CN1784538A - 涡轮喷嘴翼型 - Google Patents

涡轮喷嘴翼型 Download PDF

Info

Publication number
CN1784538A
CN1784538A CNA2004800123129A CN200480012312A CN1784538A CN 1784538 A CN1784538 A CN 1784538A CN A2004800123129 A CNA2004800123129 A CN A2004800123129A CN 200480012312 A CN200480012312 A CN 200480012312A CN 1784538 A CN1784538 A CN 1784538A
Authority
CN
China
Prior art keywords
aerofoil profile
turbine nozzle
turbine
engine
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2004800123129A
Other languages
English (en)
Other versions
CN100340741C (zh
Inventor
都留敦
西村圭司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Publication of CN1784538A publication Critical patent/CN1784538A/zh
Application granted granted Critical
Publication of CN100340741C publication Critical patent/CN100340741C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/16Form or construction for counteracting blade vibration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/141Shape, i.e. outer, aerodynamic form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/10Two-dimensional
    • F05D2250/16Two-dimensional parabolic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S416/00Fluid reaction surfaces, i.e. impellers
    • Y10S416/02Formulas of curves

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

本文提出了一种易于制造的燃气涡轮引擎的涡轮喷嘴,该涡轮喷嘴可防止燃气涡轮引擎工作时涡轮喷嘴的振动。该涡轮喷嘴包括沿着堆叠轴堆叠的翼型。翼型部件中吸力面上的高曲率部分沿着翼型的堆叠轴连续形成,该翼型可用一条从涡轮喷嘴的前面或后面看时朝向压力侧弯曲的抛物线描述。翼型部件中吸力面上的高曲率部分从一条直线开始在翼型堆叠轴的中心处弯曲程度最大,该直线与抛物线和涡轮喷嘴的内箍间的第一交点以及抛物线和涡轮喷嘴的外箍间的第二交点相连。最大曲率落在翼型堆叠轴的0.02-0.03倍的范围内。

Description

涡轮喷嘴翼型
本公开涉及了2003年3月12日申请的日本专利申请号No.2003-065994中包含的主题,该公开内容在这里作为参考整体编入。
技术领域
本发明涉及一种燃气轮机引擎的涡轮喷嘴,特别涉及一种带有弧形翼型的涡轮喷嘴,该弧形喷嘴沿着翼型堆叠轴朝着压力侧呈一个抛物线的形状。
背景技术
一种传统的或发明的涡轮喷嘴被应用在一种燃气轮机引擎中,先依照该引擎的简略构造对其作出说明。
图1是燃气轮机引擎1简略构造的剖面图。
该燃气轮机引擎1被用作例如飞机中的喷气发动机。它是一种喷射高温高压的燃烧气体来产生推进力或旋转力的引擎。
该燃气轮机引擎1包括一个引擎外部圆筒3,和位于引擎外部圆筒3内部的一个与引擎外部圆筒3整体共轴排列并用作基底的中空引擎外壳。引擎外壳5中形成了一个环形引擎流动通道7。引擎外部圆筒3和引擎外壳5间形成了一个环形旁路流动通道9。
引擎外壳5中的一个内部前端部分处(从气流方向看的一个逆流部分)设置了一个前端支撑框架11A,该框架与引擎外壳5加工成一个整体,并且插入引擎流动通道7中。引擎外壳5中的一个内部后端部分处设置了一个后端支撑框架11b,该框架与引擎外壳5加工成一个整体,并且插入引擎流动通道7中。该前端支撑框架11A和后端支撑框架11B通过轴承转动地支撑一个低压涡轮轴13。此外,该前端支撑框架11A和后端支撑框架11B通过轴承转动地支撑一个中空高压涡轮轴15,且该高压涡轮轴与低压涡轮轴13共轴。
低压涡轮轴13的前端上设置了一个风扇17,该风扇将空气送入引擎流动通道7和旁路流动通道9中。
引擎流动通道7上游的一个位置上设置了一个低压压缩机19。该低压压缩机用于将空气低压压缩并送往下游(从气流方向上看;图1的右侧)。
该低压压缩机19包括一个位于风扇17的下游并与低压涡轮轴13整体排列的环形翼型支撑构件21。此外,在翼型支撑构件21的周围,沿着引擎流动通道7设置了一排低压压缩23的多级移动翼型。最后,引擎外壳5内沿着引擎流动通道7设置了一排低压压缩25的多级固定翼型,并且与低压压缩23的多级移动翼型交错穿插。
引擎流动通道7中的低压压缩机19下游的一个位置上设置了一个高压压缩机27。该高压压缩机27用于将由低压压缩机19低压压缩的空气高压压缩,并送往下游。
该高压压缩机27包括一排高压压缩29的多级移动翼型,该高压压缩沿着引擎流动通道7设置在高压涡轮轴15上。此外,引擎外壳5内沿着引擎流动通道7设置了一排高压压缩31的多级固定翼型,并且与低压压缩29的多级移动翼型交错穿插。
引擎流动通道7中高压压缩机27下游的一个位置上设置了一个环形燃烧室33。该燃烧室33用于燃烧压缩空气内的燃料以产生高温高压燃气。
引擎流动通道7中的燃烧室33下游的一个位置上设置了一个高压涡轮35。该高压涡轮35可以在来自燃烧室33中的高温高压燃气膨胀产生的力的作用下转动地驱动高压涡轮轴15。
该高压涡轮35包括高压涡轮37的一排多级移动翼型,它们沿着引擎流动通道7排列在高压涡轮轴15上,并且可在高温高压燃气的驱动下转动。此外,高压涡轮39的一排多级固定翼型沿着引擎流动通道7设置在引擎外壳5内,并与高压涡轮37的多级移动翼型交错穿插。
引擎流动通道7中的高压涡轮35的一个下游位置上设置了一个低压涡轮41。该低压涡轮41可在来自燃烧室33的高温高压燃气的膨胀产生的作用力的驱动下转动地驱动低压涡轮轴13。
该低压涡轮41包括低压涡轮43的一排多级移动翼型,它们沿着引擎流动通道7排列在低压涡轮轴13上,并且可在高温高压燃气的驱动下转动。此外,低压涡轮35的一排多级固定翼型沿着引擎流动通道7设置在引擎外壳5内,并与低压涡轮43的多级移动翼型交错穿插。本技术领域的涡轮喷嘴或依照本发明的涡轮喷嘴包括低压涡轮45的固定翼型。
涡轮喷嘴由环形排列的喷嘴翼型(定子叶片;此后也简称为“叶片”)构成。更详细地说,涡轮喷嘴由多个定子叶片、一个环形内箍和外箍构成。为了安装和维护时拆卸方便,
涡轮喷嘴通常是多个喷嘴子片,在本申请的说明中也称作涡轮喷嘴。
提高叶片的振动稳定性的方法有两种。
一种是提高翼型下部次序模式下的固有频率。另一种是将翼型的下部次序模式的扭转中心放置到一个稳定的位置上。
通常,为了实现上述方法,需要改变翼型的形状,例如厚度、弦长等。
改变翼型的断面形状可能对其空气动力学性能产生很大影响。在一种高效率涡轮机的近期设计方案中保留了一个小的边缘(设计边缘),以改变翼型的断面形状。因此,为了改变翼型的形状,可能需要重新设计空气动力学设计图,同时也需要满足机械要求(例如机械长度)。因而,一些情况下改变翼型的断面形状较为困难。
如专利文献1(日本公开专利申请No.H10-196303)中公开的那样,目前已知一种将翼型堆叠起来而不是改变翼型断面形状的构造。在这种情况下,翼型堆叠轴的中间部分向着翼型的压力侧突出,使得翼型弯曲。此处的堆叠定义为将断面形状沿着堆叠轴堆叠起来,以构建翼型的形状。
专利文献1中公开的翼型没有给出曲线的详细特征(例如,弧线的形状和弯曲的程度)。因此,曲线的一些特性无法提高燃气涡轮引擎1工作时叶片的振动稳定性,并且可能使得制造涡轮喷嘴变得困难。
发明内容
本发明的目的是解决上述问题。本发明的目的是提供一种简单的叶片再设计方法,以防止燃气涡轮引擎工作时的振动。
为达到该目的,依照本发明的一个方面,提供了一种包括了沿着堆叠轴堆叠的翼型的涡轮喷嘴。翼型部分中的吸力面上沿着翼型的堆叠轴连续形成的高曲率部分(以下称为“高-C”)可由一条抛物线描述,沿着涡轮喷嘴的前方或后方看,该抛物线向着翼型的压力侧弯曲。该高-C从一条直线开始在翼型堆叠轴的中心处弯曲程度最大,该直线与抛物线和涡轮喷嘴的内箍间的第一交点以及抛物线和涡轮喷嘴的外箍间的第二交点相连。最大曲率落在翼型堆叠轴的0.02-0.03倍的范围内。
依照本发明,可提供一种简单的叶片再设计方法,以防止燃气涡轮引擎工作时的振动。
附图说明
图1是一种燃气涡轮引擎简要构造的截面图。
图2是一种依照本发明的一种实施例的涡轮喷嘴的简要构造的透视图。
图3显示了涡轮喷嘴中的一个翼型的特征。
图4显示了涡轮喷嘴中的翼型的另一种特征。
图5显示了涡轮喷嘴中的翼型的振动分析结果。
图6显示了涡轮喷嘴中的翼型的振动分析结果。
具体实施方式
上述目标和进一步目标以及本发明的新特性将在接下来的详细说明中配合附图予以说明,其中:
图2是一种依照本发明实施例的涡轮喷嘴45A的简要构造的透视图。
构成了图1中燃气涡轮引擎1中的低压涡轮45的定子叶片的涡轮喷嘴中,涡轮喷嘴45A安置在最前端的位置上(靠近高压涡轮35)。图2的前侧近似对应于燃气涡轮引擎1的前端,而图2的后侧近似对应于燃气涡轮引擎1的后端。
燃气涡轮喷嘴45A包括多个翼型47。每个翼型47带有环形的内箍49和外箍51。
燃气涡轮喷嘴45A呈近似扇形,如前述。多个这样的涡轮喷嘴45A联合在一起构成一个环形的燃气涡轮喷嘴。
在环形燃气涡轮喷嘴中,一个环形内箍(多个内箍49的联合)位于内部,一个环形外箍(多个外箍51的联合)位于外部,外箍与内箍隔离,并与大致在相同平面内的外箍共轴。环形内箍和环形外箍间设置了多个翼型47,它们与环形内箍和环形外箍形成一个整体。
翼型47的特性将在接下来的内容中详细描述。
图3和图4显示了翼型47的特性。
图3显示了图2中显示的一个翼型47从燃气涡轮引擎1的前面看过去的形状(平行于低压涡轮轴13的旋转轴从燃气涡轮引擎1的前面看过去)。图4显示了沿着图3中的IVA-IVB、IVC-IVD和IVE-IVF线作剖面而保持它们之间的相对位置关系而得到的剖面的形状。
图3中,翼型47的高-C和外箍51间的交点P2通过一条直线与翼型47的高-C和内箍49间的交点P4相连接。该直线定为x轴。穿过一个连接了交点P2和交点P4的弧形的中心点P0并与x轴交成直角的直线定为y轴。
x轴定义为沿着翼型47的长度方向;y轴定义为翼型47的吸力侧-压力侧方向;垂直于图3页面的方向定义为沿着翼型47的宽度方向。翼型47上一个突出部分一侧(见图4),即图3中的右侧,称为翼型47的吸力侧。翼型47中一个凹入部分一侧(见图4),即图3中的左侧,称为翼型的压力侧。
当从涡轮喷嘴的前面或后面看过去时(平行于低压涡轮轴13的旋转轴的燃气涡轮引擎1的前面或后面),图3中翼型47的高-C对应于下面说明的翼型47的高-C(一组随着沿着翼型47堆叠轴上的位置变化的高-C),这些高-C沿着翼型47的堆叠轴逐渐形成。因为翼型47沿着堆叠轴堆叠起来,高-C为一条抛物线,即向着翼型47的压力侧弯曲的弧线53(二次函数曲线;抛物线),如图3所示。图4中的高-C P6、P8、P10分别对应于图3中的高-C P6、P8、P10
弧线53上的高-C中,高-C P6的位置最靠近y轴上的压力侧(翼型47的压力侧)。因为y轴穿过翼型47的堆叠轴的中心,弧线53在翼型47的堆叠轴中心处朝向翼型47的压力侧弯曲程度最大。换句话说,翼型47的高-C在翼型47堆叠轴的中心处朝向压力侧弯曲最大。
翼型47的高-C的最大曲率(高-C P6和图3中的中心点P0间的距离)的值等于翼型47的堆叠轴的0.025倍(将交点P2与交点P4连接起来的扇形的长度)。
假定“h”表示连接交点P2和交点P4的扇形的长度。此外,图3中的右侧(吸力侧)对应于y轴的正向,而图3中的下侧(内箍49一侧)对应于x轴的正向。这里,交点P2的坐标为(h/2,0),交点P4的坐标为(h/2,0),而高-CP6的坐标为(0,-0.025h)。穿过这三个点的弧线53可由以下公式表示:
               y=(0.1/h)x2-0.025h
数值“0.025”可以在0.02-0.03的范围内变化。
涡轮喷嘴的翼型47,包括涡轮喷嘴45A的振动分析结果将在下面的内容中说明。
翼型47的振动主要由下部次序振动模式引起。下部次序振动模式包括翼型47沿着吸力侧-压力侧连接的方向振动的振动模式1,以及翼型47围绕沿着翼型47的堆叠轴扩展的轴扭转振动的振动模式2。
对于振动的分析,必须得到振动模式1和2中的扭转中心的位置,并评估翼型47相对于得到的扭转中心的位置的稳定性。特别地,从翼型47的固有频率、带有涡轮喷嘴45A的燃气涡轮引擎工作时的燃气的流通速率以及翼型47的代表长度(弦长),可以得到一个无量纲量(换算速度)RV1。此RV1量与从扭转中心的位置得到的容许换算速度RV2相比较。如果RV1值小于RV2值,翼型47对于振动稳定。
无量纲量RV1可表示为:
               RV1=v/(f-d)
其中“v”表示穿过翼型47的流体的流动速率;“f”表示翼型47在振动模式1和振动模式2下的固有频率;而“d”等于翼型47弦长的1/2。该弦长对应于沿着图4中显示的翼型47的厚度的中心线CL1的长度。
无量纲量RV2可以依照以下文献2从振动模式中的扭转中心推导。(J.Panovsky,R.E.Keilb,“A Design Method to Prevent Low Pressure Turbine BladeFlutter”,Vol.122 January 2000,Journal of Engineering for Gas Turbine and Power,Transaction of ASME)。
图5和图6给出了涡轮喷嘴中翼型47的振动分析结果。
图5示出了翼型47的突出量与振动模式1和2中的换算速率的关系。图5中,翼型47堆叠轴中心部分的曲率(图3中高-CP6和中心点P0间的距离)被除以翼型47的堆叠轴(图3中交点P2和交点P4间的距离),以显示沿着水平轴的“突出量/跨距”的比率。此外,无量纲量RV1被除以无量纲量RV2,以显示沿着垂直轴的“换算速度比率”。
如果图5中沿着水平轴的某值等于“0.00”,则翼型47不会弯曲。如果水平轴上的某值为正,则翼型47不会向着压力侧弯曲。如果水平轴上的某值为负,则翼型47向着吸力侧弯曲。如果垂直轴上的某值小于“1”,则翼型47对于振动是稳定的。如果图5中垂直轴上的某值大于“1”,则翼型47对于振动不稳定。
图5中,点画线表示振动模式1(一种与翼型47沿着吸力侧-压力侧方向的弯曲相关的低级振动)中的分析结果。此外,实线表示振动模式2(一种与翼型47的扭转相关的低级振动)中的分析结果。
由图5可见,翼型47的突出量越大,振动模式1和2下翼型47的稳定性提升越大。如果“突出量/跨距”等于或大于“0.02”,振动模式2下的“换算速率比率”则变成约“0.7”或更小。这对于在振动模式2下可靠地稳定翼型47是十分有效的。
图6显示了突出量与振动模式1和2下翼型47的频率比的关系。图6中,“突出量/跨距”用水平轴表示,如图5中类似。此外,振动模式1和2下翼型47的固有频率被除以翼型47没有弯曲时的固有频率(突出量/跨度=0)。得到的商在垂直轴上表示为“固有频率比率”。
翼型47的固有频率越大且固有频率比率越高,翼型47振动稳定性就越高。因此,固有频率比率高出“1”越多,翼型47的振动稳定性越高。图6中,虚线表示振动模式1下的分析结果,而实线表示振动模式2下的分析结果。
由图6可见,翼型47的突出量越大,翼型47对于振动模式1和2的稳定性提升越大。然而,如果“突出量/跨距”超过“0.03”,振动模式2下固有频率的提升速率减慢。
依照涡轮喷嘴的实施例,翼型47的高-C为一条朝向翼型47压力侧弯曲的抛物线。该高-C从一条直线开始在翼型堆叠轴的中心处弯曲程度最大,该直线与抛物线和涡轮喷嘴的内箍间的第一交点以及抛物线和涡轮喷嘴的外箍间的第二交点相连。最大曲率落在翼型堆叠轴曲率0.02-0.03倍的范围内。因此,由图5和图6可见,燃气涡轮引擎1工作时,涡轮喷嘴的振动可以得到抑制。
依照涡轮喷嘴的实施例,最大曲率设计为等于或小于0.03。因此,固有频率比率的升高可以控制较缓慢,如图6所示。此外,可以防止最大曲率毫无用处地升高。因此,避免因翼型47的高曲率带来的制造困难是可能的。换句话说,带有翼型47的涡轮喷嘴很容易制造。
如果突出量/跨度的值设计为等于或接近“0.025”,抑制翼型47的振动并保持与带有翼型47的涡轮喷嘴的制造的容易程度的最佳平衡是可能的。
在上述实施例中,构成了燃气涡轮引擎1中的低压涡轮45的固定翼型的涡轮喷嘴中,举例说明了排列在最前端位置上(靠近高压涡轮35)的涡轮喷嘴。或者,上述实施例可应用于其他涡轮喷嘴(包括高压涡轮喷嘴),例如那些构成了低压涡轮45的固定翼型中的中间级的涡轮喷嘴。此外,上述实施例也可应用于装有一个或多个涡轮轴,如三个或多个轴的燃气涡轮引擎中。
依照本发明,可提供一种叶片的再设计方法,以抑制燃气涡轮引擎工作时的振动。
虽然本发明参照了依照本发明的一些实施例作了说明,本发明并不局限于上述实施例。依照上述说明,相关领域的技术人员很容易得出上述实施例的改进和变体。以下声明限定了本发明的范围。

Claims (1)

1.一种涡轮喷嘴,包括:
沿着堆叠轴堆叠的翼型,
其中,翼型部分中吸力面上的沿着翼型的堆叠轴连续形成的多个高曲率部分是一条从涡轮喷嘴的前面或后面看时朝向压力侧弯曲的抛物线,
其中,翼型部件中吸力面上的多个高曲率部分从一条直线开始在沿着翼型堆叠轴的中心处弯曲程度最大,该直线与抛物线和涡轮喷嘴的一个内箍间的一个第一交点以及抛物线和涡轮喷嘴的一个外箍间的一个第二交点相连,以及
其中,最大曲率落在翼型堆叠轴的0.02-0.03倍的范围内。
CNB2004800123129A 2003-03-12 2004-03-10 涡轮喷嘴翼型 Expired - Lifetime CN100340741C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP065994/2003 2003-03-12
JP2003065994A JP4269723B2 (ja) 2003-03-12 2003-03-12 タービンノズル

Publications (2)

Publication Number Publication Date
CN1784538A true CN1784538A (zh) 2006-06-07
CN100340741C CN100340741C (zh) 2007-10-03

Family

ID=32984522

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004800123129A Expired - Lifetime CN100340741C (zh) 2003-03-12 2004-03-10 涡轮喷嘴翼型

Country Status (5)

Country Link
US (1) US7118330B2 (zh)
EP (1) EP1601860B1 (zh)
JP (1) JP4269723B2 (zh)
CN (1) CN100340741C (zh)
WO (1) WO2004081348A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006207554A (ja) * 2005-01-31 2006-08-10 Toshiba Corp タービンノズルおよびそれを用いた軸流タービン
WO2008035135A2 (en) * 2005-12-29 2008-03-27 Rolls-Royce Power Engineering Plc First stage turbine airfoil
CA2633334C (en) * 2005-12-29 2014-11-25 Rolls-Royce Power Engineering Plc Airfoil for a first stage nozzle guide vane
US7722329B2 (en) * 2005-12-29 2010-05-25 Rolls-Royce Power Engineering Plc Airfoil for a third stage nozzle guide vane
CA2634738C (en) * 2005-12-29 2013-03-26 Rolls-Royce Power Engineering Plc Second stage turbine airfoil
US7648334B2 (en) * 2005-12-29 2010-01-19 Rolls-Royce Power Engineering Plc Airfoil for a second stage nozzle guide vane
US7632072B2 (en) * 2005-12-29 2009-12-15 Rolls-Royce Power Engineering Plc Third stage turbine airfoil
US20080273961A1 (en) * 2007-03-05 2008-11-06 Rosenkrans William E Flutter sensing and control system for a gas turbine engine
US20110120079A1 (en) * 2009-11-24 2011-05-26 Schwark Jr Fred W Variable area fan nozzle stiffeners and placement
US8684684B2 (en) * 2010-08-31 2014-04-01 General Electric Company Turbine assembly with end-wall-contoured airfoils and preferenttial clocking
ITTO20120517A1 (it) * 2012-06-14 2013-12-15 Avio Spa Schiera di profili aerodinamici per un impianto di turbina a gas
CN103939150B (zh) * 2014-04-25 2015-07-01 西安交通大学 一种降低透平级气流激振力的静叶结构
US9938854B2 (en) 2014-05-22 2018-04-10 United Technologies Corporation Gas turbine engine airfoil curvature
US10323528B2 (en) * 2015-07-01 2019-06-18 General Electric Company Bulged nozzle for control of secondary flow and optimal diffuser performance
US11274563B2 (en) * 2016-01-21 2022-03-15 General Electric Company Turbine rear frame for a turbine engine
EP3951138B1 (en) * 2019-03-26 2024-03-20 IHI Corporation Stationary blade segment of axial turbine

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5088892A (en) 1990-02-07 1992-02-18 United Technologies Corporation Bowed airfoil for the compression section of a rotary machine
GB9417406D0 (en) * 1994-08-30 1994-10-19 Gec Alsthom Ltd Turbine blade
JP3397599B2 (ja) * 1996-10-28 2003-04-14 株式会社日立製作所 軸流型タービン翼群
JPH10196303A (ja) 1997-01-16 1998-07-28 Mitsubishi Heavy Ind Ltd 高性能翼
KR100566759B1 (ko) 1998-06-12 2006-03-31 가부시키가이샤 에바라 세이사꾸쇼 터빈 노즐 베인
US6398498B1 (en) 1999-10-12 2002-06-04 Eyvind Boyesen Impeller for water pumps

Also Published As

Publication number Publication date
EP1601860A1 (en) 2005-12-07
JP4269723B2 (ja) 2009-05-27
US7118330B2 (en) 2006-10-10
CN100340741C (zh) 2007-10-03
US20050008485A1 (en) 2005-01-13
WO2004081348A1 (en) 2004-09-23
JP2004270651A (ja) 2004-09-30
EP1601860B1 (en) 2015-07-29

Similar Documents

Publication Publication Date Title
CN100340741C (zh) 涡轮喷嘴翼型
RU2626886C2 (ru) Лопасть вентилятора турбореактивного двигателя, вентилятор турбореактивного двигателя и турбореактивный двигатель
RU2635734C2 (ru) Лопатка ротора турбомашины
CN101535654B (zh) 跨音速翼和轴流旋转机
JP5546855B2 (ja) ディフューザ
US7121792B1 (en) Nozzle vane with two slopes
CN100338350C (zh) 燃气轮机的可逆转增压压气机装置和风机轴装置
US10711614B2 (en) Gas turbine engine
CN104854325B (zh) 辐流式涡轮动叶片
JP4636287B2 (ja) 排気ガスターボチャージャのタービンホイール
CN1163662C (zh) 涡轮导向器叶片
CN1727653A (zh) 装配燃气涡轮发动机的方法和装置
EP2918849B1 (en) Compressor
CN1791737A (zh) 用于内燃机的涡轮增压器系统
CN1126796A (zh) 涡轮叶片
CN1657786A (zh) 压缩机
CN1900508A (zh) 整体的反向旋转涡轮风扇
CN1547642A (zh) 轴流式涡轮机
CN1580495A (zh) 逆向扭转的压气机翼面
CN1041992A (zh) 多级离心压缩机
CN1611747A (zh) 冷却燃气涡轮转子叶片的方法和装置
CN1847669A (zh) 送风机叶轮
CN1573019A (zh) 轴向辐流式涡轮
US20170298819A1 (en) Turbine impeller
CN102072195A (zh) 压缩泵直连电机用平衡冷却扇

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20071003