JP2012111475A - Vertical takeoff and landing unmanned aircraft by wing-rotor - Google Patents

Vertical takeoff and landing unmanned aircraft by wing-rotor Download PDF

Info

Publication number
JP2012111475A
JP2012111475A JP2010279821A JP2010279821A JP2012111475A JP 2012111475 A JP2012111475 A JP 2012111475A JP 2010279821 A JP2010279821 A JP 2010279821A JP 2010279821 A JP2010279821 A JP 2010279821A JP 2012111475 A JP2012111475 A JP 2012111475A
Authority
JP
Japan
Prior art keywords
aircraft
main wing
wing
main
flight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010279821A
Other languages
Japanese (ja)
Inventor
Kenta Yasuda
憲太 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2010279821A priority Critical patent/JP2012111475A/en
Publication of JP2012111475A publication Critical patent/JP2012111475A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an aircraft provided with the characteristics of a fixed wing aircraft and a helicopter while maintaining the performance which solves the problem that the fixed wing aircraft has high horizontal flight capability but it requires a runway thereby limiting its operation, and that the latter has high degree of freedom in its operation but its cruising performance is inferior to that of the former.SOLUTION: The unmanned aircraft achieves both horizontal flight capability and vertical takeoff and landing capability with a simple mechanism by controlling a pair of main wings 2 provided to change their angles of mounting independently on the right and left sides, a main wing propeller 3 and an elevator 4.

Description

本発明は、巡航飛行時には主翼として動作し、
垂直離着陸時には回転翼として動作する、
Wing−Rotorを備えた垂直離着陸航空機に関する。
飛行原理により無人航空機に関する。
The present invention operates as a wing during cruise flight,
Acts as a rotor during vertical takeoff and landing,
The present invention relates to a vertical take-off and landing aircraft equipped with a Wing-Rotor.
It relates to unmanned aerial vehicles according to the flight principle.

空中からの偵察、観測、科学調査、資源探査、農薬散布、通信中継のため各種無人航空機が開発されている。Various unmanned aerial vehicles have been developed for reconnaissance from the air, observation, scientific research, resource exploration, spraying of agricultural chemicals, and communication relay.

固定翼型の無人航空機は在来の有人固定翼機と同じく機体固有の前進速度以下では飛行を継続できない。そのため、離陸、着陸は前進速度のある状態で行われ、滑走路などの十分なスペースを要するのが一般的である。無人航空機の特徴のひとつである、柔軟で手軽な運用が妨げられる。Fixed wing unmanned aerial vehicles, like conventional manned fixed wing aircraft, cannot continue to fly below the aircraft's inherent forward speed. For this reason, takeoff and landing are generally performed with a forward speed, and a sufficient space such as a runway is generally required. One of the characteristics of unmanned aerial vehicles is that it hinders flexible and easy operation.

一方、ヘリコプタ型の無人航空機は、垂直離着陸が可能となり離着陸に関する運用の柔軟性は確保されるが、飛行速度、航続時間が固定翼型の無人航空機に比べ劣る。On the other hand, helicopter type unmanned aerial vehicles are able to take off and landing vertically and the flexibility of operation regarding takeoff and landing is ensured, but the flight speed and cruising time are inferior to those of fixed wing type unmanned aerial vehicles.

固定翼機の主翼による効率の良い水平飛行と垂直離着陸による運用の柔軟性を兼ね備える、垂直離着陸航空機として、
テイルシッター(Tail−sitting)型は機体ごと推進器を垂直方向にし、
ティルト翼(Tilt−Wing)型は主翼と主翼に固定された推進器を垂直方向に回転させ、
ティルトローター(Tilt−Rotor)型は推進器のみを垂直方向に回転させ、
推力偏向(Thrust−Vectoring)型は推進器からの気流を下方へ偏向し、
リフトファン(Lift−Fan)型は垂直方向に固定設置された推進器を使用して、
それぞれ垂直方向の推力を発生させ垂直離着陸を達成している。
それぞれの形式を代表する例として以下の特許文献がある。
特開 2001−213397号公報 特開 平9−002395号公報 特開 2001−80590号公報 特開 2007−118891号公報
As a vertical take-off and landing aircraft that combines efficient horizontal flight with the main wing of fixed wing aircraft and flexibility of operation by vertical take-off and landing,
Tail-sitting type makes the propeller vertically
The Tilt-Wing type rotates the main wing and the propeller fixed to the main wing in the vertical direction,
The Tilt-Rotor type rotates only the propeller vertically.
The thrust-vectoring type deflects the airflow from the thruster downward,
Lift-Fan type uses a propeller fixedly installed in the vertical direction,
Each vertical thrust is generated to achieve vertical takeoff and landing.
The following patent documents are examples that represent the respective formats.
JP 2001-213397 A JP-A-9-002395 JP 2001-80590 A JP 2007-118891 A

前述の垂直離発着航空機はいずれも機体形状による制限から、
ヘリコプタ型に比して垂直離着陸時の推進器の吹きおろし面積が小さく、
それに起因して必要出力が大きくなるためホバリング効率が悪く不利である。
All of the aforementioned vertical takeoff and landing aircraft are limited by the shape of the fuselage,
Compared to the helicopter type, the blower down area during vertical takeoff and landing is small,
As a result, the required output increases, which is disadvantageous because hovering efficiency is poor.

前述の垂直離発着航空機の推進器はいずれも、
巡航飛行時には前進速度と等しい対気速度内で推力を発生し、
ホバリング時には対気速度なしで揚力を発生する必要があるため、
巡航飛行効率と、ホバリング効率と、
の両方を最適化する推進器の設計は困難なため不利である。
All of the propellers for the aforementioned vertical takeoff and landing aircraft
During cruise flight, thrust is generated within the airspeed equal to the forward speed,
Because it is necessary to generate lift without airspeed when hovering,
Cruise flight efficiency, hovering efficiency,
It is disadvantageous because it is difficult to design a thruster that optimizes both.

請求項1から3に記載する以下のWing−Rotorによる垂直離着陸無人航空機により、課題を解決する。The problem is solved by the following vertical take-off and landing unmanned aircraft by Wing-Rotor described in claims 1 to 3.

制御装置、観測機器、を内蔵する機体本体と
前記機体本体に対して取り付け角度を左右独立して変更可能に設けた一対の主翼と、
前記主翼を左右独立して変更するための主翼取り付け角変更装置と、
前記主翼左右それぞれに固定され推力を発生する2基の主翼推進器と、
前記機体本体もしくは前記主翼に搭載されたエネルギー源と、
前記機体本体の航空機重心点から離れた位置に設けられ
巡航飛行時に機体に姿勢角制御力を与える、
昇降舵を備えることを特徴とした航空機。
A main body containing a control device and an observation device, and a pair of main wings provided so that the mounting angle can be changed independently on the left and right with respect to the main body,
A main wing mounting angle changing device for independently changing the main wing left and right;
Two main wing thrusters fixed to the left and right sides of the main wing to generate thrust,
An energy source mounted on the aircraft body or the main wing;
Provided at a position away from the aircraft center of gravity of the aircraft body to give attitude angle control force to the aircraft during cruise flight,
An aircraft comprising an elevator.

前記航空機は、該航空機の機速を計測するための機速センサと、
該航空機の姿勢を計測するための姿勢センサと、
該航空機の位置を計測する位置センサと、を備え、
前記機速センサと、前記姿勢センサと、前記位置センサ信号と、
から送られてくる信号を受けとり、
前記主翼取り付け角変更装置と、前記主翼推進器と、前記昇降舵と、
を制御する自律的飛行制御装置を有する航空機。
The aircraft includes a speed sensor for measuring the speed of the aircraft;
An attitude sensor for measuring the attitude of the aircraft;
A position sensor for measuring the position of the aircraft,
The speed sensor, the attitude sensor, and the position sensor signal;
Receive the signal sent from
The main wing attachment angle changing device, the main wing propulsion device, the elevator,
An aircraft having an autonomous flight control device for controlling the aircraft.

前記航空機は、請求項1と、請求項2と、に記載の装置を使用し、
垂直離陸、巡航飛行、垂直着陸、ホバリングを行うことを特徴とする航空機。
The aircraft uses the apparatus of claim 1 and claim 2,
An aircraft that performs vertical takeoff, cruise flight, vertical landing, and hovering.

本発明によれば該航空機の主翼取り付け角変更装置により、該航空機の主翼を、
巡航飛行時には効率の良い主翼として、
垂直離陸時−垂直着陸時−ホバリング時には効率のよいローターとして使用するため、
各状態で効率のよい飛行が実現可能で有利である。
According to the present invention, the main wing of the aircraft is changed by the apparatus for changing the main wing attachment angle of the aircraft.
As an efficient wing during cruise flight,
For use as an efficient rotor during vertical takeoff-vertical landing-hovering
It is advantageous that efficient flight can be realized in each state.

本発明によれば該航空機の主翼推進器は、
垂直離陸時−垂直着陸時−ホバリング時−巡航飛行時の各飛行状態において、
一定の対気速度内で動作するため、
各飛行状態に共通して推進器の最適化が可能であるため有利である。
According to the present invention, the main wing thruster of the aircraft
In each flight state during vertical take-off-vertical landing-hovering-cruise flight
Because it operates within a constant airspeed,
It is advantageous because the propulsion device can be optimized in common for each flight state.

以下、本発明の実施の形態(実施例)を図面に基づいてより詳細に説明する。
図1は車両を用いず運搬可能な小型無人機として設計された該航空機の構成を説明するための概要図である。航空機1の仕様は以下である。
航空機1の総重量は10キログラム。
航空機1の巡航飛行時前進速度は25メートル毎秒。
航空機1の巡航飛行時連続前進可能時間は1時間。
航空機1の重心位置は主翼取り付け角変更装置の回転軸と機体中心軸の交点。
主翼2の翼断面形状は、一般的な航空機用対称翼断面。
主翼2のスパンは1.8mであり、翼面積は0.2平方メートル。
主翼推進器3はプロペラと電動器とからなる主翼2に固定された推進器。
主翼推進器3の発生推力を各50ニュートン。
昇降舵4の翼面積は0.02平方メートル。
主翼取り付け角変更装置5は主翼2の取り付け角を左右独立して変更する。
主翼取り付け角変更装置5の取り付け角変更範囲は、0度から180度まで。
飛行制御装置6は機体中央に設置され航空機1を任意の目標地点へ誘導制御する。
電池7は主翼推進器3と昇降舵4と主翼取り付け角変更装置5と飛行制御装置6へ電力を供給する。
Hereinafter, embodiments (examples) of the present invention will be described in more detail with reference to the drawings.
FIG. 1 is a schematic diagram for explaining the configuration of the aircraft designed as a small unmanned aerial vehicle that can be transported without using a vehicle. The specifications of the aircraft 1 are as follows.
The total weight of aircraft 1 is 10 kilograms.
The forward speed of aircraft 1 during cruise flight is 25 meters per second.
The aircraft can travel continuously for 1 hour during cruise flight.
The center of gravity of the aircraft 1 is the intersection of the rotation axis of the main wing attachment angle changing device and the center axis of the aircraft.
The wing cross section of the main wing 2 is a general symmetric wing cross section for aircraft.
The span of main wing 2 is 1.8m and the wing area is 0.2 square meters.
The main wing propulsion unit 3 is a propulsion unit fixed to the main wing 2 composed of a propeller and an electric motor.
The thrust generated by the main wing thruster 3 is 50 newtons each.
The wing area of the elevator 4 is 0.02 square meters.
The main wing attachment angle changing device 5 changes the attachment angle of the main wing 2 independently on the left and right.
The mounting angle change range of the main wing mounting angle changing device 5 is from 0 degrees to 180 degrees.
The flight control device 6 is installed in the center of the aircraft and guides and controls the aircraft 1 to an arbitrary target point.
The battery 7 supplies power to the main wing propulsion device 3, the elevator 4, the main wing attachment angle changing device 5, and the flight control device 6.

図2は、主翼取り付け角変更装置5の構成を説明するための概要図である。
回転軸8は航空機1の全機重心を貫通する。
ベアリング9は主翼2を回転軸8を中心として回転自由に保持する。
ベアリングホルダー10はベアリング9を保持し主翼からの力を航空機1に伝える。
サーボモーター11は主翼取り付け角を変更するための操作力を生みだす。
歯付きベルト12はサーボモーター11による操作力を主翼に伝える。
左右の主翼取り付け角度を独立して変更するため、
主翼取り付け角変更装置5、を2個装備する。
FIG. 2 is a schematic diagram for explaining the configuration of the main wing attachment angle changing device 5.
The rotating shaft 8 passes through the center of gravity of the aircraft 1.
The bearing 9 holds the main wing 2 so as to freely rotate about the rotation shaft 8.
The bearing holder 10 holds the bearing 9 and transmits the force from the main wing to the aircraft 1.
The servo motor 11 generates an operating force for changing the wing attachment angle.
The toothed belt 12 transmits the operating force of the servo motor 11 to the main wing.
To change the left and right main wing mounting angles independently,
Equipped with two main wing attachment angle changing devices 5.

図3は、飛行制御装置6の内部構成を説明するためのブロック図である。FIG. 3 is a block diagram for explaining the internal configuration of the flight control device 6.

機速センサ13は、ピトー管により、航空機1の機速を感知する計測器。
姿勢センサ14は、航空機1の3軸姿勢角度を感知する計測器。
位置センサ15は、GPS(Global PositioningSystem)などにより、航空機1の3次元位置を感知する計測器。
The speed sensor 13 is a measuring instrument that detects the speed of the aircraft 1 using a Pitot tube.
The attitude sensor 14 is a measuring instrument that senses the three-axis attitude angle of the aircraft 1.
The position sensor 15 is a measuring instrument that senses the three-dimensional position of the aircraft 1 by GPS (Global Positioning System) or the like.

飛行演算装置16は、符号13から15の各センサからの情報と、
内蔵する飛行制御プログラムとにより、
主翼推進器3と、昇降舵4と、主翼取り付け角変更装置5と、
を制御し自律的飛行を可能とする。
The flight calculation device 16 includes information from the sensors 13 to 15,
With the built-in flight control program,
Main wing propulsion unit 3, elevator 4, main wing attachment angle changing device 5,
To control autonomous flight.

飛行演算装置16は、遠隔操縦者の操縦指令17を受け入れ、その指令により、
主翼推進器3と、昇降舵4と、主翼取り付け角変更装置5と、
を制御し飛行することを可能とする。
The flight calculation device 16 accepts a remote pilot's control command 17 and, according to the command,
Main wing propulsion unit 3, elevator 4, main wing attachment angle changing device 5,
It is possible to control and fly.

図4は、航空機1の垂直離陸時−垂直着陸時−ホバリング時、
における浮遊方法を説明する図である。
FIG. 4 shows the aircraft 1 during vertical take-off, vertical landing, hovering,
It is a figure explaining the floating method in.

航空機1の垂直離陸時−垂直着陸時−ホバリング時、における揚力については、
主翼取り付け角変更装置5により、左の主翼取り付け角の中立位置を15度とし、
右の主翼取り付け角の中立位置を165度とし、
主翼推進器3による推力により、航空機1全体を上方から見て時計周りに回転させ、
主翼が回転翼として動作することで航空機1を空中に浮遊させる。
Regarding lift during vertical take-off of aircraft 1-vertical landing-hovering,
With the wing attachment angle changing device 5, the neutral position of the left wing attachment angle is set to 15 degrees,
Set the neutral position of the right wing attachment angle to 165 degrees,
Due to the thrust of the main wing thruster 3, the entire aircraft 1 is rotated clockwise as viewed from above,
The main wing operates as a rotary wing, so that the aircraft 1 is suspended in the air.

航空機1の垂直離陸時−垂直着陸時−ホバリング時、における高度制御については、
主翼推進器3の推力の増減と、
主翼取り付け角変更装置5による左右主翼取り付け角の変更と、
により主翼揚力を増減させ行う。
For altitude control during vertical takeoff of aircraft 1-vertical landing-hovering,
Increase / decrease in thrust of the main wing thruster 3,
Change of the left and right main wing mounting angle by the main wing mounting angle changing device 5,
To increase or decrease the wing lift.

図5は、航空機1の垂直離陸時−垂直着陸時−ホバリング時、
における移動方法を説明する図である。
FIG. 5 shows the aircraft 1 during vertical take-off, vertical landing, hovering,
It is a figure explaining the movement method in.

航空機1の垂直離陸時−垂直着陸時−ホバリング時、における移動については、
主翼取り付け角変更装置5により、進行方向に達した主翼の角度を、
主翼回転面との角度を減ずる方向に変更し揚力を減じ、
進行方向と反対側の主翼の角度を、主翼回転面との角度を増加ずる方向に変更し揚力を増加し、主翼回転面を進行方向に向けることで行う。
Regarding the movement of aircraft 1 during vertical take-off-vertical landing-hovering,
With the main wing attachment angle changing device 5, the angle of the main wing reached in the traveling direction is
Change the direction to reduce the angle with the main wing rotation surface, reduce the lift,
The angle of the main wing opposite to the traveling direction is changed to a direction that increases the angle with the main wing rotation surface, the lift is increased, and the main wing rotation surface is directed in the traveling direction.

図6は、航空機1の巡航飛行時における浮遊方法を説明する図である。FIG. 6 is a diagram illustrating a floating method during cruise flight of the aircraft 1.

航空機1の巡航飛行時における揚力については、
主翼取り付け角変更装置5により、左右の主翼取り付け角の中立位置を、
一般的な固定翼航空機と同様に主翼の揚抗比を最大とする6度程度とし、
主翼2による揚力と主翼推進器3による推力により航空機1を空中に浮遊させる。
Regarding lift during cruise flight of aircraft 1,
By using the main wing mounting angle changing device 5, the neutral position of the left and right main wing mounting angles is
Like general fixed-wing aircraft, the wing lift-drag ratio is set to about 6 degrees,
The aircraft 1 is suspended in the air by the lift by the main wing 2 and the thrust by the main wing thruster 3.

航空機1の水平飛行時におけるピッチ姿勢角制御については、
昇降舵4の揚力を増減させることにより行う。
Regarding the pitch attitude angle control during horizontal flight of the aircraft 1,
This is done by increasing or decreasing the lift of the elevator 4.

航空機1の水平飛行時におけるヨー姿勢角制御については、
左側の主翼推進器3と右側の主翼推進器3との推力の差により行う。
For yaw attitude angle control during level flight of aircraft 1,
This is done by the difference in thrust between the left main wing thruster 3 and the right main wing thruster 3.

航空機1の水平飛行時におけるロール姿勢角制御については、
主翼取り付け角変更装置5により、左側主翼と右側主翼の主翼取り付け角を逆方向に変更し、一方の揚力を増し、反対側の揚力を減少させることにより行う。
Regarding the roll attitude angle control during the horizontal flight of the aircraft 1,
The main wing attachment angle changing device 5 is used to change the main wing attachment angles of the left main wing and the right main wing in the opposite directions, increasing one lift and decreasing the opposite lift.

航空機1の巡航飛行状態における高度制御については、
主翼推進器3の推力を増大、減少させることで行う。
For altitude control in the cruise flight state of aircraft 1,
This is done by increasing or decreasing the thrust of the main wing thruster 3.

航空機1は巡航飛行形態においても、滑走離陸、滑走着陸、は可能である。The aircraft 1 can also take off and take off in a cruise flight mode.

航空機1は前述の各種制御を組み合わせ、
垂直離陸時−垂直着陸時−ホバリング時−巡航飛行時において、
任意の地点に移動可能である。
Aircraft 1 combines the various controls described above,
During vertical take-off-vertical landing-hovering-during cruise flight
It can move to any point.

図1は、小型無人機として設計された該航空機の構成を説明するための概要図である。FIG. 1 is a schematic diagram for explaining the configuration of the aircraft designed as a small drone. 図2は、主翼取り付け角変更装置5の構成を説明するための概要図である。FIG. 2 is a schematic diagram for explaining the configuration of the main wing attachment angle changing device 5. 図3は、飛行制御装置6の内部構成を説明するためのブロック図である。FIG. 3 is a block diagram for explaining the internal configuration of the flight control device 6. 図4は、航空機1の垂直離陸時−垂直着陸時−ホバリング時、における浮遊方法を説明する図である。FIG. 4 is a diagram for explaining a floating method when the aircraft 1 is in vertical take-off, vertical landing, and hovering. 図5は、航空機1の垂直離陸時−垂直着陸時−ホバリング時、における移動方法を説明する図である。FIG. 5 is a diagram illustrating a moving method of the aircraft 1 during vertical take-off, vertical landing, and hovering. 図6は、航空機1の巡航飛行時における飛行方法を説明する図である。FIG. 6 is a diagram for explaining a flight method during cruise flight of the aircraft 1.

1 航空機
2 主翼
3 主翼推進器
4 昇降舵
5 主翼取り付け角変更装置
6 飛行制御装置
7 電池
8 回転軸
9 ベアリング
10 ベアリングホルダー
11 サーボモーター
12 歯付きベルト
13 機速センサ
14 姿勢センサ
15 位置センサ
16 飛行演算装置
17 操縦指令
DESCRIPTION OF SYMBOLS 1 Aircraft 2 Main wing 3 Main wing propulsion device 4 Elevator 5 Main wing attachment angle changing device 6 Flight control device 7 Battery 8 Rotating shaft 9 Bearing 10 Bearing holder 11 Servo motor 12 Toothed belt 13 Speed sensor 14 Attitude sensor 15 Position sensor 16 Flight Arithmetic unit 17

Claims (3)

制御装置、観測機器、を内蔵する機体本体と
前記機体本体に対して取り付け角度を左右独立して変更可能に設けた一対の主翼と、
前記主翼を左右独立して変更するための主翼取り付け角変更装置と、
前記主翼左右それぞれに固定され推力を発生する2基の主翼推進器と、
前記主翼、もしくは前記機体本体に搭載されたエネルギー源と、
前記機体本体の航空機重心点から離れた位置に設けられ
上下方向に揚力を発生する昇降舵と、
を備えることを特徴とした航空機。
A main body containing a control device and an observation device, and a pair of main wings provided so that the mounting angle can be changed independently on the left and right with respect to the main body,
A main wing mounting angle changing device for independently changing the main wing left and right;
Two main wing thrusters fixed to the left and right sides of the main wing to generate thrust,
An energy source mounted on the main wing or the fuselage body;
An elevator that is provided at a position away from the aircraft center of gravity of the aircraft body and generates lift in the vertical direction;
An aircraft characterized by comprising:
前記航空機は、該航空機の機速を計測するための機速センサと、
該航空機の姿勢を計測するための姿勢センサと、
該航空機の位置を計測する位置センサと、を備え、
前記機速センサと、前記姿勢センサと、前記位置センサ信号と、
から送られてくる信号を受けとり、
前記主翼取り付け角変更装置と、前記主翼推進器と、前記昇降舵と、
を制御する自律的飛行制御装置を有する航空機。
The aircraft includes a speed sensor for measuring the speed of the aircraft;
An attitude sensor for measuring the attitude of the aircraft;
A position sensor for measuring the position of the aircraft,
The speed sensor, the attitude sensor, and the position sensor signal;
Receive the signal sent from
The main wing attachment angle changing device, the main wing propulsion device, the elevator,
An aircraft having an autonomous flight control device for controlling the aircraft.
前記航空機は、請求項1と、請求項2と、に記載の装置を使用し、
垂直離陸、巡航飛行、垂直着陸、ホバリングを行うことを特徴とする航空機。
The aircraft uses the apparatus of claim 1 and claim 2,
An aircraft that performs vertical takeoff, cruise flight, vertical landing, and hovering.
JP2010279821A 2010-11-28 2010-11-28 Vertical takeoff and landing unmanned aircraft by wing-rotor Pending JP2012111475A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010279821A JP2012111475A (en) 2010-11-28 2010-11-28 Vertical takeoff and landing unmanned aircraft by wing-rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010279821A JP2012111475A (en) 2010-11-28 2010-11-28 Vertical takeoff and landing unmanned aircraft by wing-rotor

Publications (1)

Publication Number Publication Date
JP2012111475A true JP2012111475A (en) 2012-06-14

Family

ID=46496149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010279821A Pending JP2012111475A (en) 2010-11-28 2010-11-28 Vertical takeoff and landing unmanned aircraft by wing-rotor

Country Status (1)

Country Link
JP (1) JP2012111475A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104888466A (en) * 2015-05-28 2015-09-09 张斌 Vertical take-off and landing fixed wing aircraft
JP2016137150A (en) * 2015-01-28 2016-08-04 株式会社 学研ホールディングス Missile
JP2016526508A (en) * 2013-06-27 2016-09-05 プリンプ,インコーポレーテッド Hybrid VTOL machine
JP2017015528A (en) * 2015-06-30 2017-01-19 株式会社トプコン Site management system, flight detection method and program
CN106564612A (en) * 2015-10-08 2017-04-19 张斌 Taking off structure for carrier-borne aircraft
GB2545077A (en) * 2015-10-30 2017-06-07 Bae Systems Plc Air vehicle and method and apparatus for control thereof
GB2545078A (en) * 2015-10-30 2017-06-07 Bae Systems Plc Air vehicle and method and apparatus for control thereof
KR101757368B1 (en) 2016-03-10 2017-07-12 유콘시스템 주식회사 Two way flight possible the drones
KR101804489B1 (en) 2016-03-04 2017-12-04 유콘시스템 주식회사 Backward movement possible flight vehicle equipped fixed wing
CN107697282A (en) * 2017-09-30 2018-02-16 江阴市翔诺电子科技有限公司 A kind of new concept vertically taking off and landing flyer and its control method
JP6281172B1 (en) * 2017-03-07 2018-02-21 合同会社Icグロー Wing system aircraft capable of both rotary and fixed wing flight
CN108372930A (en) * 2018-03-14 2018-08-07 长沙市云智航科技有限公司 The component that verts for manned more rotor flying vehicles
CN109334954A (en) * 2018-01-22 2019-02-15 张斌 Jet-propelled vertical rise and fall unmanned plane
JP2019104493A (en) * 2019-04-01 2019-06-27 株式会社フジタ Radio-controlled rotary-wing aircraft
US10807708B2 (en) 2015-10-30 2020-10-20 Bae Systems Plc Air vehicle and imaging apparatus therefor
US10814972B2 (en) 2015-10-30 2020-10-27 Bae Systems Plc Air vehicle and method and apparatus for control thereof
US10822084B2 (en) 2015-10-30 2020-11-03 Bae Systems Plc Payload launch apparatus and method
USD924777S1 (en) 2018-03-30 2021-07-13 Egan Airships, Inc. Hybrid aerial vehicle
US11059562B2 (en) 2015-10-30 2021-07-13 Bae Systems Plc Air vehicle and method and apparatus for control thereof
US11077943B2 (en) 2015-10-30 2021-08-03 Bae Systems Plc Rotary-wing air vehicle and method and apparatus for launch and recovery thereof
CN114802737A (en) * 2022-04-27 2022-07-29 重庆大学 Flexible steel wire drives tilt mechanism pivoted gyroplane

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016526508A (en) * 2013-06-27 2016-09-05 プリンプ,インコーポレーテッド Hybrid VTOL machine
US10894591B2 (en) 2013-06-27 2021-01-19 Egan Airships, Inc. Hybrid VTOL vehicle
JP2016137150A (en) * 2015-01-28 2016-08-04 株式会社 学研ホールディングス Missile
CN104888466A (en) * 2015-05-28 2015-09-09 张斌 Vertical take-off and landing fixed wing aircraft
JP2017015528A (en) * 2015-06-30 2017-01-19 株式会社トプコン Site management system, flight detection method and program
CN106564612A (en) * 2015-10-08 2017-04-19 张斌 Taking off structure for carrier-borne aircraft
US10814972B2 (en) 2015-10-30 2020-10-27 Bae Systems Plc Air vehicle and method and apparatus for control thereof
US11059562B2 (en) 2015-10-30 2021-07-13 Bae Systems Plc Air vehicle and method and apparatus for control thereof
US11077943B2 (en) 2015-10-30 2021-08-03 Bae Systems Plc Rotary-wing air vehicle and method and apparatus for launch and recovery thereof
GB2545077A (en) * 2015-10-30 2017-06-07 Bae Systems Plc Air vehicle and method and apparatus for control thereof
US10822084B2 (en) 2015-10-30 2020-11-03 Bae Systems Plc Payload launch apparatus and method
GB2545078A (en) * 2015-10-30 2017-06-07 Bae Systems Plc Air vehicle and method and apparatus for control thereof
US10807708B2 (en) 2015-10-30 2020-10-20 Bae Systems Plc Air vehicle and imaging apparatus therefor
GB2545078B (en) * 2015-10-30 2018-11-14 Bae Systems Plc Wing structure with adjustable aerofoils
GB2545077B (en) * 2015-10-30 2019-09-11 Bae Systems Plc Air Vehicle convertible between rotational and fixed-wing modes
KR101804489B1 (en) 2016-03-04 2017-12-04 유콘시스템 주식회사 Backward movement possible flight vehicle equipped fixed wing
KR101757368B1 (en) 2016-03-10 2017-07-12 유콘시스템 주식회사 Two way flight possible the drones
WO2018163666A1 (en) * 2017-03-07 2018-09-13 合同会社Icグロー Aircraft having wing system capable of both rotary-wing flight and fixed-wing flight
JP6281172B1 (en) * 2017-03-07 2018-02-21 合同会社Icグロー Wing system aircraft capable of both rotary and fixed wing flight
CN107697282A (en) * 2017-09-30 2018-02-16 江阴市翔诺电子科技有限公司 A kind of new concept vertically taking off and landing flyer and its control method
CN109334954A (en) * 2018-01-22 2019-02-15 张斌 Jet-propelled vertical rise and fall unmanned plane
CN108372930A (en) * 2018-03-14 2018-08-07 长沙市云智航科技有限公司 The component that verts for manned more rotor flying vehicles
CN108372930B (en) * 2018-03-14 2024-06-18 长沙市云智航科技有限公司 Tilting assembly for manned multi-rotor flying vehicle
USD924777S1 (en) 2018-03-30 2021-07-13 Egan Airships, Inc. Hybrid aerial vehicle
JP2019104493A (en) * 2019-04-01 2019-06-27 株式会社フジタ Radio-controlled rotary-wing aircraft
CN114802737A (en) * 2022-04-27 2022-07-29 重庆大学 Flexible steel wire drives tilt mechanism pivoted gyroplane
CN114802737B (en) * 2022-04-27 2024-04-16 重庆大学 Rotary wing aircraft with tilting mechanism driven by flexible steel wire

Similar Documents

Publication Publication Date Title
JP2012111475A (en) Vertical takeoff and landing unmanned aircraft by wing-rotor
JP2010254264A (en) Unmanned aircraft landing and departing perpendicularly by tilt wing mechanism
US11091260B2 (en) Counter-rotating propellers for aerial vehicle
US11273911B2 (en) Detachable power tethering systems for aircraft
CA2947688C (en) Tethered wing structures complex flight path
JP2023082107A (en) Vertical takeoff and landing (vtol) air vehicle
CN110641693A (en) Vertical take-off and landing unmanned aerial vehicle
US20160244159A1 (en) Controlled Take-Off And Flight System Using Thrust Differentials
KR100812756B1 (en) Quadro copter
NL2017971B1 (en) Unmanned aerial vehicle
EP3878736A1 (en) Aircraft having convertible tailboom and landing gear systems
EP3725680B1 (en) Multimodal unmanned aerial systems having tiltable wings
US11117657B2 (en) Aeronautical apparatus
CN106114853A (en) A kind of push-button aircraft
CN109606674A (en) Tail sitting posture vertical take-off and landing drone and its control system and control method
EP3368413B1 (en) Air vehicle and method and apparatus for control thereof
JP2009234551A (en) Vertical takeoff and landing aircraft having main wing installation angle changing device
CN112078784A (en) Omnidirectional five-rotor aircraft and control method
JP2017190091A (en) Tray type multi-copter
CN212637894U (en) Five rotor crafts of qxcomm technology
US20190310660A1 (en) Flying vehicle architecture
RU196085U1 (en) UAV VERTICAL TAKEOFF AND LANDING
NL1040979B1 (en) Air vehicle.
KR20170008952A (en) Vertical takeoff and landing aircraft