CN1793892A - 基于一维纳米材料的微气体传感器的制造方法 - Google Patents

基于一维纳米材料的微气体传感器的制造方法 Download PDF

Info

Publication number
CN1793892A
CN1793892A CN200510112214.9A CN200510112214A CN1793892A CN 1793892 A CN1793892 A CN 1793892A CN 200510112214 A CN200510112214 A CN 200510112214A CN 1793892 A CN1793892 A CN 1793892A
Authority
CN
China
Prior art keywords
layer
metal
monodimension nanometer
nanometer material
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200510112214.9A
Other languages
English (en)
Other versions
CN100443893C (zh
Inventor
侯中宇
张亚非
蔡炳初
徐东
魏星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CNB2005101122149A priority Critical patent/CN100443893C/zh
Publication of CN1793892A publication Critical patent/CN1793892A/zh
Application granted granted Critical
Publication of CN100443893C publication Critical patent/CN100443893C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

一种微细加工技术领域的基于一维纳米材料的微气体传感器的制造方法,包括如下步骤:(1)衬底的清洗,(2)底电极层的制备,(3)金属支柱层的制备,(4)金属顶电极层的制备,(5)去除微铸模。本发明提出使用标准微电子加工技术中图形转换技术和金属微电铸技术,作为实现基于一维纳米材料的微气体传感器的制造工艺,可以极大提高对该种传感器核心结构要素的控制精度和器件结构设计的灵活性。因此可以极大提高器件的性能,包括提高精度、敏感度、安全性、稳定性和降低能耗与成本。并可以方便地实现器件的阵列化设计,并方便实现微型智能传感器。

Description

基于一维纳米材料的微气体传感器的制造方法
技术领域
本发明涉及一种微细加工技术领域的方法,具体的说,是涉及一种基于一维纳米材料的微气体传感器的制造方法。
技术背景
基于气体分子在电场中的电离与由此而产生的带电粒子输运为机理的传感器,可以用于传感不同气体成分与含量信息,相对于其他类型的传感器,这种传感器的主要优点在于它有很高的选择性。
经对现有技术的文献检索发现,Zhang Yong等人在Sensors an Actuators A(传感器与执行器A)2005年第125卷,第15-24页上的文章“Study of improvingidentification accuracy of carbon nanotube film cathode gas sensor(关于提高碳纳米管薄膜阴极气体传感器识别精度的研究)”。文章使用碳纳米管薄膜作为阴极材料,降低了离化传感器的工作电压,但文章中所使用的传感器器件是用聚酯树脂(Polyset)的厚度来控制阴阳两极的高度,而该层聚酯树脂只能靠简单堆叠的方法构建器件结构,而很难实现高精度的批量加工,因此器件结构中的核心要素——电极形状与尺寸和电极间距都很难被高精度地控制。事实上,该文献反映了整个基于一维纳米材料,尤其是基于碳纳米管的离化气体传感器在器件结构与制造工艺上的研究现状,那就是既缺少适于使用先进加工技术的合适的器件结构以及设计策略,又缺少合适的高精度的器件加工方法。这种现状极大限制了此类器件的发展,而又由于此类器件在高精密度气体传感器领域有重要应用,因此也限制了这一领域的发展。
发明内容
本发明的目的在于克服现有技术中的不足,提出一种基于一维纳米材料的微气体传感器的制造方法,使其可以极大提高对该种传感器核心结构要素的控制精度,并适于加工实现阵列化设计和批量生产,因此可以提高此类传感器的检测精度、敏感度、安全性、稳定性和降低能耗与成本。
本发明是通过以下技术方案实现的,本发明包括如下步骤:(1)衬底的清洗,(2)底电极层的制备,(3)金属支柱层的制备,(4)金属顶电极层的制备,(5)去除微铸模,其中,
所述的(2)中,将底电极金属层图形化形成金属底电极和电铸种子层,金属底电极和电铸种子层相互隔离,一维纳米材料层处于每一个金属底电极表面,构成一个底电极单元,每个底电极单元可以构成独立单元,也可以多个底电极单元相互连通构成底电极阵列;
所述的(3)中,利用感光材料制造金属微铸模,并作为包含一维纳米材料空腔结构的牺牲层,利用感光材料层的厚度可以在几微米到几十微米的范围内控制一维纳米材料层与金属顶电极层的间距;
所述的(4)中,在顶电极金属种子层以及电铸金属层的图形上制造利于去除下层感光材料牺牲层的空洞结构。
所述的(5),微铸模的去除,是指:在溶解感光材料的化学溶液中浸泡去除感光材料;或者在去除感光材料以后,再用反应离子刻蚀处理。
所述的衬底,其表面具有高绝缘性能。
所述的底电极层,可以是单层或者多层薄膜,包括金属层以及其表面覆盖的一维纳米材料层。
所述的金属顶电极层,可以是单层或者多层薄膜。
本发明提出使用标准微电子加工技术中图形转换技术和金属微电铸技术,作为实现基于一维纳米材料的微气体传感器的制造方法。由于图形转换技术和金属微电铸技术均属于高精度、适于批量生产的加工手段,因此可以极大提高对该种传感器核心结构要素的控制精度和器件结构设计的灵活性。因此可以极大提高器件的性能,包括提高精度、敏感度、安全性、稳定性和降低能耗与成本。并可以方便地实现器件的阵列化设计,并方便实现微型智能传感器。
附图说明
图1是本发明衬底的清洗的示意图
图2是本发明底电极的制备的示意图
其中,图2.1是在衬底a上制备图形化的单层或者多层金属薄膜b;图2.2是将一维纳米材料薄膜c选择性地布置在金属薄膜b的表面。
图3是本发明金属支柱层的制备的示意图
其中,图3.1是感光材料d的图形化;图3.2是金属微电铸。
图4是本发明金属顶电极的制备的示意图
其中,图4.1是金属种子层的制备;图4.2是感光材料的图形化;图4.3是金属种子层的图形化;图4.4是金属微电铸。
图5是本发明去除微铸模的示意图
图6是本发明具体实施例加工的传感器在不同气体中的放电特征曲线。
具体实施方式
如图1-图5所示,本发明包括如下步骤:(1)衬底的清洗,(2)底电极层的制备,(3)金属支柱层的制备,(4)金属顶电极层的制备,(5)去除微铸模,其中,
所述的(2)中,将底电极金属层图形化形成金属底电极和电铸种子层,金属底电极和电铸种子层相互隔离,一维纳米材料层处于每一个金属底电极表面,构成一个底电极单元,每个底电极单元可以构成独立单元,也可以多个底电极单元相互连通构成底电极阵列;
所述的(3)中,利用感光材料制造金属微铸模,并作为包含一维纳米材料空腔结构的牺牲层,利用感光材料层的厚度在几微米到几十微米的范围内控制一维纳米材料层与金属顶电极层的间距;
所述的(4)中,在顶电极金属种子层以及电铸金属层的图形上制造利于去除下层感光材料牺牲层的空洞结构。
所述的(5),微铸模的去除,是指:在溶解感光材料的化学溶液中浸泡去除感光材料;或者在去除感光材料以后,再用反应离子刻蚀处理。
所述的(1)中,衬底a,其表面具有高绝缘性能,它可以是玻璃,也可以是上层带有绝缘层的硅片,绝缘层材料可以是二氧化硅、氮化硅,也可以是其它绝缘衬底。
所述的(2)中,底电极层是单层或者多层薄膜,包括金属层b以及其表面覆盖的一维纳米材料层c。所述的金属可以采用铬、铜、金、铂金、铝、镍、铁-镍、镍-铜。所述的一维纳米材料层c,其一维纳米材料可以是碳纳米管、纳米碳纤维、纳米碳化硅纤维、纳米氧化锌纤维。
所述的(3)中,金属支柱层可以是单层或者多层金属薄膜。其金属可以为铬、铜、金、铂金、铝、镍、铁-镍、镍-铜。
所述的(4)中,金属顶电极层可以是单层或者多层金属薄膜,包括金属种子层和电铸金属层。
所述的(5)中,微铸模是一种感光材料。
本发明使用标准微电子加工技术中图形转换技术和金属微电铸技术,作为实现基于一维纳米材料的微气体传感器的制造,而图形转换技术和金属微电铸技术均属于高精度、适于批量生产的加工手段。当代微电子加工技术是由膜技术尤其是多层膜技术和图形化技术为基础建立起来的,其加工精度可以达到纳米数量级。本发明充分利用了图形化技术形成高精度的电极图形,并形成高精度的感光材料微铸模图形,并以感光材料为牺牲层、利用金属微电铸技术构建含有立体空腔的多层结构。本发明的特征还在于,可以完全利用高选择性、低成本的湿法刻蚀工艺图形化各层薄膜,避免了干法刻蚀对结构和材料的破坏作用,并节约了时间、降低了成本。本发明建立立体空腔复杂结构的主要步骤只有五步,其每步组成均为标准微电子加工工艺,因此工艺简单易于量产。
实施例
(1)衬底的清洗。所使用的衬底a为玻璃,清洗过程在净化室中进行,包括依次用丙酮、酒精超声清洗3分钟,再用去离子水冲洗,并依次在60摄氏度和180摄氏度的烘箱中烘干并随炉冷却。
(2)底电极的制备。
(2.1)在衬底a上制备图形化的单层或者多层金属薄膜b:在衬底a上用磁控溅射方法依次沉积1微米的钛,作为金属层b,然后旋涂3微米正性光刻胶d,并依次在60摄氏度和90摄氏度烘箱中烘烤样品30分钟、90分钟以固化光刻胶d;然后用铬版作为掩模板,用汞灯紫外曝光机曝光30秒,在显影液中图形化光刻胶;然后用50%氢氟酸浸泡样品,图形化钛金属层,使之形成隔离的部分合连通的部分;用丙酮超声样品3分钟去除光刻胶,用去离子水冲洗并在90摄氏度烘箱中烘干,然后随炉冷却。
(2.2)将一维纳米材料薄膜c选择性地布置在金属薄膜b的隔离部分表面:将碳纳米管浆料用350目丝网印刷方法选择性地在金属薄膜b表面成膜,然后在300摄氏度热处理炉中烘烤20分钟并随炉冷却,得到2微米平均厚度的一维纳米材料薄膜c,碳纳米管浆料为多壁碳纳米管和质量比为1∶100的乙基纤维素和松油醇组成的有机溶液混合而成。
(3)金属支柱层的制备
(3.1)感光材料d的图形化:在样片表面旋涂5微米正性光刻胶,并依次在60摄氏度和90摄氏度烘箱中烘烤样品30分钟、90分钟以固化光刻胶d;然后用铬版作为掩模板,用汞灯紫外曝光机曝光45秒,在显影液中图形化光刻胶。
(3.2)金属微电铸:用金属电镀的方法,利用图形化的光刻胶作为微铸模,选择性地在金属薄膜b的连通部分电铸5微米厚度的镍。
(4)顶电极的制备
(4.1)金属种子层的制备:用磁控溅射方法依次溅射30纳米的铬和50纳米的铜作为金属种子层。
(4.2)感光材料d的图形化:在金属种子层d表面旋涂3微米正性光刻胶d,并在80摄氏度烘箱中烘烤样品40分钟以固化光刻胶d;然后用铬版作为掩模板,用汞灯紫外曝光机曝光30秒,在显影液中图形化光刻胶。
(4.3)金属种子层的图形化:在图形化的光刻胶的保护下,依次在氯化铁水溶液和质量比1∶5高氯酸与硝酸氨的水溶液中浸泡样品,湿法刻蚀金属层,使之图形化,然后将光刻胶去除。
(4.4)金属微电铸:在已经图形化形成空洞结构的铬-铜金属薄膜层的表面选择性地电铸金属镍10微米。
(5)微铸模的去除:将样品浸泡于丙酮溶液中3分钟,在50摄氏度烘箱中烘干。
最终得到的单一器件电极部分尺寸为1×1毫米,碳纳米管电极与金属顶电极的平均间距约为3微米。图6是该器件在不同气体中的放电特征曲线。由图可见,该工艺制造的器件可以高精度地控制电极间距,进而大幅度降低器件的工作电压至1伏特左右的水平。

Claims (7)

1、一种基于一维纳米材料的微气体传感器的制造方法,其特征在于,包括如下步骤:
(1)衬底的清洗;
(2)底电极层的制备,将底电极金属层图形化形成金属底电极和电铸种子层,金属底电极和电铸种子层相互隔离,一维纳米材料层处于每一个金属底电极表面,构成一个底电极单元;
(3)金属支柱层的制备,利用感光材料制造金属微铸模,并作为包含一维纳米材料空腔结构的牺牲层,利用感光材料层的厚度在几微米到几十微米的范围内控制一维纳米材料层与金属顶电极层的间距;
(4)金属顶电极层的制备,在顶电极金属种子层以及电铸金属层的图形上制造利于去除下层感光材料牺牲层的空洞结构;
(5)去除微铸模。
2、如权利要求1所述的基于一维纳米材料的微气体传感器的制造方法,其特征是,所述的步骤(1)中,衬底表面具有高绝缘性能。
3、如权利要求1所述的基于一维纳米材料的微气体传感器的制造方法,其特征是,所述的步骤(2)中,底电极层是单层或者多层薄膜,包括金属层以及其表面覆盖的一维纳米材料层。
4、如权利要求1或者3所述的基于一维纳米材料的微气体传感器的制造方法,其特征是,所述的步骤(2)中,每个底电极单元构成独立单元,或多个底电极单元相互连通构成底电极阵列。
5、如权利要求1所述的基于一维纳米材料的微气体传感器的制造方法,其特征是,所述的步骤(4)中,金属顶电极层是单层或者多层金属薄膜。
6、如权利要求1所述的基于一维纳米材料的微气体传感器的制造方法,其特征是,所述的步骤(5),微铸模的去除,是指:在溶解感光材料的化学溶液中浸泡去除感光材料;或者在去除感光材料以后,再用反应离子刻蚀处理。
7、如权利要求1或者6所述的基于一维纳米材料的微气体传感器的制造方法,其特征是,所述的步骤(5)中,微铸模是一种感光材料。
CNB2005101122149A 2005-12-29 2005-12-29 基于一维纳米材料的微气体传感器的制造方法 Expired - Fee Related CN100443893C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2005101122149A CN100443893C (zh) 2005-12-29 2005-12-29 基于一维纳米材料的微气体传感器的制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2005101122149A CN100443893C (zh) 2005-12-29 2005-12-29 基于一维纳米材料的微气体传感器的制造方法

Publications (2)

Publication Number Publication Date
CN1793892A true CN1793892A (zh) 2006-06-28
CN100443893C CN100443893C (zh) 2008-12-17

Family

ID=36805459

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2005101122149A Expired - Fee Related CN100443893C (zh) 2005-12-29 2005-12-29 基于一维纳米材料的微气体传感器的制造方法

Country Status (1)

Country Link
CN (1) CN100443893C (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101408514B (zh) * 2008-09-04 2010-08-18 上海交通大学 基于气体放电光谱分析的气体传感器及其检测气体的方法
CN101251946B (zh) * 2008-04-16 2011-04-13 江苏百华电子有限公司 人居环境有害气体自动监控仪
CN101308108B (zh) * 2007-05-15 2011-06-29 清华大学 一种包含一维纳米材料敏感元件的传感器的制备方法
CN102279210A (zh) * 2011-07-29 2011-12-14 吉林大学 纳米纤维和粒子粘附层的双敏感层气体传感器及制备方法
CN108128750A (zh) * 2017-12-14 2018-06-08 上海交通大学 一种电离式传感器的制造方法
CN109234807A (zh) * 2017-06-15 2019-01-18 南京大学 一种可拉伸晶体半导体纳米线及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3902883B2 (ja) * 1998-03-27 2007-04-11 キヤノン株式会社 ナノ構造体及びその製造方法
CN1114718C (zh) * 1999-07-16 2003-07-16 清华大学 在硅衬底上直接电铸三维金属结构的方法及其专用夹具
AU2003302257A1 (en) * 2002-12-20 2004-07-22 Rensselaer Polytechnic Institute Miniaturized gas sensors featuring electrical breakdown in the vicinity of carbon nanotube tips
CN100350238C (zh) * 2004-12-22 2007-11-21 浙江大学 多壁碳纳米管薄膜气敏传感器

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101308108B (zh) * 2007-05-15 2011-06-29 清华大学 一种包含一维纳米材料敏感元件的传感器的制备方法
CN101251946B (zh) * 2008-04-16 2011-04-13 江苏百华电子有限公司 人居环境有害气体自动监控仪
CN101408514B (zh) * 2008-09-04 2010-08-18 上海交通大学 基于气体放电光谱分析的气体传感器及其检测气体的方法
CN102279210A (zh) * 2011-07-29 2011-12-14 吉林大学 纳米纤维和粒子粘附层的双敏感层气体传感器及制备方法
CN102279210B (zh) * 2011-07-29 2013-02-20 吉林大学 纳米纤维和粒子粘附层的双敏感层气体传感器及制备方法
CN109234807A (zh) * 2017-06-15 2019-01-18 南京大学 一种可拉伸晶体半导体纳米线及其制备方法
CN108128750A (zh) * 2017-12-14 2018-06-08 上海交通大学 一种电离式传感器的制造方法

Also Published As

Publication number Publication date
CN100443893C (zh) 2008-12-17

Similar Documents

Publication Publication Date Title
CN1966393A (zh) 具有纳米尺寸孔的多比例悬臂结构及其制备方法
CN1793892A (zh) 基于一维纳米材料的微气体传感器的制造方法
CN101540348B (zh) 一种多用途硅微纳米结构制备技术
EP3872486A1 (en) General-purpose nanochip for mass spectrum analysis, preparation method therefor, and application thereof
Wang et al. Space-confined fabrication of silver nanodendrites and their enhanced SERS activity
CN101508419B (zh) 一种纳米柱森林的加工方法
CN1601383A (zh) 利用超分子的自组装和金属化合物着色制备碳纳米管芯片和生物芯片的方法
Tan et al. Free-standing porous anodic alumina templates for atomic layer deposition of highly ordered TiO2 nanotube arrays on various substrates
CN1828849A (zh) 形成纳米间隙的方法、用于分子器件和生物传感器的纳米场效应晶体管的制造方法以及由该方法制得的分子器件和生物传感器
CN1841587A (zh) 电极结构及其制备方法
CN103991837A (zh) 一种基于压电基底薄片的微纳米有序通孔阵列金属薄膜传感器及其制造方法
CN1778664A (zh) 碳纳米管微图形化方法
CN104458835A (zh) 一种湿度传感器及其制备方法
CN105741980A (zh) 一种表面具有微结构图案的柔性自支撑石墨烯导电薄膜及其制备方法
KR20140122657A (ko) 공중부유형 단일 탄소나노와이어 및 중첩형 나노 전극쌍의 제조방법
CN1599939A (zh) 微观结构
CN1731279A (zh) 一维纳米材料的三维微构型制备方法
WO2019042484A1 (en) PROCESS FOR PRODUCING A POROUS DIAMOND LAYER AND A THICK POROUS DIAMOND LAYER SUPPORTED BY NANOFIBERS
JP2008041648A5 (zh)
KR101195163B1 (ko) 탄소필라 전극의 제조방법 및 이에 따라 제조되는 탄소필라 전극
CN1794086A (zh) 在感光材料表面覆盖并图形化碳基纳米结构的方法
CN101817499B (zh) 一种纳米尺度间隙电极对阵列及其制备方法
CN101804960B (zh) 一种超微锥电极阵列及其制备方法
CN110902646A (zh) 一种阵列结构硅基靶板及其应用
CN109108286A (zh) 一种3d打印微结构的无损脱离方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20081217

Termination date: 20111229