CN1776391A - 测量多缸内燃机各缸充气效率的方法 - Google Patents

测量多缸内燃机各缸充气效率的方法 Download PDF

Info

Publication number
CN1776391A
CN1776391A CN 200510119018 CN200510119018A CN1776391A CN 1776391 A CN1776391 A CN 1776391A CN 200510119018 CN200510119018 CN 200510119018 CN 200510119018 A CN200510119018 A CN 200510119018A CN 1776391 A CN1776391 A CN 1776391A
Authority
CN
China
Prior art keywords
cylinder
combustion engine
internal combustion
charging efficiency
inlet manifold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN 200510119018
Other languages
English (en)
Inventor
程鹏
刘忠长
高印寒
孙万臣
韩永强
刘金山
谭满志
许允
张继鹏
程江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN 200510119018 priority Critical patent/CN1776391A/zh
Publication of CN1776391A publication Critical patent/CN1776391A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Engines (AREA)

Abstract

本发明公开一种测量多缸内燃机各缸充气效率的方法,是通过采集各气缸所对应进气歧管中的两测点流速、压力值经过下述计算公式建立的固化软件程序而获得各气缸的充气效率,该方法实现了对多缸内燃机各缸进气充量的均匀性的准确判断分析,为进一步研究多缸内燃机各缸不均匀性提供了科学可行的测试方法。

Description

测量多缸内燃机各缸充气效率的方法
技术领域
本发明属于内燃机特性测试技术,具体涉及测量多缸内燃机各缸充气效率的方法。
背景技术
内燃机进气量是表征发动机本身进气能力的尺度,它以充气效率(实际充气量与理论充气量之比)来表示。用它可以评价进排气作用的优劣、燃烧的好坏,决定内燃机功率、扭矩的重要因素。
众所周知,往复式内燃机进气系统中气体的流动是脉动的,尤其是多缸内燃机,由于各缸之间的相互影响,使进气系统内气体流动更为复杂化了,具有强烈的不稳定流性质。由于多缸内燃机具有这种工作特点,在进气过程中就有可能造成进入各缸的进气充量不均匀。从而就有可能造成内燃机工作均匀性变差,其所带来的后果就会引起内燃机功率下降、经济性恶化,有可能降低气缸的寿命,使内燃机工作稳定性恶化。排气有害成分的多少都决定于气缸内可燃混合气的混合比。
通过测量进入各气缸的充量来研究由于各缸进气充量不均匀而引起的内燃机工作均匀性,是内燃机测试领域需要解决的重要课题。
多缸内燃机进气充量的均匀性,一般可以从以下两方面评定:
1.各缸进气充量的均匀性,即量的均匀性。各缸进气充量差别的原因主要是由于各缸进气系统结构及其换气过程的动力现象不同所引起的。
2.各缸过量空气系数的均匀性,即质的均匀性。
显然,如果能实际测量各缸的过量空气系数、进气充量,则可从质、量两方面判断分析各缸进气充量的均匀性。对于各缸过量空气系数的测定,已有比较成熟的测试方法和测试设备。而对各缸进气充量即充气效率的测定,尤其在不改变发动机的原有性能基础上,比较成熟的方法至今尚未见到有关资料的报道,常用通过测量进气总流量方法测得的进气充量,是发动机各缸的平均进气充量,显然其不能反映各缸的进气充量情况。
目前测量进气总流量的方法有很多,如,利用各种流量计直接测量进气总管内进气总流量,或用间接的测量方法如各种流速仪通过计算得到进气总流量。
发明内容
本发明的目的是提供一种测量多缸内燃机各缸充气效率的方法,以实现对多缸内燃机各缸进气充量的均匀性的准确判断分析。
本发明测量多缸内燃机各缸充气效率的方法,是通过采集各气缸所对应进气歧管中的两测点流速、压力值经过下述计算公式建立的固化软件程序而获得各气缸的充气效率:
Figure A20051011901800041
其中:ηv为充气效率
Vy1(j),Vy2(j)分别为随内燃机曲轴转角变化的两测点的流速值,m/s
p(j)为随内燃机曲轴转角变化的低压波值,kPa
Δ为按内燃机曲轴转角计算步长,deg.CA
n为内燃机转速,r/min
P0为大气压力,kPa
T0为大气温度,K
VH为单缸工作容积,mm3
Tp为测点处温度变化,K
A为被测进气歧管截面积,A=πr0 2,mm2
c为计算值, c = 0.816 a 1 7 + b 1 7 , a=y1/r0,b=y2/r0
所述的歧管中的两测点位置按下式所确定:
y i = r 0 2 2 t i + r 0 2 2
其中:i=1,2
y1,y2分别为进气歧管从管壁算起沿半径方向两测点位置mm
r0为被测进气歧管半径mm
t1,t2分别为切比雪夫系数,t1=0.577350,t2=-0.577350。
本发明利用目前奥地利AVL公司的AVL657内燃机数据采集分析仪或通用的数据采集仪、美国TSI公司的IFA100热线/热膜恒温流速仪等测试设备;选用CA6102多缸内燃机进行实验,在较宽的转速和负荷范围内,通过进气速度波,压力波的测量计算出了各缸的进气充量和充气效率,并将其与倒拖发动机时实测的内燃机平均充气效率进行比较,以判断本发明测量方法的可行性。
首先测取内燃机同一稳定工况下某一进气歧管上某一测量截面处的流速信号和压力波信号。测量时不管是流速信号还是压力波信号均取10个循环的平均值,测量结果表明各循环的测量值差别甚微。为了便于比较,在测试中用西德AERZEN公司的Za11.4转子气体流量计同时测出了整机空气消耗量。测量在内燃机拖动状态下进行,内燃机与AVLAPA090/19-2/5变频交流测功器连接,拖动时转速稳定,误差±1r/min。拖动时的水温,油温控制在规定范围。
由于热线/热膜风速仪的输出电压与流速呈非线性关系,其输出电压经AVL657数据采样再经过一个标定程序标定后,最终得到流速信号数据。
以下说明进气歧管内流速分布规律的确定,测点位置选择及进气充量和充气效率的计算方法。
①流速分布经验方式
进气过程中进气歧管某一截面上沿径向流速分布是不均匀的。多缸发动机由于进气歧管内气体流动的脉动特性、各缸进气的相互干扰以及管道形状,表面状态等因素的影响,气体流动属紊流状态。资料[《流体力学》郑洽馀,鲁钟琪主编,机械工业出版社,1981年3月第一版]指出,对于雷诺数Re<105的管内紊流运动,其速度分布可用以上经验方式:
V y V * = 8.7 ( y · V * γ ) 1 7 - - - ( 1 )
式中,Vy——离管壁的距离为y处的气体速度
      V*——应力速度, V * = τ / ρ
      y——离管壁的距离
      ρ——气体密度
      τ——紊流切应力
      γ——气体的运动粘度,γ=μ/ρ
      μ——气体粘性系数
若气体流过该截面的平均流速为 V, V可用以下积分表示:
V ‾ = 1 A ∫ A V y · dA y
A为圆形的面积。用V*除两端,则有:
V ‾ V * = 1 A ∫ A V y V * dA y
将(1)式代入,将积分加以变换有:
V ‾ V * = 1 π · r 0 2 ∫ 0 r 0 8.7 ( y · V * γ ) × 1 2 π ( r 0 - y ) dy
= 0.816 × 8.7 ( r 0 V * γ ) 1 7 - - - ( 2 )
r0为圆管半径。
②测点位置的选择
为了减少测试工作量,所取测点数尽可能少些。在半径方向若取两点:y1=ar0,y2=br0,a,b为待定系数,代入式(1)有:
V y 1 V * = 8.7 · a 1 7 ( r 0 V * γ ) 1 7
V y 2 V * = 8.7 · b 1 7 ( r 0 V * γ ) 1 7
式中Vy1、Vy2为y1、y2处的气体流速。
以上两式相加:
V y 1 + V y 2 V * = 8.7 ( r 0 V * γ ) 1 7 ( a 1 7 + b 1 7 ) - - - ( 3 )
由式(2): ( r 0 V * γ ) 1 7 = 1 0.816 × 8.7 · V ‾ V *
代入式(3):
V y 1 + V y 2 V * = 8.7 0.816 × 8.7 · V ‾ V * ( a 1 7 + b 1 7 )
化简有: V ‾ = 0.816 · ( V y 1 + V y 2 ) · 1 a 1 7 + b 1 7
即: V ‾ = 0.816 a 1 7 + b 1 7 ( V y 1 + V y 2 ) - - - ( 4 )
根据资料[《热力机械测试技术》叶大均主编,机械工业出版社,1981年9月],测点的确定常用中间矩形法和切比雪夫积分法。当测点数较少时宜采用切比雪夫法,按这个方法计算的通过管道截面积的流量的精度比中间矩形法为高。
切比雪夫法的测点位置对于环形面积由下式确定:
r 1 = r 2 2 - r 1 2 2 t i + r 2 2 + r 1 2 2
r1——圆环内径,r2——圆环外径,
对圆柱面积r1=0,r2=r0
r i = r 0 2 2 t i + r 0 2 2
取两个测点,由切比雪夫系数ti表查得:t1,2=±0.577350
对于实验用内燃机CA6102多缸汽油机进气歧管半径r0=18.5mm,由上式求得:
r 1 = 18.5 2 2 × 0.577350 + 18.5 2 2
=16.43mm
r 2 = 18.5 2 2 × ( - 0.577350 ) + 18.5 2 2 = 8.5 mm
若从圆管壁面算起,取y1=16.5mm,y2=8.5mm
a = 16 18.5 = 0.865 , b = 8 18.5 = 0.432
速度和压力测量截面离进气门150mm。
③进气充量和充气效率的计算
因为Vy1,Vy2及 V都为曲轴转角的函数,式(4)可变为以下形式:
Figure A20051011901800072
单位时间的进气量可表示为:
Figure A20051011901800073
若认为在进气过程中,温度基本不变,则测量截面上的密度,可表示为:
Figure A20051011901800074
p(),Tp分别为测点处压力和温度变化。
得:
Figure A20051011901800075
式(5)代入(6)
Figure A20051011901800076
而d=6ndt,n为发动机转速,令 c = 0.816 a 1 7 + b 1 7
得:
Figure A20051011901800078
在进气门开启时间内积分得气缸实际进气量GL为:
Figure A20051011901800079
进气开启角为60℃A,若计算步长Δ=1℃A,上式变为数值计数形式:
充气效率 η v = G L G 0
G0为单缸理论充气量
G 0 = P 0 V H RT 0
P0,T0,VH分别为大气压力,大气温度,单缸工作容积
Figure A20051011901800081
Figure A20051011901800082
由式(7)(8)可知,只要测得各缸进气歧管某截面处的压力、两点流速随曲轴转角的变化规律以及进气歧管内的平均温度原始数据,便可计算出某工况下内燃机任意工作循环的单缸进气量和充气效率。将流速信号的标定曲线和公式(7)(8)等用FORTRAN语言编制成固化软件。
试验结果
在CA6102汽油机节气门4/4,3/4,2/4,1/4开度下,进行了各转速工况各缸充气效率的试验测定值为表1,2,3,4所示。
               表1节气门开度4/4各缸各转速充气效率
Figure A20051011901800083
               表2节气门开度4/3各缸各转速充气效率
Figure A20051011901800084
               表3节气门开度2/4各缸各转速充气效率
               表4节气门开度1/4各缸各转速充气效率
Figure A20051011901800092
从上述各表中可看出,利用实测进气速度---压力波计算的各缸充气效率随发动机转速、负荷的变化趋势与理论上的充气效率随发动机转速、负荷的变化趋势是吻合的。即随着转速降低、负荷变大,充气效率变大;随着转速增大、负荷变小,充气效率变低。
在测量多缸充气效率的同时,测取了各工况下整机充气效率,整机充气效率的平均值η与相应工况下各缸充气效率的平均值ηvm的对比数据列于表5。
充气效率的平均值: η ‾ v = G 30 n · i · V H
其中,n——发动机转速(r/min)
      i——气缸数
      G——进气总量(m3/h)
各缸充气效率的平均值: η vm = 1 i · Σ K = 1 6 η vK
其中,ηvK——第K缸的充气效率
        表5整机充气效率的平均值与各缸充气效率的平均值对比
  转速充气效率开度   3000   2600   2200   1800   1600   1400   1200   800
  4/4   ηv   0.82668   0.88075   0.91405   0.92908   0.95498   0.93058   0.92118   0.92580
  ηvm   0.8338   0.87573   0.90357   0.92497   0.93707   0.93669   0.93572   0.93067
  3/4   ηv   0.77859   0.85706   0.90126   0.9008   0.8954   0.90001   0.90011   0.9036
  ηvm   0.7534   0.85082   0.89244   0.89514   0.90284   0.9004   0.90067   0.91057
  2/4   ηv   0.6293   0.70369   0.76677   0.80672   0.81234   0.836   0.8753   0.86996
  ηvm   0.64087   0.68433   0.74057   0.77107   0.81967   0.87708   0.84142   0.89082
  1/4   ηv   0.27692   0.31724   0.37885   0.44018   0.52   0.5473   0.59966   0.73156
  ηvm   0.26986   0.30076   0.34078   0.41815   0.49057   0.54318   0.61163   0.71053
从上表可知,各开度各转速下,整机充气效率的平均值与各缸充气效率的平均值二者具有很好的一致性。这可完全说明采用速度—压力波测量法所获取各缸进气充量及充气效率的方法是正确的而且切实可行的。但是,目前用整机充气效率的平均值来代替各缸充气效率的平均值并去研究多缸内燃机各缸进气量和充气效率的量的不均匀性是粗糙的、不科学的。本发明所提出的方法可以精确的得到多缸内燃机各缸进气量和充气效率值,为进一步研究多缸内燃机各缸不均匀性提供了科学的方法。
附图说明
图1为本发明方法测试系统框图;
图2为测量截面上的两测点流速曲线图;
图3为测量截面上的进气压力波曲线图;
具体实施方式
下面通过实施例对本发明方法作进一步说明
(1)测试系统组成
参照图1,本发明方法测试系统,AVL PUMA3内燃机自动化实验台2和AVL-ELENAPA 090/19-2/5变频交流测功器3与六缸CA6102内燃机5实验连接;西德AERZEN公司的Za11.4转子气体流量计1与六缸CA6102Q内燃机进气总管4连接,以测出进气总管空气消耗量;美国TSI公司生产的IFA100热线/热膜风速仪8和TSI 1211-20传感器连接,将流速信号变成电压信号;IFA100热线/热膜风速仪8的输出端与奥地利AVL公司生产的AVL657内燃机数据采集分析系统9的输入端连接;AVL657内燃机数据采集分析系统9、AVL364曲轴角标器7和AVL12QP250ca石英压电压力传感器连接,将AVL657内燃机数据采集分析仪9所配AVL364曲轴角标器7安装于六缸CA6102Q内燃机的曲轴前端,其信号输出连入内燃机数据采集分析仪相应输入通道,使得内燃机数据采集分析仪采集的信号基于曲轴转角φ;AVL657内燃机数据采集分析系统9同时测出各缸进气歧管两流速信号和低压波信号。在PC计算机10上调用测量数据并进行充气效率计算,由打印机11和绘图仪12进行数据及曲线输出。
(2)测试过程及结果
a.确定安装低压传感器、流速传感器和温度传感器在要求测量充气效率的气缸所对应进气歧管管壁上的测量截面位置,原则是应尽可能靠近进气门。本例中,离进气门150mm。在该测量截面圆周上按相差90度位置分别打三个可安装以上三种不同传感器尺寸的安装孔。
b.安装AVL12QP250ca低压传感器于相应安装孔处。低压传感器之测压表面与管壁内表面平齐。低压传感器的信号输出与AVL657内燃机数据采集分析仪的信号输入端进行信号线连接。
c.计算流速传感器在测量截面管壁内,沿同一半径方向两测点的位置y1和y2
两测点的位置y1(mm)和y2(mm)由下式计算:
y i = r 0 2 2 t i + r 0 2 2
其中,i=1,2
r0为进气歧管半径,mm
ti为切比雪夫系数
对于六缸CA6102内燃机进气歧管半径r0=18.5mm。由切比雪夫系数ti表查得:
t1,2=±0.577350
由上式求得:
y 1 = 18.5 2 2 × 0.577350 + 18.5 2 2
=16.43mm
y 2 = 18.5 2 2 × ( - 0.577350 ) + 18.5 2 2 = 8.5 mm
从圆管内壁面算起,取y1=16.5mm,y2=8.5mm
d.安装TSI 1211-20流速传感器于相应安装孔处。流速传感器的探针在管内与管壁内表面距离为y1(mm)。为了使测量流速传感器对于流速方向有较好的敏感性,选用弯头探针式流速传感器。流速传感器的探针迎气流方向安装。流速传感器的信号输出与IFA100热线/热膜风速仪的信号输入端进行信号线连接。将IFA100热线/热膜风速仪的电压信号输出端连入AVL657内燃机数据采集分析仪的电压信号输入端。
e.安装温度传感器。温度传感器测温点与管壁内表面平齐。温度传感器的输出端连入AVL657内燃机数据采集分析仪的电压信号输入端。
f.用AVL PUMA3内燃机自动化实验台和AVL-ELENAPA 090/19-2/5变频交流测功器控制六缸CA6102内燃机工作在节气门4/4全开、3000r/min、2600r/min、2200r/min、1800r/min、1600r/min、1200r/min、800r/min拖动实验状态。
g.AVL657内燃机数据采集分析仪与PC计算机、打印机和绘图仪连接。由AVL657内燃机数据采集分析仪测量六缸CA6102内燃机某实验工况下随内燃机曲轴转角φ变化的流速Vy1(φ)信号、低压波P(φ)信号和温度Tp。AVL657内燃机数据采集分析仪采集流速、压力波信号和管内温度信号时,曲轴转角采样分辨率选取0.2deg.CA,每个转速工况测取4冲程六缸CA6102内燃机10个连续工作循环数据。数据被保存入PC计算机中。
h.在实验工况不变的情况下重新调整TSI 1211-20流速传感器,使流速传感器的探针在管内与管壁内表面距离为y2(mm)。由AVL657内燃机数据采集分析仪测量同一工况下流速Vy2(φ)信号,数据被保存入PC计算机中。
i.在同一实验工况下读取大气压力P0、大气温度T0、内燃机转速n。
j.在PC计算机中运行计算充气效率的固化软件。程序自动将存于PC机中的两点流速Vy1(φ)及Vy2(φ)数据、低压波P(φ)数据、管内温度数据Tp、大气压力P0数据、大气温度T0数据、单缸工作容积VH数据、内燃机转速n和c等数据调入计算充气效率的公式中,计算得到多缸内燃机所做实验工况下的充气效率值。充气效率的计算公式如下:
Figure A20051011901800121
上式中,ηv为充气效率;Vy1(j),Vy2(j)分别为在该实验工况下,随内燃机曲轴转角变化的两测点的流速曲线,测量数据曲线如图2所示,图2中曲线1、2分别对应测点y1处和测点y2处的流速;p(j)为在该实验工况下,随内燃机曲轴转角变化的低压波曲线,测量数据曲线如图3所示,图2~3中的横坐标标线:TDC为上止点位置,BDC为下止点位置,EO为进气门开启角位置,ED为进气门关闭角位置,HD为排气门关闭角位置;Δ为按内燃机曲轴转角计算步长,计算步长取Δ=1deg.CA;n为内燃机转速,实验转速为2200r/min;P0为大气压力,在该实验工况下为0.98kPa;T0为大气温度,在该实验工况下为298K;Tp为测点处温度变化,该实验工况下为308K;VH为单缸工作容积为92666.64mm3;A为被测进气歧管截面积,A=πr0 2=1074.665mm2;c为计算值, c = 0.816 a 1 7 + b 1 7 , a=y1/y2=0.865,b=y2/r0=0.432,c=0.437;j取1~240是指六缸CA6102内燃机的进气开闭角在240deg.CA内。
k.按上述测试过程得到以下4/4节气门开度7个转速工况下各缸充气效率,数据如表6所示。
                   表6节气门开度4/4各缸各转速充气效率
Figure A20051011901800131

Claims (1)

1.一种测量多缸内燃机各缸充气效率的方法,是通过采集各气缸所对应进气歧管中的两测点流速、压力值经过下述计算公式建立的固化软件程序而获得各气缸的充气效率:
Figure A2005101190180002C1
其中:ηv为充气效率
Vy1(j),Vy2(j)分别为随内燃机曲轴转角变化的两测点的流速值,m/s
p(j)为随内燃机曲轴转角变化的低压波值,kPa
Δ为按内燃机曲轴转角计算步长,deg.CA
n为内燃机转速,r/min
P0为大气压力,kPa
T0为大气温度,K
VH为单缸工作容积,mm3
Tp为测点处温度变化,K
A为被测进气歧管截面积,A=πr0 2,mm2
c为计算值, c = 0.816 a 1 7 + b 1 7 , a=y1/r0,b=y2/r0
所述的歧管中的两测点位置按下式确定:
y i = r 0 2 2 t i + r 0 2 2
其中:i=1,2
y1,y2分别为进气歧管从管壁算起沿半径方向两测点位置mm
r0为被测进气歧管半径mm
t1,t2分别为切比雪夫系数,t1=0.577350,t2=-0.577350。
CN 200510119018 2005-11-25 2005-11-25 测量多缸内燃机各缸充气效率的方法 Pending CN1776391A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200510119018 CN1776391A (zh) 2005-11-25 2005-11-25 测量多缸内燃机各缸充气效率的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200510119018 CN1776391A (zh) 2005-11-25 2005-11-25 测量多缸内燃机各缸充气效率的方法

Publications (1)

Publication Number Publication Date
CN1776391A true CN1776391A (zh) 2006-05-24

Family

ID=36766026

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200510119018 Pending CN1776391A (zh) 2005-11-25 2005-11-25 测量多缸内燃机各缸充气效率的方法

Country Status (1)

Country Link
CN (1) CN1776391A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106226087A (zh) * 2016-10-08 2016-12-14 潍柴西港新能源动力有限公司 一种发动机各缸进气分配均匀性直接测量装置及方法
CN108519237A (zh) * 2018-04-26 2018-09-11 吉林大学 一种测量多缸内燃机各缸充气效率的测试系统
CN110608105A (zh) * 2018-06-15 2019-12-24 上海汽车集团股份有限公司 一种充气效率的自动标定方法和装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106226087A (zh) * 2016-10-08 2016-12-14 潍柴西港新能源动力有限公司 一种发动机各缸进气分配均匀性直接测量装置及方法
CN108519237A (zh) * 2018-04-26 2018-09-11 吉林大学 一种测量多缸内燃机各缸充气效率的测试系统
CN108519237B (zh) * 2018-04-26 2023-09-22 吉林大学 一种测量多缸内燃机各缸充气效率的测试系统
CN110608105A (zh) * 2018-06-15 2019-12-24 上海汽车集团股份有限公司 一种充气效率的自动标定方法和装置

Similar Documents

Publication Publication Date Title
CN1673507A (zh) 内燃机气缸内燃空比的估算方法
CN1543535A (zh) 改进的发动机管理
CN202510230U (zh) 汽车发动机配气系统以及装设其的汽车
CN202994471U (zh) 一种发动机瞬态测试系统
CN1891997A (zh) 用于操作涡轮增压发动机的系统和方法
CN1476512A (zh) 向内燃机供应经过调节的燃烧气体的方法 ,实施此方法的设备 ,确定内燃机废气中有害物数量的方法以及实施此方法的设备
CN1536206A (zh) 内燃发动机废气后处理设备的诊断系统
CN101514940B (zh) 小型汽油机进排气系统流动特性试验装置和排放控制方法
CN1776391A (zh) 测量多缸内燃机各缸充气效率的方法
CN1959075A (zh) 引擎的催化剂恶化诊断装置及其方法和催化剂装置
JP2012122466A (ja) エンジンシステム及びそのデータ処理方法
CN1961141A (zh) 发动机最优化方法和设备
CN1821739A (zh) 一种测量多缸内燃机各缸充气效率的方法
CN101358902A (zh) 废气再循环阀多功能试验装置
CN1729356A (zh) 用于内燃机的计算再循环废气量的设备
CN102251856B (zh) 压缩天然气发动机空燃比同步自动测量装置及其方法
CN1757895A (zh) 内燃机控制设备
CN1181259C (zh) 摩托车排气催化净化器活性评价试验装置
CN101074903A (zh) 一种采用no稀释比计算机动车排气质量的方法
CN108266281B (zh) 车辆的喷油量控制方法、装置及车辆
CN112267998B (zh) 一种多缸柴油机缸内最高温度及各缸不均匀性测试方法
CN1474909A (zh) 内燃机中吸入空气量的测定方法
CN108519237B (zh) 一种测量多缸内燃机各缸充气效率的测试系统
CN209911178U (zh) 一种用于测量颗粒物沉积路径的冷却器
CN108331687A (zh) 一种发动机环保节油装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication