CN1843847A - Multi-rotor aerocraft - Google Patents

Multi-rotor aerocraft Download PDF

Info

Publication number
CN1843847A
CN1843847A CN 200610080492 CN200610080492A CN1843847A CN 1843847 A CN1843847 A CN 1843847A CN 200610080492 CN200610080492 CN 200610080492 CN 200610080492 A CN200610080492 A CN 200610080492A CN 1843847 A CN1843847 A CN 1843847A
Authority
CN
China
Prior art keywords
rotor
rotors
positive
aircraft
negative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 200610080492
Other languages
Chinese (zh)
Other versions
CN100391790C (en
Inventor
战强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CNB2006100804925A priority Critical patent/CN100391790C/en
Publication of CN1843847A publication Critical patent/CN1843847A/en
Application granted granted Critical
Publication of CN100391790C publication Critical patent/CN100391790C/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

The invention relates to a multi-rotor aircraft, which comprises an airframe and several rotors mounted on the airframe and in one level. Wherein, the number N of rotors is dual, as N=2, 4, 6, 8, etc, and formed by positive and passive rotors whose sizes and number are same; all rotors are uniformly distributed on the periphery of airframe in 360/N angle; the passive and positive rotors are alternatively arranged with reversed rotation directions and upward lifting force; each rotor can be directly driven by motor or oil engine, or driven by motion transmission device via synchronous belt; the torsion between rotors can be counteracted, without balance device as tail wing or scull, with tight structure, flexible motion, larger lifting force and weight ratio. The invention can rise vertically, suspend in air, rotate in one point or fly horizontally.

Description

Multi-rotor aerocraft
Technical field
The present invention relates to a kind of multi-rotor aerocraft that can be used for a plurality of fields such as scientific experiment, Aeronautics and Astronautics, industry, amusement, military affairs.
Background technology
Have vertical takeoff and landing and the aircraft of function such as hover take photo by plane, fields such as atmospheric seeing, celestial body detecting have application demand widely.The aircraft that has this class function at present mainly contains versions such as single-rotor helicopter, twin-rotor helicopter, tiltrotor, as the tiltrotor V-22 of MH-16 helicopter, Muscovite card-29 helicopter, Boeing Co. and the Bell Co. of U.S. McDonnell-Douglas Corporation and V-44 etc.Single-rotor helicopter or coaxial anti-oar helicopter need the tail-rotor structure to offset the torsion that rotor produces body, and tiltrotor need be peaceful the verting of rotor aerofoil that fly to carry out between state of taking off vertically.
The problem that above-mentioned design exists is that empennage is all arranged, and main oar diameter is very big with respect to body, the structure more complicated, and kinematic dexterity and stationarity are relatively poor, and the lift of aircraft and weight is lower, if be designed to small aircraft then load capacity is very poor.
Summary of the invention
Technology of the present invention is dealt with problems and is: the complex structure that solves existing vertical takeoff and landing, hovering flight device, main oar is big with respect to the body diameter, kinematic dexterity and stationarity are relatively poor, and lift is low with the ratio of this body weight, are designed to the weak problem of small aircraft load capacity.
Technical solution among the present invention is: multi-rotor aerocraft includes a body, and N (N is an even number, as 2,4,6,8 etc.) is the positive and negative rotor that horizontal fixed is installed on the body and forms, and all rotors are positioned on the same horizontal surface; The geometric configuration of positive and negative rotor is all identical with quantity, is the periphery that 360/N degree angle alternately is distributed on body, and the rotating shaft of each rotor equates with the distance of the geometric centre of body; Rotor both can also can wait driving device to drive from other positions of body by synchronous band by motor or oily machine direct drive; The hand of rotation of the positive and negative rotor of this aircraft is opposite, lift upwards, because the torsional moment direction that acts on the body in the positive and negative rotor rotary course is opposite, the mode of velocity magnitude that therefore can be by adjusting positive and negative rotor realizes that the torsional moment of closing of whole aircraft is zero, so do not need tail-rotor or empennage isoequilibrium device.For example, during, switched in opposite identical when the rotating speed of all positive and negative rotors, because it is opposite that positive and negative rotor acts on torsional moment equal and opposite in direction, the direction of body, and the quantity of positive and negative rotor equates, so the torsional moment of closing of whole aircraft is zero, the rotating speed that increase all rotors this moment can make aircraft take off vertically; If the rotating speed of one of them or several rotors reduces, then because the torsional moment overbalance, aircraft can rotate.Because the big or small transfer speed that the lift that rotor produces reaches the torsional moment of body has direct relation, so just can make aircraft produce motion required lift or moment of torsion by the rotative speed of adjusting rotor, thereby realize the vertical takeoff and landing of aircraft, hover, cw and left-hand revolution and flat flying.
Description of drawings
Below in conjunction with accompanying drawing the specific embodiment among the present invention is described in further detail.
Fig. 1 is the schematic appearance of multi-rotor aerocraft among the present invention;
Fig. 2 is the birds-eye view of multi-rotor aerocraft among the present invention;
Fig. 3 is the aircraft schematic appearance that rotor adopts the duct structure among the present invention.
The specific embodiment
As depicted in figs. 1 and 2, specific embodiments of the invention are: four rotors 1,2,3,4 are the 90 angle symmetries of spending and are fixed on the body 7 of a crux, four rotors are positioned on the same horizontal surface and are distributed on one is on the circle in the center of circle with the cross bar intersection point, controller and battery etc. 6 is fixed on the center of body, and four rotors 1,2,3,4 are by four motors, 5 difference individual drive; Rotor 1,3 adopts positive oar, right-hand revolution, and rotor 2,4 adopts anti-oar, the anticlockwise direction rotation, the lift that produces all is that upwards in the process of whole flight, turning to of all rotors is constant.When four rotors all rotated with the certain speed constant speed by direction shown in Figure 2, the torsional moment of closing of this aircraft was zero, can take off vertically, and the words of acceleration can rise, and the words of deceleration can descend, and the words of keeping speed can be hovered at certain altitude.As shown in Figure 2, when rotor 1 and 3 steady accelerations and rotor 2 and 4 speed when constant, the torsional moment of rotor 1 and 3 pairs of bodies increases, this aircraft to close torsional moment non-vanishing, this aircraft is done the anticlockwise direction rotation around body center; And when rotor 2 and 4 steady accelerations and the speed of rotor 1 and 3 when constant, because it is non-vanishing to close torsional moment, this aircraft is done right-hand revolution around body center.As shown in Figure 2, when rotor 2 quickens, rotor 4 slows down, the speed that rotor 2 increases is identical with the speed that rotor 4 reduces, and the speed of rotor 1 and 3 is when constant, and aircraft is flat to the right to fly; Otherwise when rotor 2 slows down and rotor 4 when quickening, aircraft is flat left to fly; When rotor 1 quickens, rotor 3 slows down, when the speed of increase and speed rotor 2 and 4 identical with the speed of minimizing were constant, aircraft is flat downwards to fly; Otherwise when rotor 1 slows down and rotor 3 when quickening, aircraft is upwards flat to fly.Therefore this aircraft can realize vertical takeoff and landing neatly by adjusting the speed of different rotors, revolve stop, flat flying and motion such as original place rotation.This aircraft both can adopt remote operated mode to control flight, also can realize the autonomous flight control of this aircraft by the auxiliary employing auto-control mode of equipment such as gyroscope, GPS, magneto-meter or do the flight of more accurate track.
In addition, also can improve wind loading rating, the increase lift of aircraft by increase structures such as duct to rotor, and can prevent that rotor and environment obstacle from bumping, improve its safety, the aircraft surface structure as shown in Figure 3.
From the above, the multi-rotor aerocraft among the present invention has following advantage:
1. the aircraft among the present invention can be installed a plurality of rotors in little spatial dimension, and a plurality of rotors can produce bigger combination lift, and the ratio of lift and deadweight is bigger.
2. the aircraft among the present invention utilizes the mode that torsion is cancelled out each other between a plurality of rotors to prevent the arbitrarily rotation aloft of this aircraft, does not need tail-rotor or empennage isoequilibrium device, therefore is easy to realize vertical takeoff and landing and hovering, and compact conformation.
Aircraft among the present invention only by the speed of adjusting a plurality of rotors can realize this aircraft vertical takeoff and landing, hover, flatly fly, motion such as original place rotation, motion is flexibly and hover more steady.
4. the aircraft among the present invention is fit to have the design of the small aircraft of certain load-carrying capacity, is suitable for using in narrow environment.

Claims (4)

1. multi-rotor aerocraft, it is characterized in that: it includes body, and the positive and negative rotor that quantity equates, geometric configuration is identical that N (N is an even number) level is installed on the body forms, and all rotors are positioned on the same horizontal surface; Positive and negative rotor is 360/N degree angle and alternately is distributed on the body periphery, and the rotating shaft of each rotor equates with the geometric centre of body distance; The hand of rotation of positive and negative rotor is opposite, and lift makes progress, and the torsion between each rotor can be cancelled out each other, and does not have tail-rotor or empennage isoequilibrium device; Each rotor both can also can wait driving device to drive from other positions of body by synchronous band by motor or oily machine direct drive.
2. according to the multi-rotor aerocraft described in the claim 1, it is characterized in that: the spoke shape that described body can be rectangle, circle or the bar that stretched out by middle mind-set periphery constitutes, but be not limited to these shapes.
3. according to the multi-rotor aerocraft described in the claim 1, it is characterized in that: the blade quantity on each rotor can be 1,2,3,4, or more.
4. according to the multi-rotor aerocraft described in the claim 1, it is characterized in that: each rotor can adopt the duct structure, to improve wind loading rating and to improve lift.
CNB2006100804925A 2006-05-18 2006-05-18 Multi-rotor aerocraft Expired - Fee Related CN100391790C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2006100804925A CN100391790C (en) 2006-05-18 2006-05-18 Multi-rotor aerocraft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2006100804925A CN100391790C (en) 2006-05-18 2006-05-18 Multi-rotor aerocraft

Publications (2)

Publication Number Publication Date
CN1843847A true CN1843847A (en) 2006-10-11
CN100391790C CN100391790C (en) 2008-06-04

Family

ID=37062821

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2006100804925A Expired - Fee Related CN100391790C (en) 2006-05-18 2006-05-18 Multi-rotor aerocraft

Country Status (1)

Country Link
CN (1) CN100391790C (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101811572A (en) * 2010-04-22 2010-08-25 中国科学院长春光学精密机械与物理研究所 Coaxial-inversion birotor eight-rotary wing aircraft
CN102514711A (en) * 2011-12-02 2012-06-27 叶洪新 Multi-rotor fuel-electric hybrid aircraft
CN102923301A (en) * 2012-11-09 2013-02-13 华南农业大学 Rotor composite propeller of helicopter
CN102941920A (en) * 2012-12-05 2013-02-27 南京理工大学 High-tension transmission line inspection robot based on multi-rotor aircraft and method using robot
CN101977812B (en) * 2008-03-18 2014-03-26 上升科技有限责任公司 Rotary-wing aircraft
CN103786880A (en) * 2014-01-17 2014-05-14 江苏艾锐泰克无人飞行器科技有限公司 Unmanned aerial vehicle capable of taking off and landing vertically
WO2015081460A1 (en) * 2013-12-03 2015-06-11 曹卓荣 Osprey aircraft control device
CN103434644B (en) * 2013-09-04 2015-09-30 重庆金泰航空工业有限公司 A kind of four axle agricultural aircraft combined type fuselages and rotor combine
CN105494085A (en) * 2016-01-13 2016-04-20 沈阳金丰春航空科技有限公司 Multi-rotor-wing auxiliary pollination machine for increasing yield of breeding field
CN107291095A (en) * 2016-04-11 2017-10-24 零度智控(北京)智能科技有限公司 Unmanned plane takes off control method, device, system and unmanned plane
US10095226B1 (en) 2008-02-12 2018-10-09 Drone-Control, Llc Radio controlled aircraft, remote controller and methods for use therewith
CN110329512A (en) * 2019-06-21 2019-10-15 北京韦加智能科技股份有限公司 The more rotor plant protection drones of six axis heterogeneous of one kind and its rotor-hub configuration and control method
US10717525B2 (en) 2013-06-25 2020-07-21 SZ DJI Technology Co., Ltd. Aircraft control apparatus, control system and control method
CN113954592A (en) * 2021-11-29 2022-01-21 广东工业大学 Six-rotor amphibious unmanned aerial vehicle based on FOC power system can vert
US11260973B2 (en) 2013-06-25 2022-03-01 SZ DJI Technology Co., Ltd. Aircraft control apparatus, control system and control method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002347698A (en) * 2001-05-23 2002-12-04 Ishigaki Foods Co Ltd Vertical takeoff and landing aircraft
DE202004010057U1 (en) * 2004-06-26 2004-08-26 Braun, Andrea Electrical helicopter has four inclined co-rotating lifting rotors with individual drives providing control over all axes, varies drive speeds selectively
JP2006021733A (en) * 2004-07-07 2006-01-26 Kaido Ikeda Vertical taking-off and landing machine installing rapid wind quantity generation wind direction changing device of double inversion two-axis tilt as device for lift and propulsion of machine body and using it as steering means

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11281205B2 (en) 2008-02-12 2022-03-22 Drone-Control, Llc Radio controlled aircraft, remote controller and methods for use therewith
US10248117B2 (en) 2008-02-12 2019-04-02 Drone-Control, Llc Radio controlled aircraft, remote controller and methods for use therewith
US10095226B1 (en) 2008-02-12 2018-10-09 Drone-Control, Llc Radio controlled aircraft, remote controller and methods for use therewith
CN101977812B (en) * 2008-03-18 2014-03-26 上升科技有限责任公司 Rotary-wing aircraft
CN101811572A (en) * 2010-04-22 2010-08-25 中国科学院长春光学精密机械与物理研究所 Coaxial-inversion birotor eight-rotary wing aircraft
CN102514711A (en) * 2011-12-02 2012-06-27 叶洪新 Multi-rotor fuel-electric hybrid aircraft
CN102923301A (en) * 2012-11-09 2013-02-13 华南农业大学 Rotor composite propeller of helicopter
CN102941920A (en) * 2012-12-05 2013-02-27 南京理工大学 High-tension transmission line inspection robot based on multi-rotor aircraft and method using robot
US11801938B2 (en) 2013-06-25 2023-10-31 SZ DJI Technology Co., Ltd Aircraft control apparatus, control system and control method
US10717525B2 (en) 2013-06-25 2020-07-21 SZ DJI Technology Co., Ltd. Aircraft control apparatus, control system and control method
US11260973B2 (en) 2013-06-25 2022-03-01 SZ DJI Technology Co., Ltd. Aircraft control apparatus, control system and control method
CN103434644B (en) * 2013-09-04 2015-09-30 重庆金泰航空工业有限公司 A kind of four axle agricultural aircraft combined type fuselages and rotor combine
WO2015081460A1 (en) * 2013-12-03 2015-06-11 曹卓荣 Osprey aircraft control device
CN103786880A (en) * 2014-01-17 2014-05-14 江苏艾锐泰克无人飞行器科技有限公司 Unmanned aerial vehicle capable of taking off and landing vertically
CN105494085B (en) * 2016-01-13 2017-12-01 沈阳金丰春航空科技有限公司 More rotor breeding fields increase production supple-mentary pollination machine
CN105494085A (en) * 2016-01-13 2016-04-20 沈阳金丰春航空科技有限公司 Multi-rotor-wing auxiliary pollination machine for increasing yield of breeding field
CN107291095A (en) * 2016-04-11 2017-10-24 零度智控(北京)智能科技有限公司 Unmanned plane takes off control method, device, system and unmanned plane
CN110329512A (en) * 2019-06-21 2019-10-15 北京韦加智能科技股份有限公司 The more rotor plant protection drones of six axis heterogeneous of one kind and its rotor-hub configuration and control method
CN113954592A (en) * 2021-11-29 2022-01-21 广东工业大学 Six-rotor amphibious unmanned aerial vehicle based on FOC power system can vert
CN113954592B (en) * 2021-11-29 2022-06-17 广东工业大学 Six-rotor amphibious unmanned aerial vehicle based on FOC power system capable of tilting

Also Published As

Publication number Publication date
CN100391790C (en) 2008-06-04

Similar Documents

Publication Publication Date Title
CN100391790C (en) Multi-rotor aerocraft
CN200951831Y (en) Multi-rotor wing craft
CN102358420B (en) Attitude transforming aircraft
US6719244B1 (en) VTOL aircraft control using opposed tilting of its dual propellers or fans
EP0696983B1 (en) Ancillary aerodynamic structures for an unmanned aerial vehicle having ducted, coaxial counter-rotating rotors
WO2017131834A2 (en) Pivoting wing system for vtol aircraft
CN104743112B (en) Novel tilt wing aircraft
CN104176247A (en) Four-rotor unmanned aerial vehicle with engine for directly driving rotor
EP2394914A1 (en) A rotorcraft with a coaxial rotor system
CN103625640A (en) Multi-rotor unmanned aerial vehicle
JP2012111475A (en) Vertical takeoff and landing unmanned aircraft by wing-rotor
CN106428527A (en) Dual-axis vector servo turning device with propeller and vertical take-off and landing unmanned aerial vehicle with fixed wings
CN103979104A (en) Vertical take-off and landing miniature air vehicle with variable X-type wing
CN101973394A (en) Six rotor-wing aircraft
CN101823556A (en) Coaxial contrarotation birotor twelve-rotary wing air vehicle
CN102806993A (en) Multi-rotor aircraft
CN106741918B (en) Oblique product vector diaxon aircraft control structure
CN106697282A (en) Duct type tilting aircraft with vertical take-off and landing functions
CN203094441U (en) Improved four-rotor aircraft
CN113753229A (en) Foldable fixed-wing four-rotor composite unmanned aerial vehicle and control method thereof
CN109896002B (en) Deformable four-rotor aircraft
CN205854491U (en) VTOL Fixed Wing AirVehicle
CN107380428A (en) Dish-style rotor craft
CN108423167B (en) Dual control system aircraft
CN107878747A (en) A kind of Fixed Wing AirVehicle of VTOL

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080604

CF01 Termination of patent right due to non-payment of annual fee