CN1843113A - 有机氯农药在纳米二氧化钛上光催化降解方法 - Google Patents

有机氯农药在纳米二氧化钛上光催化降解方法 Download PDF

Info

Publication number
CN1843113A
CN1843113A CN 200610070862 CN200610070862A CN1843113A CN 1843113 A CN1843113 A CN 1843113A CN 200610070862 CN200610070862 CN 200610070862 CN 200610070862 A CN200610070862 A CN 200610070862A CN 1843113 A CN1843113 A CN 1843113A
Authority
CN
China
Prior art keywords
nano
tio
titanium dioxide
photocatalytic degradation
pesticide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 200610070862
Other languages
English (en)
Other versions
CN100342784C (zh
Inventor
陈曦
余彬彬
黄沙
袁宁
肖来龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen University
Original Assignee
Xiamen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen University filed Critical Xiamen University
Priority to CNB2006100708627A priority Critical patent/CN100342784C/zh
Publication of CN1843113A publication Critical patent/CN1843113A/zh
Application granted granted Critical
Publication of CN100342784C publication Critical patent/CN100342784C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Catalysts (AREA)

Abstract

有机氯农药在纳米TiO2上光催化降解方法,涉及一种有机氯农药,尤其是涉及一种可适用于污染物中有机氯农药的降解和转化的方法。提供一种快速简便、低成本,在常温下可实现对有机氯农药快速转化的方法。取用丙酮配制的农药标准品,在N2气吹扫下将丙酮吹干,加入纳米TiO2粉体和水,得TiO2和农药混合悬浮液,超声振荡,将TiO2和农药混合悬浮液通入空气,用紫外杀菌灯直接照射,经光催化降解后用过滤器过滤除去粉末TiO2,将过滤后的溶液用正己烷萃取,弃去水相,所得有机相为目标产物。对环境友好,成本低;整个降解过程方法简便,耗时短,在30min内可满足有机氯农药降解的要求,可用于污水或其他方面的有机氯农药处理。

Description

有机氯农药在纳米二氧化钛上光催化降解方法
技术领域
本发明涉及一种有机氯农药,尤其是涉及一种可适用于污染物中有机氯农药的降解和转化的方法。
背景技术
在农药家族中,有机氯类农药占有相当的比例。有机氯农药急性毒性小,但由于其化学性质稳定,在环境中降解十分缓慢,容易残留并通过动植物体内的蓄积和食物链的作用进入人体,造成对人体健康的危害。特别是六六六和滴滴涕农药,这两种农药不象其他有机污染物那样易于分解和转化,而是长期残留在环境中,并可通过食物链进入人体,对人体健康造成极大的危害。我国已于1983年禁止此类农药的使用,但目前在蔬菜、茶叶栽培生产中仍然有使用含氯或产生含氯代谢产物农药的现象。除六六六和滴滴涕这两种常见的有机氯农药外,还有狄氏剂、艾氏剂、异狄氏剂和七氯等都是具有高毒性的物质。因此对有机氯农药的降解转化具有重要意义。
建立一种能快速转化有机氯农药的方法,不仅有利于保护环境,而且对我们生活水平的提高提供保障。目前常见的有机氯农药的降解方法为利用微生物对有机氯农药进行降解,王国惠等(王国惠,有机氯农药高效降解菌的筛选及其降解能力的研究,环境保护,2004,8:12-14;方玲,降解有机氯农药的微生物菌株分离筛选及应用效果,应用生态学报,2000,11(2):249-252)利用有机氯降解菌实现对有机氯除草剂2,4-D的降解,但该菌种只能对单一的有机氯农药降解,而且有机氯农药处于较高浓度时菌种的活性会受到抑制,同时菌种的培养非常麻烦,菌种在降解时对温度的要求比较严格,只有在其最佳的温度下才有较高的降解率。张绍园等(张绍园等,臭氧氧化在降解废水中有机污染物的应用,国外环境科学技术,1997,2:32-34)利用臭氧氧化降解废水中的污染物,利用臭氧氧化降解农药废水,虽然也可以对多种农药进行降解,但是降解时间比较长,要3~5h,而且臭氧的制造费用比较高。脱氯法也是消除有机氯农药,降低其毒性的一种方法。Annegret K.Hall等(Annegret K.Hall,et al,Mechanochemical reaction of DDT with calcium oxide,Environmentalscience & Technology,1996,30(12):3401-3407)利用机械球磨技术,将CaO和DDT(滴滴涕)混合在一起,在氩气氛围中,在钢瓶中球磨,经过12h后,DDT可基本脱氯,具有较高的脱氯率。但此方法耗时比较长,而且要处于氩气氛围中,费用比较昂贵。因此发展一种快速、简便、低成本的有机氯农药转化方法,使其降解为小分子或者低毒性的物质的研究受到人们的关注。
近些年来,国内外已有不少有关于使用氧化物来光催化降解有机氯物质的文献报道,有PtO2,SiO2,TiO2以及一些多种氧化物结合使用的催化剂,由于纳米TiO2具有无毒和催化效率高等优点,因此使用TiO2做光降解催化剂居多。E.Moctezuma等(E.Moctezuma,et al.Photocatalytic degradation of the herbicide“paraquat”,Chemoshere,1999,39(3):511-517)使用TiO2在UV下降解百草枯(二氯-1,1’-二甲基-4.4’-吡啶鎓),M.Hügül等(M.Hügül,et al.Photocatalytic decomposition of 4-chlorophenol over oxide catalysts,Journal of HazardousMaterial B,1999,64:313-322)使用PtO2/TiO2在UV下降解4-氯苯酚,而且催化时间比较短。Alessandra Bianco Prevot等(Alessandra Bianco Prevot,et al.Analytical monitoring ofphotocatalytic treatments.Degradationof 2,3,6-trichlorobenzoic acid in aqueous TiO2 dispersions,Talanta,1999,48:847-857)使用TiO2水相悬浮体系在可见光下催化降解2,3,6-三氯苯甲酸,转化为无机氯离子。
发明内容
本发明的目的在于针对现有的对有机氧农药进行降解的方法存在的不足,提供一种快速简便、低成本,在常温下就可以实现对有机氯农药的快速转化的方法。
本发明的步骤为:
1)取用丙酮配制的农药标准品,置于反应装置中,在N2气吹扫下将溶剂丙酮吹干;
2)在反应装置中加入纳米TiO2粉体和水,混合得TiO2和农药混合悬浮液,控制TiO2的浓度为0.25~1.0mg/mL,农药标准品的浓度为0.1~1.0μg/mL,将TiO2和农药混合悬浮液超声振荡,使TiO2颗粒分散均匀,所述的纳米TiO2粉体的直径为20~50nm,所述的纳米TiO2可选用锐钛矿;
3)将TiO2和农药混合悬浮液通入空气,用紫外杀菌灯直接照射在TiO2和农药混合悬浮液上,经光催化降解,空气的流速最好为80~150mL/min,光催化时间最好为15~90min;
4)将经光催化降解的TiO2和农药混合悬浮液,用过滤器过滤除去粉末TiO2,将过滤后的溶液用正己烷萃取,弃去水相,所得有机相为目标产物,所述的过滤器最好采用≤0.45μm的针头过滤器。
所得目标产物可经检测、分析、处理和计算,获得其降解率。
与现有的对有机氯农药进行降解的方法相比,本发明的突出优点是:(1)光催化降解有机氯农药对环境友好,成本低;(2)整个降解过程方法简便,耗时短,在30min之内基本可以满足有机氯农药降解的要求,有望应用于污水或者其他方面的有机氯农药处理;(3)本发明可以对多种有机氯农药进行降解转化。
附图说明
图1和2为有机氯农药降解率与光降解时间的关系。在图1和2中,横坐标表示光催化降解时间t/min,纵坐标表示各种农药的光降解率n/%。
图3为各种农药在光催化和光照条件下的降解率。在图3中,横坐标表示光催化降解时间t/min,纵坐标表示各种农药的光降解率n/%。
图4为TiO2浓度与有机氯农药降解率的关系。在图4中,横坐标表示TiO2浓度mg/mL,纵坐标表示各种有机氯农药的光降解率n/%。
具体实施方式
以下实施例将结合附图对本发明作进一步的说明。
实施例1
将有机氯农药注射到含有直径为35nm的粉末状纳米TiO2蒸馏水中,使溶液中有机氯农药的浓度为100ppb,纳米TiO2浓度为0.50mg/mL,通入流速为100mL/min的空气,将此溶液超声混匀之后,在磁力搅拌器上强烈搅拌,并用紫外灯照射光催化降解30min,紫外线源为30W的紫外杀菌灯,其辐射波长为254nm,紫外灯置于溶液上方9~10cm处。反应后的溶液过0.45μm的针头过滤器以除去粉末TiO2,将过滤后的溶液用正己烷萃取,弃去水相,所得有机相经GC-ECD检测分析降解后的产物,表面大部分的有机氯农药经反应后其降解产率可达90%以上,其他难降解的,如β-BHC(β-六六六),δ-BHC(δ-六六六),其降解率也达到40%以上。α-BHC、β-BHC、γ-BHC、δ-BHC、艾氏剂、狄氏剂和异狄氏剂的降解率参见图1。所采用的纳米TiO2为锐钛矿。
实施例2
将α-BHC、β-BHC、γ-BHC、δ-BHC、艾氏剂、狄氏剂、异狄氏剂、联苯菊酯、高效氟氯氰菊酯、氯氰菊酯、氰戊菊酯和七氯等12种有机氯农药以及含有氯元素的菊酯,其中高效氟氯氰菊酯浓度为400ppb,其他均为100ppb,TiO2用量为0.50mg/mL,直径为50nm,空气流量为90mL/min,选择光降解时间分别为15,30,60min,进行光催化降解。反应后的溶液过0.45μm的针头过滤器以除去粉末TiO2,将过滤后的溶液用正己烷萃取,弃去水相,所得的有机相经GC-ECD检测分析降解后的产物。以α-BHC(α-六六六)为例,经分析和计算,在15,30,60min的降解率分别为83.67%,90.17%,97.19%,对于狄氏剂降解率分别为41.87%,84.14%,86.47%;而对难降解的β-BHC,其降解率的增长更为明显,降解率分别为12.52%,37.67%,75.02%;对于菊酯、七氯、艾氏剂等极其容易降解的物质,其降解率在15min时就已经达到90%以上,并且随光照时间增加其降解率变化很小。农药降解率与光照时间的关系参见图1和2。
实施例3
将上述12种有机氯农药以及含有氯元素的菊酯,其中高效氟氯氰菊酯浓度为为160ppb,其他均为40ppb,空气流量为120mL/min,进行光照(没有纳米TiO2)和光催化降解(TiO2用量为0.25mg/mL)的比较,降解时间30min。直接光照后的溶液用正己烷萃取。光催化降解反应后的溶液过0.45μm的针头过滤器以除去粉末TiO2,将过滤后的溶液用正己烷萃取,弃去水相,所得的有机相经GC-ECD检测分析降解后的产物。以狄氏剂和异狄氏剂最为明显,它们在光照条件下的降解率分别为6.57%和2.90%,而在光催化降解中降解率分别可以达到94.08%和93.57%,因此说明有TiO2参与的光催化降解对农药降解非常有利,这主要是因为活泼羟基自由基和超氧离子自由基对农药的氧化作用引起的。同时由于这些农药本身在紫外区有很强的吸收光谱,而紫外杀菌灯的主要辐射波长又在254nm,正好落在这个吸收区域,因此即使没有催化剂时,菊酯以及艾氏剂等的降解也比较明显。各种农药在光催化和光照条件下的降解率见图3。
实施例4
将上述12种有机氯农药以及含有氯元素的菊酯,其中高效氟氯氰菊酯浓度为400ppb,其他均为100ppb,空气流量为100mL/min,光降解时间分别为30min,选择TiO2用量分别为为0.25mg/mL,0.50mg/mL,1.0mg/mL,进行光催化降解。反应后的溶液过0.45μm的针头过滤器以除去粉末TiO2,将过滤后的溶液用正己烷萃取,弃去水相,所得的有机相经GC-ECD检测分析降解后的产物。经计算,以α-BHC为例,在TiO2用量为0.25mg/mL,0.50mg/mL,1.0mg/mL时,其降解产率分别为85.40%,90.17%,93.83%;对于β-BHC,降解产率分别为22.93%,37.67%,47.86%;对异狄氏剂,降解产率分别为83.71%,84.21%,92.92%;对于七氯、艾氏剂和菊酯类,TiO2的浓度对其降解率影响不大,在所选择的几个浓度内,其降解率基本都达到90%以上,氰戊菊酯可以完全降解。各种农药在不同浓度的TiO2条件下的降解率见图4。
实施例5
与实施例1类似,其区别在于空气的流速为80mL/min,粉末状纳米TiO2的直径为40nm,紫外灯照射光催化降解80min。
实施例6
与实施例1类似,其区别在于空气的流速为150mL/min,粉末状纳米TiO2的直径为20nm,紫外灯照射光催化降解90min。
本发明所说的锐钛矿型的纳米TiO2可通过水解法自行合成。纳米TiO2合成过程是:以TiCl4作为前驱体,在冰水浴和搅拌下,将TiCl4逐滴缓慢滴入蒸馏水中,然后将溶有硫酸铵和浓盐酸的水溶液滴加到所得的TiCl4水溶液中,搅拌,混合过程中温度控制在0~15℃。将混合物升温至沸水浴并保温1~2h后,加入浓氨水调节pH值至8~9。陈化10~20h,过滤后用蒸馏水洗去会影响实验结果的氯离子(用0.1mol/L的AgNO3溶液检验)后,用无水乙醇洗涤一遍以上,过滤后室温条件下将沉淀真空干燥,最后将真空干燥后的粉体于700~900℃下煅烧,即得到所需要的纳米氧化钛粉体,实验控制TiCl4与蒸馏水以及浓盐的体积比为1∶8∶0.4~1∶12∶0.6,TiCl4和硫酸铵按照物质的量之比为1∶1.8~1∶2.0。

Claims (7)

1、有机氯农药在纳米二氧化钛上光催化降解方法,其特征在于其步骤为:
1)取用丙酮配制的农药标准品,置于反应装置中,在N2气吹扫下将溶剂丙酮吹干;
2)在反应装置中加入纳米TiO2粉体和水,得TiO2和农药混合悬浮液,控制TiO2的浓度为0.25~1.0mg/mL,农药标准品的浓度为0.1~1.0μg/mL;
3)将TiO2和农药混合悬浮液通入空气,用紫外杀菌灯直接照射在TiO2和农药混合悬浮液上,经光催化降解;
4)将经光催化降解的TiO2和农药混合悬浮液,用过滤器过滤除去粉末TiO2,将过滤后的溶液用正己烷萃取,弃去水相,所得有机相为目标产物。
2、如权利要求1所述的有机氯农药在纳米二氧化钛上光催化降解方法,其特征在于在步骤2)中,在反应装置中加入纳米TiO2粉体和水后,将TiO2和农药混合悬浮液超声振荡,使TiO2颗粒分散均匀。
3、如权利要求1所述的有机氯农药在纳米二氧化钛上光催化降解方法,其特征在于所述的纳米TiO2粉体的直径为20~50nm。
4、如权利要求1所述的有机氯农药在纳米二氧化钛上光催化降解方法,其特征在于所述的纳米TiO2为锐钛矿。
5、如权利要求1所述的有机氯农药在纳米二氧化钛上光催化降解方法,其特征在于通入空气的流速为80~150mL/min。
6、如权利要求1所述的有机氯农药在纳米二氧化钛上光催化降解方法,其特征在于光催化时间为15~90min。
7、如权利要求1所述的有机氯农药在纳米二氧化钛上光催化降解方法,其特征在于所述的过滤器采用≤0.45μm的针头过滤器。
CNB2006100708627A 2006-03-15 2006-03-15 有机氯农药在纳米二氧化钛上光催化降解方法 Expired - Fee Related CN100342784C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2006100708627A CN100342784C (zh) 2006-03-15 2006-03-15 有机氯农药在纳米二氧化钛上光催化降解方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2006100708627A CN100342784C (zh) 2006-03-15 2006-03-15 有机氯农药在纳米二氧化钛上光催化降解方法

Publications (2)

Publication Number Publication Date
CN1843113A true CN1843113A (zh) 2006-10-11
CN100342784C CN100342784C (zh) 2007-10-17

Family

ID=37062106

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2006100708627A Expired - Fee Related CN100342784C (zh) 2006-03-15 2006-03-15 有机氯农药在纳米二氧化钛上光催化降解方法

Country Status (1)

Country Link
CN (1) CN100342784C (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100591626C (zh) * 2008-09-08 2010-02-24 北京联合大学生物化学工程学院 光催化降解水中有机氯类农药的方法
CN102120631A (zh) * 2010-12-07 2011-07-13 北京联合大学生物化学工程学院 光催化降解水中拟除虫菊酯类农药的方法
CN102764758A (zh) * 2012-08-02 2012-11-07 大连民族学院 利用紫外线-紫花苜蓿-ddt 降解菌联合修复ddt 污染土壤的方法
CN104042626A (zh) * 2014-07-01 2014-09-17 李绍明 杀菌抑菌剂
CN104055198A (zh) * 2014-06-10 2014-09-24 湖南省农产品加工研究所 一种降解果蔬农药残留的方法
CN104287063A (zh) * 2014-09-17 2015-01-21 中国人民解放军总后勤部军需装备研究所 一种果蔬深度清洁处理设备
CN105815330A (zh) * 2016-04-27 2016-08-03 贺州学院 一种纳米二氧化钛复合氯氰菊酯农药及其制备方法
CN105851001A (zh) * 2016-04-27 2016-08-17 贺州学院 一种纳米二氧化钛复合毒死蜱农药及其制备方法
CN105851000A (zh) * 2016-04-27 2016-08-17 贺州学院 一种纳米二氧化钛复合阿维菌素农药及其制备方法
CN112400868A (zh) * 2020-12-01 2021-02-26 南京拓呗新材料科技有限公司 一种纳米农药及其制备方法
CN115067313A (zh) * 2022-06-29 2022-09-20 广西壮族自治区农业科学院 一种土栖白蚁烟雾熏杀的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1504555A (zh) * 2002-11-29 2004-06-16 深圳市永吉实业有限公司 改性光触媒纳米复合材料的用途
JP4568866B2 (ja) * 2004-02-05 2010-10-27 独立行政法人 日本原子力研究開発機構 可視光応答型二酸化チタン光触媒薄膜とその作製法
DE102004021425A1 (de) * 2004-04-30 2005-11-24 Institut für Neue Materialien Gemeinnützige GmbH Verwendung photokatalytischer TiO2-Schichten zur Funktionalisierung von Substraten

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100591626C (zh) * 2008-09-08 2010-02-24 北京联合大学生物化学工程学院 光催化降解水中有机氯类农药的方法
CN102120631A (zh) * 2010-12-07 2011-07-13 北京联合大学生物化学工程学院 光催化降解水中拟除虫菊酯类农药的方法
CN102120631B (zh) * 2010-12-07 2012-07-18 北京联合大学生物化学工程学院 光催化降解水中拟除虫菊酯类农药的方法
CN102764758A (zh) * 2012-08-02 2012-11-07 大连民族学院 利用紫外线-紫花苜蓿-ddt 降解菌联合修复ddt 污染土壤的方法
CN104055198A (zh) * 2014-06-10 2014-09-24 湖南省农产品加工研究所 一种降解果蔬农药残留的方法
CN104042626A (zh) * 2014-07-01 2014-09-17 李绍明 杀菌抑菌剂
CN104287063A (zh) * 2014-09-17 2015-01-21 中国人民解放军总后勤部军需装备研究所 一种果蔬深度清洁处理设备
CN105815330A (zh) * 2016-04-27 2016-08-03 贺州学院 一种纳米二氧化钛复合氯氰菊酯农药及其制备方法
CN105851001A (zh) * 2016-04-27 2016-08-17 贺州学院 一种纳米二氧化钛复合毒死蜱农药及其制备方法
CN105851000A (zh) * 2016-04-27 2016-08-17 贺州学院 一种纳米二氧化钛复合阿维菌素农药及其制备方法
CN112400868A (zh) * 2020-12-01 2021-02-26 南京拓呗新材料科技有限公司 一种纳米农药及其制备方法
CN115067313A (zh) * 2022-06-29 2022-09-20 广西壮族自治区农业科学院 一种土栖白蚁烟雾熏杀的方法

Also Published As

Publication number Publication date
CN100342784C (zh) 2007-10-17

Similar Documents

Publication Publication Date Title
CN1843113A (zh) 有机氯农药在纳米二氧化钛上光催化降解方法
Al-Nuaim et al. The photocatalytic process in the treatment of polluted water
Sayed et al. Narrowing the band gap of TiO2 by co-doping with Mn2+ and Co2+ for efficient photocatalytic degradation of enoxacin and its additional peroxidase like activity: a mechanistic approach
Mishra et al. A review of the photocatalysis process used for wastewater treatment
Chavoshan et al. Photocatalytic degradation of penicillin G from simulated wastewater using the UV/ZnO process: isotherm and kinetic study
Liu et al. Photocatalytic inactivation of Escherichia coli and Lactobacillus helveticus by ZnO and TiO2 activated with ultraviolet light
Mohammadi et al. Photo-catalytic degradation of 2, 4-DCP wastewater using MWCNT/TiO2 nano-composite activated by UV and solar light
Kargar et al. Synthesis of modified beta bismuth oxide by titanium oxide and highly efficient solar photocatalytic properties on hydroxychloroquine degradation and pathways
Kumar Smart and innovative nanotechnology applications for water purification
Golmohammadi et al. Photocatalytic degradation of ciprofloxacin antibiotic in water by biosynthesized silica supported silver nanoparticles
Han et al. Titanium dioxide-based antibacterial surfaces for water treatment
Erim et al. Green synthesis of TiO2/GO/chitosan by using leaf extract of Olea europaea as a highly efficient photocatalyst for the degradation of cefixime trihydrate under UV-A radiation exposure: an optimization study with D-optimal design
Younas et al. Visible light photocatalytic water disinfection and its kinetics using Ag-doped titania nanoparticles
Shang et al. Effective photocatalytic disinfection of E. coli and S. aureus using polythiophene/MnO2 nanocomposite photocatalyst under solar light irradiation
Sarkar et al. Nanoscale wide-band semiconductors for photocatalytic remediation of aquatic pollution
CN102210324B (zh) 一种复合纳米颗粒的选择性杀菌剂及其制备和应用
Padervand et al. A mechanistic study and in-vivo toxicity bioassay on acetamiprid photodegradation over the zeolite supported cerium-based photocatalyst
Soleimani et al. Photocatalytic degradation of organic pollutants, viral and bacterial pathogens using titania nanoparticles
Schutte-Smith et al. Using visible light to activate antiviral and antimicrobial properties of TiO2 nanoparticles in paints and coatings: Focus on new developments for frequent-touch surfaces in hospitals
Tong et al. Preparation of small-sized BiVO4 particles with improved photocatalytic performance and its photocatalytic degradation of doxycycline in water
Gopinath et al. A review on recent trends in nanomaterials and nanocomposites for environmental applications
CN101797396A (zh) 一种功能性活性碳吸味剂
Yang et al. Solar photocatalytic degradation of thidiazuron in Yangtze River water matrix by Ag/AgCl–AC at circumneutral condition
CN106390871A (zh) 共掺杂纳米二氧化钛溶胶及改性hepa滤网
Esfandian et al. Photocatalytic degradation of chlorpyrifos pesticide in aqueous solution using Cu-doped TiO2/GO photocatalysis vicinity of UV and visible light

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20071017

Termination date: 20100315