 | Applied Materials, Inc. | Fitting of optical model with diffraction effects to measured spectrum |
US11378426B2 (en) | 2014-06-20 | 2022-07-05 | Applied Materials, Inc. | System and method for monitoring sensor linearity as part of a production process |
US20160365253A1 (en) * | 2015-06-09 | 2016-12-15 | Macronix International Co., Ltd. | System and method for chemical mechanical planarization process prediction and optimization |
JP6475604B2 (ja) * | 2015-11-24 | 2019-02-27 | 株式会社荏原製作所 | 研磨方法 |
TWI724743B (zh) * | 2020-01-10 | 2021-04-11 | 台達電子工業股份有限公司 | 機台及其操作方法 |
US20220004164A1 (en) * | 2020-07-03 | 2022-01-06 | Honeywell International Inc. | Distributed quality management and control systems and methods for decentralized manufacturing using blockchain |
US12112107B2 (en) | 2020-09-18 | 2024-10-08 | Tokyo Electron Limited | Virtual metrology for wafer result prediction |
US11720088B2 (en) | 2021-03-26 | 2023-08-08 | Lynceus Sas | Real-time AI-based quality assurance for semiconductor production machines |
US20230360978A1 (en) * | 2022-05-03 | 2023-11-09 | Nanya Technology Corporation | Method for controlling implanting tool |
CN115056043B (zh) * | 2022-06-14 | 2023-06-06 | 惠州市盈泰欣精密金属科技有限公司 | 五金件打磨智能自动启停方法、装置、计算机和存储介质 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020192966A1 (en) * | 2001-06-19 | 2002-12-19 | Shanmugasundram Arulkumar P. | In situ sensor based control of semiconductor processing procedure |
US6745086B1 (en) * | 2002-04-03 | 2004-06-01 | Advanced Micro Devices, Inc. | Method and apparatus for determining control actions incorporating defectivity effects |
US6732007B1 (en) * | 2002-06-05 | 2004-05-04 | Advanced Micro Devices, Inc. | Method and apparatus for implementing dynamic qualification recipes |
JP2004047885A (ja) * | 2002-07-15 | 2004-02-12 | Matsushita Electric Ind Co Ltd | 半導体製造装置のモニタリングシステム及びモニタリング方法 |
US6917849B1 (en) * | 2002-12-18 | 2005-07-12 | Advanced Micro Devices, Inc. | Method and apparatus for predicting electrical parameters using measured and predicted fabrication parameters |
-
2005
- 2005-05-03 US US11/120,896 patent/US7144297B2/en not_active Expired - Fee Related
-
2006
- 2006-01-24 TW TW095102586A patent/TWI288311B/zh not_active IP Right Cessation
- 2006-02-28 CN CNB2006100582667A patent/CN100451888C/zh not_active Expired - Fee Related
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101398686B (zh) * | 2007-09-27 | 2013-01-23 | 洛克威尔自动控制技术股份有限公司 | 通过嵌入式历史机数据实现的自适应工业系统 |
CN101458515B (zh) * | 2007-12-13 | 2011-10-05 | 中芯国际集成电路制造(上海)有限公司 | 晶圆质量分析方法 |
CN101540270B (zh) * | 2008-03-20 | 2010-11-10 | 华亚科技股份有限公司 | 监控制程的系统和方法 |
CN102566450A (zh) * | 2010-12-08 | 2012-07-11 | 和舰科技(苏州)有限公司 | 机台程序控制管理方法和系统 |
CN113013049A (zh) * | 2016-05-04 | 2021-06-22 | 台湾积体电路制造股份有限公司 | 半导体制程及其制程设备与控制装置 |
CN112433472A (zh) * | 2019-08-26 | 2021-03-02 | 长鑫存储技术有限公司 | 半导体生产控制方法及控制系统 |
CN117059511A (zh) * | 2023-10-11 | 2023-11-14 | 苏州瑞霏光电科技有限公司 | 一种晶圆材料内部应力分布检测方法及系统 |
CN117059511B (zh) * | 2023-10-11 | 2023-12-15 | 苏州瑞霏光电科技有限公司 | 一种晶圆材料内部应力分布检测方法及系统 |
Also Published As
Publication number | Publication date |
---|---|
TWI288311B (en) | 2007-10-11 |
TW200639602A (en) | 2006-11-16 |
US20060252348A1 (en) | 2006-11-09 |
CN100451888C (zh) | 2009-01-14 |
US7144297B2 (en) | 2006-12-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1858665A (zh) | 用以监控半导体生产设备中的处理工具的方法与系统 | |
US8682466B2 (en) | Automatic virtual metrology for semiconductor wafer result prediction | |
US6368884B1 (en) | Die-based in-fab process monitoring and analysis system for semiconductor processing | |
CN1799054A (zh) | 用基本原理仿真辅助半导体制造过程的系统和方法 | |
CN100378941C (zh) | 在制造过程中预测装置的电气参数的方法及系统 | |
US8145337B2 (en) | Methodology to enable wafer result prediction of semiconductor wafer batch processing equipment | |
CN102201324B (zh) | 半导体制造方法与系统 | |
CN101036092B (zh) | 动态控制量测中的工件的方法及系统 | |
CN1860440A (zh) | 用于工具上半导体仿真的系统和方法 | |
US9349660B2 (en) | Integrated circuit manufacturing tool condition monitoring system and method | |
CN1860487A (zh) | 使用第一原理仿真分析半导体处理工具执行的处理的系统和方法 | |
CN1816905A (zh) | 用于刻蚀工艺的前馈和反馈晶片到晶片控制方法 | |
CN1867896A (zh) | 用于工具上半导体仿真的系统和方法 | |
WO2015049087A1 (en) | Methods & apparatus for obtaining diagnostic information relating to an industrial process | |
US6684122B1 (en) | Control mechanism for matching process parameters in a multi-chamber process tool | |
Pan et al. | A virtual metrology system for predicting end-of-line electrical properties using a MANCOVA model with tools clustering | |
CN1393747A (zh) | 控制处理装置的方法 | |
CN102063063B (zh) | 半导体制造方法及系统 | |
CN101581930B (zh) | 实现自动虚拟量测的创新方法 | |
Tin et al. | A realizable overlay virtual metrology system in semiconductor manufacturing: Proposal, challenges and future perspective | |
CN113994453A (zh) | 半导体装置制造系统以及半导体装置制造方法 | |
CN1659690A (zh) | 处理装置的多变量解析模型式作成方法、处理装置用的多变量解析方法、处理装置的控制装置、处理装置的控制系统 | |
CN1705948A (zh) | 提供前馈首要原则的制造控制方法及装置 | |
CN105895563A (zh) | 一种制造过程中预测半导体装置的电气参数的方法及系统 | |
US20230195060A1 (en) | Substrate support characterization to build a digital twin |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20090114 |