本申请是一个非临时申请,要求以下三个申请的优先权:于2003年2月18日提交的临时申请序列号No.60/448,269,名为“REVERSELINK DATA COMMUNICATION”;于2003年3月6日提交的美国临时申请序列号60/452,790,名为“METHOD AND APPARATUS FOR AREVERSE LINK COMMUNICATION IN A COMMUNICATIONSYSTEM”;和于2003年5月14日提交的美国临时申请序列号60/470,770,名为“OUTER-LOOP POWER CONTROL FOR REL.D”。
具体实施方式
图1是无线通信系统100的示意图,其可以被设计成能支持一个或多个CDMA标准和/或设计(例如,W-CDMA标准、IS-95标准、cdma2000标准、HDR规范、1xEV-DV建议)。在一个替换的实施例中,系统100可以另外支持除了CDMA系统之外的任何无线标准或设计。在示范的实施例中,系统100是1xEV-DV系统。
为简单起见,示出的系统100包括与两个移动台106通信的三个基站104。基站和其覆盖范围经常被一起称为“小区”。在IS-95、cdma2000或者1xEV-DV系统中,例如,一个小区可以包括一个或多个扇区。在W-CDMA规范中,基站的每个扇区和该扇区的覆盖范围被称为一个小区。如在此处使用的,术语基站与术语接入点或节点B可互换地使用。术语移动台与术语用户设备(UE)、用户单元、用户站、接入终端、远程终端或者在该领域中已知的其他相应的术语可互换地使用。术语移动台包含固定的无线应用。
取决于所实现的CDMA系统,每个移动台106可以在任何给定时刻上与一个(或者也许更多的)基站104在前向链路上通信,并且取决于是否该移动台处于软切换中,可以在反向链路上与一个或多个基站通信。前向链路(即,下行链路)指的是从基站到移动台的传输,反向链路(即,上行链路)指的是从移动台到基站的传输。
虽然在此所述的各种实施例都是为了提供用于支持反向链路传输的反向链路或者前向链路信号,并且其中一些信号可以非常适合于反向链路传输的特性,本领域技术人员将明白,可以如在此所述的那样来配备移动台以及基站以发送数据,并且本发明的许多方面在那些情形下同样适用。在此处专门地使用的单词“示范的”指的是“作为一个例子、实例或者说明”。与其他实施例相比,在此所述为“示范的”实施例不是必然被认为是优选的或者有优势的。
1xEV-DV前向链路数据传输和反向链路功率控制
诸如在1xEV-DV建议中描述的这样的系统100通常包括四类前向链路信道:开销信道、动态改变的IS-95和IS-2000信道、前向分组数据信道(F-PDCH)和一些备用信道。开销信道分配慢慢地改变,其可能数月不改变。当存在主要网络配置改变的时候,所述开销信道分配被典型地改变。动态改变的IS-95和IS-2000信道被基于每个呼叫分配,或者被用于IS-95或者IS-2000版本0至B的分组业务。典型地,在已经分配开销信道和动态改变的信道之后剩余的可用基站功率被分配给F-PDCH,以用于剩余的数据业务。F-PDCH可以用于对延迟较不敏感的数据业务,而IS-2000信道被用于对延迟更敏感的业务。
F-PDCH,类似于在IS-856标准中的业务信道,被用于以最高可支持的数据速率每次发送数据给每个小区中的一个用户。在IS-856中,当向移动台发送数据的时候,基站的整个功率和沃尔什函数的整个空间是可用的。但是,在提出的1xEV-DV系统中,一些基站功率和一些沃尔什函数被分配给开销信道和已有的IS-95和cdma 2000业务。可支持的数据速率主要地取决于在已经为开销、IS-95和IS-2000信道分配功率和沃尔什码之后可用的功率和沃尔什码。使用一个或多个沃尔什码扩展在F-PDCH上传输数据。
在1xEV-DV建议中,虽然在一个小区中很多用户可能在使用分组业务,但是基站通常每次在F-PDCH上向一个移动台传输。(通过对两个或更多个用户调度传输和适当地分配功率和/或沃尔什信道给每个用户,也可以发送给两个或更多个用户)。基于某些调度算法,移动台被选择用于前向链路传输。
在一个类似于IS-856或者1xEV-DV的系统中,调度是部分地基于来自正在被服务的移动台的信道质量反馈。例如,在IS-856中,移动台估计前向链路的质量,并且计算对于当前的条件期望是可以维持的传输速率。来自每个移动台的期望速率被发送给基站。调度算法例如可以选择一个用于传输的移动台,其支持相对更高的传输速率,以便更加有效地使用共享通信信道。作为另一个例子,在1xEV-DV系统中,每个移动台在反向信道质量指示信道或R-CQICH上发送载干比(C/I)估计作为信道质量估计。调度算法被用于按照信道质量确定所选择的用于传输的移动台以及适宜的速率和传输格式。
如上所述,无线通信系统100可以支持多个用户并发地共享通信资源,诸如IS-95系统,也可以每次分配整个的通信资源给一个用户,诸如IS-856系统,或者可以分派该通信资源以允许两种访问类型。1xEV-DV系统是一个在两种访问类型之间划分通信资源、并且按照用户需求动态地分配该分派的系统的例子。下面是简要背景资料,有关通信资源可以如何分配以适应两种访问类型的系统中的各种用户。对于由多个用户并发访问,诸如IS-95类型的信道,描述了功率控制。对于由多个用户分时访问,诸如IS-856系统,或者1xEV-DV类型系统的仅数据部分(即,F-PDCH),讨论了速率确定和调度。
在诸如IS-95CDMA系统这样的系统中,容量是部分地通过在发送信号至该系统内不同的用户和从该系统内不同用户发送信号中所产生的干扰来确定的。典型的CDMA系统的一个特点是编码和调制信号,用于发送至一个移动台或从一个移动台发送,使得所述信号被其他的移动台视为干扰。例如,在前向链路上,在基站和一个移动台之间的信道的质量是部分地由其他用户干扰确定的。为了保持与该移动台通信的期望的性能指标,专用于该移动台的发射功率必须足以克服发送给由该基站服务的其他移动台的功率、以及在该信道中受到的其他干扰和退化。因此,为了提高容量,所希望的是发射需要的最小功率给被服务的每个移动台。
在典型的CDMA系统中,当多个移动台正在向一个基站传送的时候,所希望的是在该基站上以标准化的功率电平接收多个移动台信号。因此,例如,反向链路功率控制系统可以调节来自每个移动台的发射功率,使得来自近处移动台的信号不会压倒来自远处移动台的信号。如同前向链路的情况一样,保持每个移动台的发射功率处于需要的最小功率电平以维持期望的性能指标,能允许容量被最优化,而且还有节约功率的其他好处,诸如增加通话和待机时间、降低电池需要量等。
在诸如IS-95的典型的CDMA系统中,相对于其他事情,容量是受其他用户干扰约束的。可以通过使用功率控制来减轻其他用户干扰。系统的总体性能,包括容量、语音质量、数据传输速率和吞吐量取决于基站,该基站任何可能的情况下以最低的功率电平发射以维持期望的性能指标。为了实现这些,在该技术中各种功率控制技术是已知的。
一类技术包括闭环功率控制。例如,可以在前向链路上采用闭环功率控制。这样的系统可以在移动台中采用内部和外部功率控制环路。外部环路按照期望的接收误码率确定目标接收功率电平。例如,1%的目标帧误码率可以被预先确定为期望的误码率。该外部环路可以以相对慢的速率更新目标接收功率电平,诸如每个帧或者块一次。作为响应,内部环路然后发送上行或者下行功率控制消息给基站,直到接收功率满足该目标。这些内部环路功率控制命令相对地经常出现,以便迅速地使发射功率适应需要的电平,以获得对于高效的通信所期望的信干噪比(signal to noise and interference ratio)。如上所述,对于每个基站以最低的电平保持前向链路发射功率,降低了在每个移动台上可见的其他用户干扰,并且允许保留剩余可用的发射功率以供其他目的之用。在诸如IS-95的系统中,该剩余可用的发射功率可用于支持与额外的用户通信。在诸如1xEV-DV的系统中,该剩余可用的发射功率可用于支持额外的用户、或者提高该系统的仅数据部分的吞吐量。
在诸如IS-856这样的“仅数据”的系统中,或者在诸如1xEV-DV这样的系统的“仅数据”部分中,可以采用控制环路以用分时的(time-shared)方式控制从基站到移动台的传输。为了清楚起见,在下文的论述中,可以描述每次传输到一个移动台。这将不同于并发访问系统,其中一个例子是IS-95,或者在cdma2000或1xEV-DV系统中的各种信道。在这一点上正好有二个注意事项。
第一,仅为了论述清楚,术语“仅数据”或者“数据信道”被用于区分一个信道与IS-95类型的语音或者数据信道(即,使用功率控制的并发访问信道,如上所述)。这里所述的仅数据或者数据信道可用于发送任何类型的数据,包括语音(例如,网际协议语音,或VOIP),这对于本领域技术人员是显而易见的。用于特定的数据类型的任何特定的实施例的有效性可以部分地通过吞吐量需求、等待时间需求等来确定。本领域技术人员将会很容易地采用合并任一种访问类型与所选择的参数的各种实施例,以提供期望级别的等待时间、吞吐量、服务质量等。
第二,系统的仅数据部分可以适合于为一个以上的用户提供在前向链路上的访问,该系统的仅数据部分诸如所述用于1xEV-DV的,其被描述为分时使用通信资源。在此处的例子中,该通信资源被描述为是分时的,以在某个阶段提供与一个移动台或者用户通信,本领域技术人员将会容易地采用这些例子,以允许在那个时间周期内分时传输到一个以上移动台或者从一个以上移动台分时传输。
典型的数据通信系统可以包括一个或多个各种类型的信道。更具体地说,通常采用一个或多个数据信道。虽然带内控制信令可以被包括在一个数据信道上,但是通常也采用一个或多个控制信道。例如,在1xEV-DV系统中,定义前向分组数据控制信道(F-PDCCH)和前向分组数据信道(F-PDCH)分别用于在前向链路上传输控制和数据。
图2描述一个在适合于数据通信的系统100中配置的移动台106和基站104的例子。基站104和移动台106被示出正在前向和反向链路上通信。移动台106在接收子系统220中接收前向链路信号。下面详述的传递前向数据和控制信道的基站104在此处可以被称为移动台106的服务站。一个接收子系统的例子在下面相对于图3进一步详述。在移动台106中,对于从服务基站接收的前向链路信号进行载干比(C/I)估计。C/I测量是用作信道估计的信道质量度量的例子,并且在替换的实施例中,可以采用替换的信道质量度量。该C/I测量被传送给基站104中的传输子系统210,其中一个例子在下面相对于图3进一步详述。
传输子系统210在反向链路上传送该C/I估计,在这里其被传送给服务基站。注意,在软切换的情况下,在该领域中公知,除了服务基站以外,从移动台发送的该反向链路信号可以被一个或多个在此处称为非服务基站的基站接收。基站104中的接收子系统230从移动台106接收该C/I信息。
基站104中的调度器240被用于确定数据是否应该和如何被发送给在服务小区的覆盖范围内的一个或多个移动台。在本发明的范围内可以采用任何类型的调度算法。一个例子在1997年2月11日提交的、名为“METHOD AND APPARATUS FOR FORWARD LINK RATESCHEDULING”的、已转让给本发明的受让人的美国专利申请号No.08/798,951中公开。
在一个示例的1xEV-DV实施例中,当从移动台接收的C/I测量指示数据可以被以某个速率发送的时候,该移动台被选择用于前向链路传输。就系统容量而言,选择一个目标移动台使得共享通信资源始终被以其最大可支持的速率使用是有益的。因此,所选择的典型的目标移动台可以是具有最大报告的C/I的一个。其他的因素也可以结合进调度确定中。例如,可以对不同的用户已经生成最小的服务质量保证。也许是具有相对较低报告的C/I的移动台被选择用于传输,以对那个用户保持最小的数据传送速率。
在示例的1xEV-DV系统中,调度器240确定向哪一个移动台进行传输,以及用于该传输的数据速率、调制格式和功率电平。在一个替换的实施例中,诸如一个IS-856系统中,例如,可以在移动台上基于在该移动台上测量的信道质量,进行可支持的速率/调制格式的确定,并且该传输格式可以代替C/I测量被发送给服务基站。本领域技术人员将理解,可以在本发明的范围内采用可支持的速率、调制格式、功率电平等的无数的组合。此外,虽然在这里所述的各种实施例中,调度任务是在基站中执行的,在替换的实施例中,该调度过程的一些或者全部可以发生在移动台中。
调度器240使用所选择的速率、调制格式、功率电平等引导传输子系统250在前向链路上向所选择的移动台进行传输。
在该示例实施例中,在控制信道或F-PDCCH上的消息被与在数据信道或F-PDCH上的数据一起发送。控制信道可用于识别在F-PDCH上的数据的接收者移动台,以及识别在通信会话期间的其他有用的通信参数。当F-PDCCH指示一个移动台是传输的目标的时候,该移动台应该从F-PDCH接收和解调数据。该移动台伴随收到这样的数据在反向链路上响应一个消息,该消息指示该传输成功或者失败。在数据通信系统中普遍地采用在该领域中公知的重传技术。
移动台可以与一个以上的基站通信,条件被称为软切换。软切换可以包括来自一个基站(或者一个基站收发信机子系统(BTS))的多个扇区,被称为更软切换(softer handoff),以及具有来自多个BTS的扇区。在软切换中的基站扇区通常被存储在移动台的活动集中。在并发共享的通信资源系统,诸如IS-95、IS-2000、或者1xEV-DV系统的相应部分中,移动台可以将从活动集中的所有扇区发送的前向链路信号合并。在仅数据的系统,诸如IS-856、或者1xEV-DV系统的相应部分中,移动台从活动集中的一个基站接收前向链路数据信号,所述基站是服务基站(按照移动台选择算法确定的,诸如在C.S0002.C标准中描述的)。其他的前向链路信号也可以从非服务基站接收,其中实例将在下面进一步详述。
可以在多个基站上接收来自该移动台的反向链路信号,并且对于在活动集中的基站,通常保持反向链路的质量。可以合并在多个基站上接收的反向链路信号。通常,软合并来自非配置的基站的反向链路信号将需要很大的网络通信带宽及非常小的延迟,因此在上面列出的示例系统对其并不支持。在更软切换中,在单个BTS的多个扇区中接收的反向链路信号无需网络信令可以被合并。虽然在本发明的范围内可以采用任何类型的反向链路信号合并,在上述的示例系统中,反向链路功率控制保持质量,使得反向链路帧被在一个BTS上成功地解码(切换分集)。
在并发共享的通信资源系统,诸如IS-95、IS-2000、或者1xEV-DV系统的相应部分中,在与移动台软切换中(即,在该移动台的活动集中)的每个基站测量那个移动台的反向链路导频质量,并且发出功率控制命令流。在IS-95或者IS-2000Rev.B中,如果前向基本信道(F-FCH)和前向专用控制信道(F-DCCH)两者之一被分配,每个命令流被在该前向基本信道(F-FCH)或者前向专用控制信道(F-DCCH)上打孔(pucture)。用于移动台的命令流被称作那个移动台的前向功率控制子信道(F-PCSCH)。移动台从对于每个基站的所有该移动台的活动集成员接收并行命令流(来自一个BTS的多个扇区,如果全部在该移动台的活动集中,则发送相同的命令给那个移动台),并且确定是否一个“上行”或者“下行”命令被发送。据此,该移动台使用“关于下行的否则(Or-of-downs)”规则来改变该反向链路发射功率电平,也就是说,如果接收到任何的“下行”命令,该发射功率电平被降低,否则被升高。
F-PCSCH的发射功率电平典型地依赖于携带该子信道的主F-FCH或者F-DCCH的电平。在基站上的主F-FCH或者F-DCCH发射功率电平是由在反向功率控制子信道(R-PCSCH)上来自移动台的反馈确定的,其占据反向导频信道(R-PICH)的最后的四分之一。由于来自每个基站的F-FCH或者F-DCCH形成单个业务信道帧流,R-PCSCH报告这些支路合并的解码结果。F-FCH或者F-DCCH的疑符(erasures)确定外部环路需要的Eb/Nt设定点,其随后在R-PCSCH上驱动内部环路命令,并且从而基站在它们上传送F-FCH、F-DCCH以及F-PCSCH的电平。
由于在软切换中在从单个移动台到每个基站的反向链路路径损耗中的电势差,活动集中的一些基站不能可靠地接收R-PCSCH,并且不能正确地控制F-FCH、F-DCCH和F-PCSCH的前向链路功率。基站可能需要在其自身之中重新调整发射电平,以便移动台保留软切换的空间分集增益。否则,由于在来自移动台的反馈中的差错,一些前向链路支路可能几乎没有携带通话信号能量。
由于不同的基站对于相同的反向链路设定点或者接收质量可能需要不同的移动台发射功率,因此来自不同的基站的该功率控制命令可能是不同的,并且不能在MS上被软合并。当新的成员被添加到活动集(即,从没有软切换到1路软切换,或者从1路到2路等等)的时候,F-PCSCH发射功率被相对于其主F-FCH或者F-DCCH提高。这可能是因为后者具有更大的空间分集(需要的总的Eb/Nt更少)和均分负载(load sharing)(每个支路更少的能量)两者,而前者没有。
相对而言,在1xEV-DV系统中,无需前向基本信道(F-FCH)或者前向专用控制信道(F-DCCH),前向公共功率控制信道(F-CPCCH)传送用于移动台的反向链路功率控制命令。在1xEV-DV建议的早期版本中,已经假设F-CPCCH的基站发射功率电平是由从移动台接收的反向信道质量指示信道(R-CQICH)确定的。该R-CQICH可以在调度中使用,以响应于前向链路信道质量测量,确定合适的前向链路传输格式和速率。
但是,当移动台处于软切换的时候,R-CQICH仅报告服务基站扇区的前向链路导频质量,因此,不能直接地用于功率控制来自非服务基站的F-CPCCH。用于此的技术在2002年2月12日申请的、转让给本发明的受让人的、名为“Method and Apparatus for Forward LinkPower Control During Soft Handoff in a Communication System”的美国专利申请号No.60/356,929中公开。
示例的基站和移动台实施例
图3是诸如移动台106或者基站104这样的无线通信设备的方框图。在这个示例实施例中描述的模块通常是包括在基站104或者移动台106中部件的子集。本领域技术人员将容易地采用在图3中示出的实施例以供在许多的基站或者移动台结构中使用。
信号被在天线310上接收,并且传送给接收机320。接收机320按照一个或多个无线系统标准,诸如在上面列出的标准来执行处理。接收机320执行各种各样的处理,诸如射频(RF)到基带转换、放大、模拟到数字转换、滤波等等。用于接收的各种技术在该领域是已知的。虽然为了论述清楚示出了单独的信道质量估算器335,但是当该设备分别地是移动台或者基站的时候,接收机320可用于测量前向或者反向链路的信道质量,在下面详述。
来自接收机320的信号被在解调器325中按照一个或多个通信标准解调。在一个示例实施例中,采用能够解调1xEV-DV信号的解调器。在替换的实施例中,替换的标准可以支持,并且多个实施例可以支持多个通信格式。解调器330可以根据所接收的信号格式的需要执行RAKE接收、均衡、合并、解交织、解码和各种其他的功能。各种解调技术在该领域是已知的。在基站104中,解调器325将按照反向链路解调。在移动台106中,解调器325将按照前向链路解调。在此处描述的数据和控制信道两者是可以在接收机320和解调器325中接收和解调的信道的例子。如上所述,按照在控制信道上的信令将会发生对前向数据信道的解调。
消息解码器330接收解调的数据,并且提取分别地在前向或者反向链路上递送至移动台106或者基站104的信号或者消息。消息解码器330对于在系统上建立、保持和断开呼叫(包括语音或者数据会话)的过程中使用的各种消息进行解调。消息可以包括信道质量指示,诸如被用来对前向数据信道进行解调的C/I测量、功率控制消息、或者控制信道消息。当分别地在反向或者前向链路上传输时,各种类型的控制消息可以被在基站104或者移动台106中解码。例如,在下面描述的是用于调度反向链路数据传输的、分别在移动台或者基站中产生的请求消息和授权消息。在该领域中各种其他的消息类型是已知的,并且可以由被支持的不同的通信标准来指定。该消息被传送给处理器350以供后续处理使用。虽然为了清楚论述示出了分离的模块,但是消息解码器330的某些或者全部的功能可以在处理器350中实现。作为选择,解调器325可以解码某些信息,并且将其直接发送给处理器350(单比特的消息,例子是诸如ACK/NAK、或者功率控制上行/下行命令)。一个示例的命令信号,前向公共确认信道(F-CACKCH),被用于描述下面的各种实施例。
信道质量估算器335连接到接收机320,并且被用来进行供在此处描述的过程中使用的各种功率电平估计,以及供在通信中使用的各种其他处理中使用,诸如解调。在移动台106中,可以进行C/I测量。此外,对于在该系统中使用的所有的信号或者信道的测量可以在给定的实施例的信道质量估算器335中测量。如在下面更充分地描述的,功率控制信道是另一个例子。在基站104或者移动台106中,可以进行信号强度估计,诸如接收的导频功率。为了清楚论述,信道质量估算器335被显示为分离的模块。上述的模块通常被结合在另一个模块内,诸如接收机320或者解调器325。取决于正在估计的信号或者系统类型,可以进行各种类型的信号强度估计。通常,在本发明范围内可以采用任何类型的信道质量度量估计模块代替信道质量估算器335。在基站104中,该信道质量估计被传送给处理器350以供调度或者确定反向链路质量使用,如在下面进一步描述的。信道质量估计可用于确定是否需要上行或者下行功率控制命令来驱动前向或者反向链路功率到期望的设定点。该期望的设定点可以利用一个如上所述的外部环路功率控制来确定。
信号被经由天线310发射。发射的信号按照诸如在上面列出的那些一个或多个无线系统标准,被在发射机370中格式化。可以被包括在发射机370中的部件的例子是放大器、滤波器、数字-模拟(D/A)转换器、射频(RF)转换器等等。供传输的数据由调制器365提供给发射机370。数据和控制信道可以被按照各种格式来格式化以用于传输。供在前向链路数据信道上传输的数据可以在调制器365中根据一个速率和调制格式被格式化,所述速率和调制格式是按照C/I或其他信道质量测量由调度算法指示的。诸如上述调度器240的调度器可以存在于处理器350中。类似地,发射机370可以被引导来按照该调度算法的功率电平发射。可以被结合进调制器365中的部件的例子包括编码器、交织器、扩频器和各种类型的调制器。在下面还描述了反向链路设计,包括适合于部署在1xEV-DV系统上的示例的调制格式和访问控制。
如在此处描述的,消息发生器360可用于准备各种类型的消息。例如,可以在移动台中产生C/I消息,用于在反向链路上传输。可以在基站104或者在移动台106中产生各种类型的控制消息,用于分别地在前向或者反向链路上传输。例如,在下面描述的是用于调度反向链路数据传输的、分别在移动台或者基站中产生的请求消息和授权消息。
在解调器325中接收和解调的数据可以被传送给处理器350,供语音或者数据通信使用,以及传送给各种其他部件。类似地,共传输的数据可以被从处理器350递送至调制器365和发射机370。例如,各种数据应用可以出现在处理器350上、或者出现在包括在无线通信设备104或者106中的另一个处理器(未示出)上。基站104可以经由未示出的其他设备连接到一个或多个外部网络,诸如因特网(未示出)。移动台106可以包括到诸如膝上型计算机(未示出)这样的外部设备的链路。
处理器350可以是通用微处理器、数字信号处理器(DSP)或者专用处理器。处理器350可以执行接收机320、解调器325、消息解码器330、信道质量估算器335、消息发生器360、调制器365,或者发射机370以及无线通信设备需要的任何其他处理的某些或者全部的功能。处理器350可以与专用硬件连接以辅助这些任务(未示出详情)。数据或者语音应用可以是外来的,诸如外部连接的膝上型计算机或者连接到网络,可以在无线通信设备104或者106(未示出)内的附加处理器上运行,或者可以在处理器350本身上运行。处理器350与存储器355连接,该存储器355可用于存储数据以及指令,所述指令执行在此处描述的各种过程和方法。本领域技术人员将理解,存储器355可以由一个或多个不同类型的存储器部件组成,可以整个或者部分地被嵌入在处理器350内。
1xEV-DV反向链路设计依据
在这个部分中,描述了在无线通信系统的反向链路的示例实施例的设计中考虑的各种因素。在下文中进一步详述的许多的实施例中,使用了与1xEV-DV标准有关的信号、参数和过程。这个标准仅是为说明性的目的而描述,在此处描述的每个方面和其组合可以应用于在本发明范围内的许多通信系统。虽然这个部分并不是很详尽,但是这个部分起本发明各个方面的部分概要的作用。在下面的后续部分中进一步详述了示例实施例,其中描述了附加的方面。
在很多情况下,反向链路容量是受干扰限制的。基站分配可用的反向链路通信资源给移动台来有效利用,以按照不同的移动台的服务质量(QoS)需求来最大化吞吐量。
最大化反向链路通信资源的使用与一些因素有关。所考虑的一个因素是调度的来自不同移动台的反向链路传输的混合,其中每个反向链路传输可能在任何给定时间上经历变化的信道质量。为了提高总体吞吐量(在该小区中由所有的移动台发送的总计数据),所希望的是每当存在要发送的反向链路数据时,整个反向链路被充分地使用。为了满足该可用的容量,移动台可以被授权以其可以支持的最高速率访问,并且附加的移动台可以被授权访问直到达到容量。基站在判断去调度哪一个移动台的过程中可以考虑的一个因素是,每个移动台可以支持的最大速率和每个移动台要发送的数据量。可以选择能够有较高的吞吐量的移动台来代替一个其信道不支持较高的吞吐量的替换移动台。
要考虑的另一个因素是每个移动台需要的服务质量。虽然抱有该信道将会改善的希望而延迟访问一个移动台是可允许的,选择代之以选择一个适中的移动台,其可能是需要被授权访问的次佳移动台,以满足最小的服务质量保证。因此,所调度的数据吞吐量可能不是绝对最大的,但却是最大化地考虑了信道状态、可用的移动台发射功率和服务需求。对于任意配置所希望的是降低用于所选择的混合的信噪比。
下面描述了各种调度机制,用于允许移动台在反向链路上发送数据。一类反向链路传输的包括移动台进行请求在该反向链路上发送。基站确定是否资源是可以用来适应该请求。可以产生一个授权以允许该传输。在反向链路数据可以被发送之前,这个在移动台和基站之间的握手引入了延迟。对于某些类别的反向链路数据,该延迟是可接受的。其他类别可以是对延迟更敏感的,并且在下面详述用于反向链路传输的替换技术以减轻延迟。
此外,反向链路资源被消耗以产生传输的请求,并且前向链路资源被消耗以响应该请求,即,发送授权。当移动台的信道质量低时,即,低的几何形状或者深度衰落,在该前向链路上达到该移动台所需要的功率可能相对较高。在下面详述了各种技术,以降低反向链路数据传输所需的请求和授权的数目或者需要的发射功率。
为了避免由请求/授权握手引入的延迟,以及节省支持它们需要的前向和反向链路资源,一种自治的反向链路传输模式被支持。无需进行请求或者等待授权,移动台可以以有限的速率在反向链路上发送数据。
基站将反向链路容量的一部分分配给一个或多个移动台。被授权访问的移动台被提供最大功率电平。在此处描述的示例实施例中,被使用业务量导频(T/P)比来分配该反向链路资源。由于每个移动台的导频信号是自适应地经由功率控制来控制的,指定该T/P比指示了供在该反向链路上传输数据使用的可用功率。基站可以产生特定的授权给一个或多个移动台,指示专用于每个移动台的T/P值。基站还可以产生一个公共授权给已经请求访问的剩余的移动台,指示允许那些剩余的移动台发送的最大T/P值。在下面进一步详述自治的和调度的传输以及单独和公共授权。
各种调度算法在该领域是已知的,并且更多的还有待于开发,其可用于按照登记的移动台的数目、由移动台进行自治传输的可能性、未完成的请求的数目和大小、对授权期望的平均响应、以及许多其他的因素来确定供授权的各种特定和公共T/P值。在一个例子中,基于QoS优先级、效率和从请求的移动台组可达到的吞吐量来进行选择。一种示例的调度技术在2003年1月13日申请的、名为“SYSTEM ANDMETHOD FOR A TIME-SCALABLE PRIORITY-BASEDSCHEDULER”、转让给本发明的受让人的共同未决的美国临时专利申请号No.60/439,989中公开。另外的参考资料包括美国专利5,914,950,名为“METHOD AND APPARATUS FOR REVERSE LINKRATE SCHEDULING”,和美国专利5,923,650,也名为“METHODAND APPARATUS FOR REVERSE LINK RATE SCHEDULING”,两个都转让给本发明的受让人。
移动台可以使用一个或多个子分组发送一个数据分组,这里每个子分组包含完整的分组信息(每个子分组没有必要被完全一样地编码,因为贯穿不同的子分组可以采用不同的编码或者冗余度)。可以采用重传技术以确保可靠的传输,例如ARQ。因此,如果第一个子分组被无差错地(例如使用CRC)接收,一个肯定确认(ACK)被发送给该移动台,并且将不发送另外的子分组(回想一下,每个子分组以一种形式或者另一种形式包括完整的分组信息)。如果第一个子分组没有被正确地接收,那么,一个否定确认信号(NAK)被发送给该移动台,并且第二个子分组将被发送。该基站可以合并二个子分组的能量,并且试图解码。该处理过程可以被无穷地重复,虽然通常是指定子分组的最大数目。在此处描述的示例实施例中,可以发送最多四个子分组。因为接收了额外的子分组,因此提高了正确接收的概率。(注意,来自基站的第三个响应ACK和继续有益于降低请求/授权开销。在下面进一步详述这个选项)。
如刚才描述的,移动台在判断是否去使用自治传输以用低等待时间发送数据或者请求较高的速率传输并等待公共或特定的授权上,可以折衷等待时间的吞吐量。此外,对于给定的T/P,该移动台可以选择一个数据速率以适应等待时间或者吞吐量。例如,具有相对少的供传输的比特的移动台可以判断低的等待时间是所希望的。对于可用的T/P(在这个例子中,或许该自治传输最大值,但还可以是特定或者公共的授权T/P),该移动台可以选择速率和调制格式,使得该基站正确地接收第一个子分组的概率很高。虽然必要时重传是可用的,但很可能这个移动台将能在一个子分组中发送其数据比特。在此处描述的示例实施例中,每个子分组被在5ms中发送。因此,在这个例子中,移动台可以进行快速、自治的传送,很可能在基站上在5ms间隔之后接收。作为选择,注意,该移动台可以利用附加的子分组的可利用性,以提高对于给定的T/P发送的数据量。因此,移动台可以选择自治的传送以降低与请求和授权有关的等待时间,并且可以另外以吞吐量换取特定的T/P,以最小化需要的子分组的数目(从而最小化等待时间)。即使选择子分组的全部数目,与用于相对小的数据传送的请求和授权相比,自治的传送将是更低的等待时间。本领域技术人员将理解,当要发送的数据量增长时,需要多个用于传输的分组,可以通过切换到请求和授权格式降低总体等待时间,因为该请求和授权的不利结果将最终为在多个分组上的更高的数据速率的增加的吞吐量所抵销。在下面将利用一个传输速率和格式的例子组来进一步详述这个过程,传输速率和格式可以与不同的T/P分配有关。
移动台在该小区内处于变化的位置,并且以变化的速度移动将经历变化的信道状态。功率控制被用于保持反向链路信号。在基站上接收的导频功率可以被功率控制为是从不同的移动台近似相等的。那么,如上所述,该T/P比是一个在反向链路传输期间使用的通信资源量的指示符。对于给定的移动台发射功率、传输速率和调制格式,所希望的是在导频和通信量之间保持适当的平衡。
移动台可以具有有限量的可用的发射功率。因此,例如,通信速率可以是受该移动台功率放大器的最大功率限制的。移动台发射功率也可以由该基站使用功率控制和各种数据传输调度技术控制,以避免与其他的移动台过多的干扰。可用的移动台发射功率量将被分配以发送一个或多个导频信道、一个或多个数据信道,和任何其他相关的控制信道。为了提高数据吞吐量,可以通过降低编码率、提高符号率或者使用高阶调制方案来提高传输速率。实际来说,相关的导频信道必须被可靠地接收,以为解调提供相位参考。因此,该可用的发射功率的一部分被分配给该导频,并且增加那个部分将提高导频接收的可靠性。但是,增加分配给导频的可用发射功率的部分也降低供数据传输的可用功率的量,并且增加分配给该数据的可用发射功率的部分也提高解调可靠性。对于给定的T/P,可以确定一个适宜的调制格式和传输速率。
由于在数据传输要求方面的变化,和不连续的分配该反向链路给移动台,移动台的传输速率可能快速地变化。如刚才描述的,对于传输速率和格式,期望的导频功率电平因此可以瞬间改变。无需速率变化的先验知识(在没有调度中的代价高昂的信令或者降低的灵活性的情况下,其可以是期望的),功率控制环路可以试图阻碍在该基站上接收的功率中的突变,或许干扰了开始分组的解码。类似地,由于在功率控制中通常地采用递增的步长,一旦传输速率和格式已经被降低,可能要花费相对长的时间去降低导频。一种抵制这些和其他的现象(在下面进一步详述)的技术是除了主导频之外采用辅助导频。主导频可以用于功率控制和解调所有的信道,包括控制信道和低速率的数据信道。当对于更高的电平调制或者提高的数据速率需要附加的导频功率的时候,附加的导频功率可以被在辅助导频上发送。该辅助导频的功率可以相对于主导频和所选择的传输所需的递增的导频功率来确定。该基站可以接收两个导频,合并它们,并且使用它们以确定用于解调业务的相位和幅值信息。在辅助导频中瞬间的提高或者降低不干扰功率控制。
如刚才描述的,通过利用一个已经采用的通信信道,在下面进一步详述的示例实施例实现了辅助导频的好处。因此,容量通常被改善,部分地是因为所期望的工作范围,除需要执行导频功能之外,在该通信信道上发送的信息几乎不需要附加的容量。如在该领域中公知的,导频信号对于解调是有用的,因为其是一个已知序列,由此,信号的相位和幅值可以从导频序列中推导出以用于解调。但是,发送导频而没有携带数据耗费反向链路容量。因此,未知的数据被在“辅助导频”上调制,从而该未知的序列必须被确定,以便提取可用于业务信号解调的信息。在一个示例实施例中,反向速率指示信道(R-RICH)被用于提供反向速率指示符(RRI),所述反向速率指示符为与在R-SCH上的传输有关的速率。此外,按照导频功率需求调节R-RICH功率,其可以被在该基站上使用以提供辅助导频。该RRI是帮助确定R-RICH信道的未知分量的已知数值集合的一个。在一个替换的实施例中,任何信道可以被改变为用作辅助导频。在下面进一步详述这种技术。
反向链路数据传输
反向链路通常与前向链路有很大不同。下面是一些原因:在前向链路上,要花费附加的功率来从多个小区传送——在反向链路上,从更多的小区接收降低了需要的发射功率的量。在反向链路上,总有多个天线在接收移动台。这可以减轻一些经常出现在前向链路上的显著的衰落。
当该移动台处于在多个小区之间的边界地区位置的时候,前向链路Ec/Io由于其他小区的衰落将显著地变化。在反向链路上,在干扰方面的变化不是显著的,因为任何变化都是由于正反向链路上发送的所有移动台的接收功率的总和中的变化,所有反向链路的都是被功率控制的。
移动台在反向链路上是功率受限的。从而,取决于信道状态,该移动台可能有时不能以很高的速率发送。
移动台可能不能从接收该移动台的反向链路传输的基站接收前向链路。因此,如果该移动台依靠来自单个基站的信令传输,例如,一个确认,那么那个信令的可靠性可能是低的。
反向链路设计的一个目标是,只要存在要发送的反向链路数据,就在基站上保持相对固定的热噪声提升(Rise-over-Thermal,RoT)。在反向链路数据信道上的传输是以二种不同的方式处理的:
自治传输:这种情况用于需要低迟延的业务。移动台被允许立即发送,直至某个由服务基站(即,该移动台传送其信道质量指示符(CQI)的该基站)确定的传输速率。服务基站也被称为调度基站或者授权基站。对于自治传输的最大允许的传输速率可以由该服务基站动态地基于系统负载、阻塞等用信号通知。
调度传输:移动台发送其缓冲器大小的估计、可用功率及其他参数。基站确定何时允许该移动台被发送。调度器的目标是限制同时传输的数目,从而降低在移动台之间的干扰。该调度器可能试图使在小区之间的区域中的移动台以较低的速率发送,以便减少邻近小区的干扰,并且紧紧地控制RoT以保护在R-FCH上的语音质量、在R-CQICH上的DV反馈、和确认(R-ACKCH)以及该系统的稳定性。
在此处详述的各种各样的实施例包含一个或多个特点,所述一个或多个特点被设计成能改善吞吐量、容量和无线通信系统的反向链路的总体系统性能。仅仅为了说明性的目的,描述了1xEV-DV系统的数据部分,尤其是描述了不同的移动台在增强反向补充信道(R-ESCH)上的传输的优化。在这个部分中详述了在一个或多个示例实施例中使用的各种前向和反向链路信道。这些信道通常是在通信系统中使用的信道的子集。
图4描述用于反向链路数据通信的数据和控制信号的示范的实施例的。移动台106被示出在不同的信道上通信,每个信道连接到一个或多个基站104A-104C。基站104A被标注为调度基站。其他基站104B和104C是移动台106的活动集的一部分。示出了四种类型的反向链路信号和两种类型的前向链路信号。其被如下所述。
R-REQCH
移动台使用反向请求信道(R-REQCH)来从调度基站请求反向链路数据传输。在示例实施例中,请求是用于在R-ESCH(在下面进一步详述)上传输。在示例实施例中,在R-REQCH上的请求包括该移动台可以支持的T/P比、按照变化的信道状态的变量和缓冲器大小(即,等待传输的数据量)。该请求还可以指定用于等待传输的数据的服务质量(QoS)。注意,移动台可以具有单个指定用于该移动台的QoS级别,或者可选择地,用于不同的数据类型的不同的QoS级别。较高层的协议可以指示QoS,或者用于不同的数据业务的其他的期望的参数(诸如,等待时间或者吞吐量需求)。在一个替换的实施例中,和诸如反向基本信道(R-FCH)(例如用于语音业务)这样的其他反向链路信号一起使用的反向专用控制信道(R-DCCH),可用于携带访问请求。通常,访问请求可以被描述为包括一个逻辑信道,即,反向调度请求信道(R-SRCH),其可以被映射到任何的现有的物理信道上,诸如R-DCCH。该示例实施例是对诸如cdma2000这样的现有的CDMA系统向后兼容的,并且R-REQCH是一个可以在没有R-FCH或者R-DCCH的情况下采用的物理信道。为了清楚,术语R-REQCH被用于描述在此处实施例描述中的访问请求信道,虽然本领域技术人员将容易地扩展该原理到任何类型的访问请求系统,无论该访问请求信道是逻辑的或物理的。R-REQCH可以被断开直至需要一个请求,从而减少干扰和节省系统容量。
在示例实施例中,R-REQCH具有12个输入比特,其由以下构成:4比特来指定该移动台可以支持的最大R-ESCH T/P比、4比特来指定在该移动台的缓冲器中的数据量、和4比特来指定QoS。本领域技术人员将理解,许多的比特和各种其他的字段可以被包括在替换的实施例中。
F-GCH
前向授权信道(F-GCH)被从调度基站传送给移动台。F-GCH可以由多个信道组成。在示例实施例中,公共F-GCH信道被采用以进行公共授权,并且一个或多个单独F-GCH信道被采用以进行单独授权。授权是由调度基站响应于来自一个或多个移动台在其相应的R-REQCH上的一个或多个请求进行的。授权信道可以被标注为GCHx,这里该下标x标识信道编号。信道编号0可用于指示公共授权信道。如果采用N个单独信道,下标x可以是从1到N的范围。
可以对一个或多个移动台进行单独授权,其中每个移动台对所标识的移动台给出许可,在R-ESCH上以指定的T/P比或者以下来发送。在前向链路上进行授权将自然地引进开销,其使用一些前向链路的容量。在此处详述了用于减轻与授权有关的开销的各种选项,按照在此处所讲,其他的选项对于本领域技术人员将是显而易见的。
一个需要考虑的事项是,移动台将会被定位,而使每个移动台经历变化的信道质量。因此,例如,具有好的前向和反向链路信道的高几何形状的移动台可能对于授权信号需要相对低的功率,并且可能能够利用高数据速率,由此所希望的是使用一个单独授权。低几何形状的移动台,或者一个经历较深衰落的移动台可能需要显著更多的功率去可靠地接收一个单独授权。这样的移动台可能不是最适合于单独授权。在下面详述的对于这个移动台的公共授权在前向链路开销方面可能是更少地浪费的。
在示例实施例中,采用许多单独F-GCH信道以在特定的时间上提供相应数目的单独授权。F-GCH信道被码分多路复用。这便于能够以刚好到达该特定的想要的移动台需要的功率电平来发送每个授权。在一个替换的实施例中,可以采用的单个单独授权信道,同时单个授权数目被时分多路复用。为了改变在时分多路复用的单独F-GCH上的每个授权的功率可能引入额外的复杂度。在本发明范围内可以采用用于传送公共或者单独授权的任何的信令技术。
在某些实施例中,采用相对大量的单独授权信道(即,F-GCH),这样的采用可能是为了允许一次相对大量的单独授权。在这种情况下,所希望的可能是限制每个移动台必须监视的单独授权信道的数目。在一个示例实施例中,单独授权信道的总数的各种子集被定义。每个移动台被分配单独授权信道的一个子集去监视。这允许该移动台降低处理复杂度,并且相应地降低功耗。该权衡是在调度灵活性方面,因为调度基站不能任意地分配单独授权(例如,不能对单个组的成员进行所有的单独授权,因为那些成员按照设计不监视一个或多个单独授权信道)的集合。注意,灵活性的损失不一定导致容量损失。为了说明,考虑了包括四个单独授权信道的例子。偶数的移动台可以被分配去监视开头两个授权信道,并且奇数的移动台可以被分配去监视最后二个授权信道。在另一个例子中,该子集可以有重叠,诸如偶数的移动台监视最初的三个授权信道,和奇数的移动台监视最后的三个授权信道。很明显,调度基站不能任意地从任何一个组(偶数或者奇数)中分配四个移动台。这些例子仅仅是说明性的。在本发明范围内可以采用具有子集任何配置的许多信道。
已经进行请求、但是没有接收到单独授权的剩余的移动台可以被给出许可,使用公共授权在R-ESCH上发送,该公共授权指定最大的T/P比,剩余的移动台的每个必须遵守该最大的T/P比。公共F-GCH也可以被称为前向公共授权信道(F-CGCH)。移动台监视一个或多个单独授权信道(或者其子集)以及公共F-GCH。除非给出一个单独授权,否则如果公共授权被发出,该移动台才可以发送。公共授权指示最大的T/P比,在其上剩余的移动台(公共授权移动台)可以对具有某个类型QoS的数据进行发送。
在示例实施例中,每个公共授权对于许多的子分组传输间隔是有效的。一旦接收到公共授权,已经发送请求但是没有得到单独授权的移动台可以在后续的传输间隔内开始发送一个或多个编码器分组。该授权信息可以被重复多次。这允许该公共授权被相对于一个单独授权以降低的功率电平发送。每个移动台可以合并来自多路传输的能量,以可靠地解码该公共授权。因此,公共授权可以被选择用于具有低的几何形状的移动台,例如,其中单独授权就前向链路的容量而言被认为是太浪费。但是,公共授权仍然需要开销,并且在下面详述了用于降低这种开销的各种技术。
F-GCH由基站发送给每个移动台,所述每个移动台被该基站调度以用于传输一个新的R-ESCH分组。在拥塞控制变为必需的情况下,在传输或者重传编码器分组以迫使移动台改变其用于编码器分组的后续的子分组的传输的T/P比的过程中,F-GCH也可以被发送。
在下面详述的是时序的例子,包括具有访问请求和任何一个(单独或者公共)类型的授权的相互关系的需求的各种实施例。另外,在下面详述了用于降低授权数目、以及从而降低相关的开销以及用于拥塞控制的技术。
在示例实施例中,该公共授权由12比特构成,包括3比特类型字段来指定后续的9比特的格式。剩余的比特指示在类型字段中所指定的3个类别的移动台最大允许的T/P比,3比特表示每个类别的最大允许的T/P比。移动台类别可以基于服务等级(GOS)需求、或者其他的准则。可以预见各种其他的公共授权格式,并且对于一个本领域普通的技术人员来说是显而易见的。
在示例实施例中,一个单独授权包括12比特,包括:11比特用来指定被授权去发送的该移动台的移动台ID和最大允许的T/P比,或者用来明确地向该移动台发信号以改变其最大允许的T/P比,包括设置该最大允许的T/P比为0(即,告诉该移动台不发送R-ESCH)。该多个比特指定了对于指定的移动台的移动台ID(192个值中的1个)、和最大允许的T/P(10个值中的1个)。在一个替换的实施例中,可以为指定的移动台设置1个长授权(long-grant)比特。当该长授权比特被设置为1的时候,该移动台被授权许可在那个ARQ信道上发送相对大的固定的、预定数量(其可以被利用信令来更新)的分组。如果该长授权比特被设置为0,该移动台被授权来发送一个分组。移动台可以被通知要用为0的T/P比指定来关闭其R-ESCH传输,这可以被用于向移动台发信号以关闭其在R-ESCH上的传输,如果长授权比特是关着的,则关闭持续单个分组的单个子分组传输,如果长授权比特是开着的,则关闭持续更长的周期。
R-PICH
反向导频信道(R-PICH)被从移动台发送给在活动集中的基站。可以在一个或多个基站上测量R-PICH中的功率以用于反向链路功率控制。如在该领域公知的,导频信号可用于提供幅度和相位测量以用于相干解调。如上所述,对于移动台的可用的发射功率的量(受调度基站的限制、或者受移动台的功率放大器的固有限制的限制)被在导频信道、一个业务信道或者多个业务信道、以及控制信道之中分解。对于较高的数据速率和调制格式可能需要额外的导频功率。为了简化用于功率控制的R-PICH的使用,和为了避免在需要的导频功率中某些与瞬间变化有关的问题,一个附加的信道可以被分配以用作补充或辅助的导频。虽然如在此处公开的,通常导频信号被使用已知的数据序列传送,但是还可以采用一个信息承载信号,以用于产生用于解调的参考信息。在一个示例实施例中,R-RICH(在下面详述)用于携带期望的附加的导频功率。
R-RICH
反向速率指示信道(R-RICH)是由移动台使用的,以指示在反向业务信道R-ESCH上的传输格式。R-RICH包括5比特消息。正交编码器模块将每个5比特输入序列映射到32符号正交序列。例如,每个5比特输入序列可以被映射到长度为32的不同的沃尔什码。序列重复模块重复32个输入符号的序列三次。比特重复模块在其输出端上提供被重复96次的该输入比特。序列选择器模块在两个输入之间选择,并且将那个输入传递给输出端。对于零速率,该比特重复模块的输出被整个传送。对于所有其他的速率,该序列重复模块的输出被整个传送。信号点映射模块将一个输入比特0映射到+1,并且将一个输入比特1映射到-1。在该信号点映射模块之后是沃尔什扩展模块。该沃尔什扩展模块将每个输入符号扩展为64个码片。每个输入符号乘以一个沃尔什码W(48,64)。沃尔什码W(48,64)是长度为64个码片和索引为48的沃尔什码。TIA/EIA IS-2000提供了描述各种长度沃尔什码的表。
本领域技术人员将明白,这种信道结构仅仅是一个例子。在替换的实施例中可以采用各种其他的编码、重复、交织、信号点映射或者沃尔什编码参数。也可以采用在该领域中公知的附加编码或者格式化技术。这些修改落在本发明的范围之内。
R-ESCH
在此处描述的示例实施例中增强反向补充信道(R-ESCH)被用作反向链路业务数据信道。对于R-ESCH可以采用传输速率和调制格式。在一个示例实施例中,R-ESCH具有以下的特性:支持物理层重传。对于当第一编码是1/4速率码的时候的重传,该重传使用1/4速率码,并且追赶合并(Chase combining)被使用。对于当第一编码是大于1/4的速率的时候,使用递增的冗余度。优先的编码是1/5码速率。作为选择,递增的冗余度也可以用于所有的情况。
自治的和调度的用户两者都支持混合自动重发请求(HARQ),其中两者都可以访问R-ESCH。
对于第一编码是1/2速率码的情况,该帧被编码为1/4速率码,并且该编码的符号被平分为二个部分。符号的第一半被在第一传输中发送,第二半被在第二传输中发送,然后第一半被在第三传输中发送等等。
利用在重传之间固定的时序可以支持多个ARQ信道同步操作:可以允许在相同的数据分组的连续子数据分组之间固定数量的子分组。也允许交替(interlaced)传输。作为一个例子,对于5ms帧,以在子分组之间的3个子分组延迟可以支持4个信道ARQ。
表1列出对于增强反向补充信道的示例的数据速率。描述了5ms的子分组大小,并且伴随的信道已经被设计成能适应这种选择。如对本领域技术人员是显而易见的,也可以选择其他的子分组大小。导频基准电平不对于这些信道而调节,即,在选择T/P以瞄准一个给定的工作点上,基站具有灵活性。这个最大的T/P值被在前向授权信道上用信号通知。如果移动台用完了用来发送的功率,那么该移动台可以使用更低的T/P,使HARQ满足所需要的QoS。第3层信令消息也可以在R-ESCH上发送,允许该系统无需FCH/DCCH去操作。
表1.增强反向补充信道参数
每个编码器分组的比特数 | 5ms时隙的数目 | 数据速率(kbps) |
数据速率/9.6kbps |
编码率 |
交织器之前的符号重复因子 | 调制 | 沃尔什信道 |
所有子分组中二进制编码符号的数目 |
包括重复的有效编码率 |
192192192192 |
4321 |
9.612.819.238.4 |
1.0001.3332.0004.000 |
|
2222 |
BPSK onIBPSK onIBPSK onIBPSK onI |
++--++--++--++-- |
6,1444,6083,0721,536 |
1/321/241/161/8 |
384384384384 |
4321 |
19.225.638.476.8 |
2.0002.6674.0008.000 |
|
1111 |
BPSK onIBPSK onIBPSK onIBPSK onI |
++--++--++--++-- |
6,1444,6083,0721,536 |
1/161/121/81/4 |
768768768768 |
4321 |
76.8102.4153.6307.2 |
40005.3338.00016.000 |
|
1111 |
QPSKQPSKQPSKQPSK |
++--++--++--++-- |
12,2889,2166,1443,072 |
1/161/121/81/4 |
1,5361,5361,5361,536 |
4321 |
76.8102.4153.6307.2 |
8.00010.66716.00032.000 |
|
1111 |
QPSKQPSKQPSKQPSK |
+-+-+-+- |
24,57618,43212,2886,144 |
1/161/121/81/4 |
213042,3042,3042,304 |
4321 |
115.2153.6230.4460.8 |
12.00016.00024.00048.000 |
|
1111 |
QPSKQPSKQPSKQPSK |
++--/+-++--/+-++--/+-++--/+- |
36,86427,64818,4329,216 |
1/161/121/81/4 |
3,0723,0723,0723,072 |
4321 |
153.6204.8307.2614.4 |
16.00021.33332.00064.000 |
1/51/51/51/5 |
1111 |
QPSKQPSKQPSKQPSK |
++--/+-++--/+-++--/+-++--/+- |
36,86427,64818,4329,216 |
1/121/91/61/3 |
4,6084,6084,6084,608 |
4321 |
230.4307.2460.8921.6 |
24.00032.00048.00096.000 |
1/51/51/51/5 |
1111 |
QPSKQPSKQPSKQPSK |
++--/+-++--/+-++--/+-++--/+- |
36,86427,64818,4329,216 |
1/81/61/41/2 |
6,1446,1446,1446,144 |
4321 |
307.2409.6614.41228.8 |
32.00042.66764.000128.000 |
1/51/51/51/5 |
1111 |
QPSKQPSKQPSKQPSK |
++--/+-++--/+-++--/+-++--/+- |
36,86427,64818,4329,216 |
1/62/91/32/3 |
在一个示例实施例中,turbo编码被用于所有的速率。利用R=1/4编码,使用一个类似于当前的cdma 2000反向链路的交织器,并且如果第二个子分组被发送,其具有与第一个子分组相同的格式。利用R=1/5编码,使用一个类似于cdma 2000前向分组数据信道的交织器,并且如果第二个子分组被发送,所选择的用于第二个子分组的编码和交织的符号序列跟在所选择的用于第一个子分组的那些之后。最多允许两个子分组传输,并且如果发送第二个子分组,其使用与第一个子分组传输相同的数据速率。
每个编码器分组的比特的数目包括CRC比特和6个尾部比特。对于一个192比特的编码器分组大小,使用12比特CRC;否则,使用16比特CRC。每个帧具有信息比特的数目比cdma 2000相应速率的多2个。假设为由15ms分开5ms的时隙,以允许ACK/NAK响应的时间。如果接收到ACK,该分组的剩余的时隙不传送。
刚刚描述的5ms子分组持续时间和相关的参数仅作为一个示例。按照在此处所讲的,速率、格式、子分组重复选项、子分组持续时间等的许多组合,对于本领域技术人员来说将是显而易见的。可以采用一个使用3个ARQ信道的替换的10ms实施例。在一个实施例中,选择单个子分组持续时间或者帧长。例如,将会选择5ms或者10ms的结构。在一个替换的实施例中,一个系统可以支持多个帧持续时间。
F-CACKCH
由基站使用前向公共确认信道或F-CACKCH,以确认正确接收R-ESCH、以及去扩展一个现有的授权。在F-CACKCH上的确认(ACK)指示正确接收一个子分组。就不必再由该移动台额外传输那个子分组。在F-CACKCH上的否定确认(NAK)允许该移动台去发送下一个子分组,直至每个数据分组允许的子分组的最大数目。第三个命令ACK和继续(ACK-and-Continue)允许该基站去确认成功接收一个数据分组,并且同时允许该移动台使用导致成功地接收数据分组的该授权去发送。F-CACKCH的一个实施例对于ACK符号使用+1值,对于NAK符号使用NULL符号,和对于ACK和继续符号使用-1值。在在下面进一步详述的各种示例实施例中,可以在一个F-CACKCH上支持高达96个移动台ID。可以采用附加的F-CACKCH以支持额外的移动台ID。
在F-CACKCH上开关键控(on-off keying)(即,不发送NAK)允许基站(特别是非调度基站)当发送ACK的耗费(需要的功率)太高的时候,可以选择不发送ACK。这给基站提供了一个在前向链路和反向链路的容量之间的折衷方案,因为没有被确认的正确接收的分组将有可能在稍后的时间点上触发重传。
哈达马(Hadamard)编码器是一个用于映射到一组正交函数上的编码器的例子。也可以采用各种其他的技术。例如,任何的沃尔什码或者正交可变扩频因子(OVSF)码生成可用于编码。如果采用独立的增益模块,可以以不同的功率电平发送给不同的用户。F-CACKCH为每个用户传送一个专用三值标记。每个用户监视来自其活动集(或者,作为选择,信令可以定义一个减少的活动集以降低复杂度)中的所有基站的F-ACKCH。
在各种实施例中,两个信道每个是由128码片的沃尔什覆盖序列覆盖的。一个信道被在I信道上发送,并且另一个信道被在Q信道上发送。F-CACKCH的另一个实施例使用单个128码片沃尔什覆盖序列(Walsh cover sequence),以同时支持高达192个移动台。这种方法对于每个三值标记使用10ms持续时间。
存在若干操作ACK信道的方法。在一个实施例中,可以操作使得对于一个ACK,“1”被发送。无传输隐含一个NAK,或者“关闭”状态。一个“-1”传输指的是ACK和继续,即,相同的授权被重复给该移动台。这节省新的授权信道的开销。
回顾一下,当移动台具有一个需要使用R-ESCH发送的分组的时候,其在R-REQCH上发送请求。基站可以使用F-CGCH或者F-GCH以一个授权来响应。但是,这个操作代价稍微较高。为了降低前向链路开销,F-CACKCH可以发送“ACK和继续”标记,其由调度基站以低成本扩展现有的授权。这种方法用于单独和公共授权两者。ACK和继续被从授权基站使用,并且对于在相同的ARQ信道上的1个以上的编码器分组扩展当前的授权。
注意,如图4所示,不是在活动集中的每个基站都需要去发回F-CACKCH。在软切换中发送F-CACKCH的基站组可以是活动集的子集。用于发送F-CACKCH的示例技术在2003年6月30日提交的,名为“CODE DIVISION MULTIPLEXING COMMANDS ON A CODEDIVISION MULITIPLEXED CHANNEL”,转让给本发明的受让人的共同未决的美国专利申请号No.10/611,333中公开。
示例实施例和时序图
为了概括以上介绍的各种特点,移动台被授权来进行自治传输,虽然或许在吞吐量方面受到限制,但是其考虑到了低迟延。在这种情况下,该移动台无需达到最大的R-ESCH T/P比T/PMax_auto就可以发送,其中T/PMax_auto可以由基站通过信令来设置和调整。
在一个或多个调度基站上确定调度,并且通过在F-GCH上以相对高的速率发送的授权进行反向链路容量的分配。因此,可以采用调度以紧密地控制反向链路负载,从而保护语音质量(R-FCH)、DV反馈(R-CQICH)和DV确认(R-ACKCH)。
单独授权允许详细控制移动台的传输。可以基于几何形状和QoS来选择移动台,以使吞吐量达到最大值,同时保持需要的服务级别。公共授权允许高效的通知,特别是对低几何形状的移动台。
F-CACKCH信道可以发送“ACK和继续”命令,其以低成本扩展现有的授权。这用于单独授权和公共授权两者。
图5是说明自治传输的时序图。在这个例子中,对于4个ARQ信道采用5ms子分组长度。在这个例子中,移动台有数据到达以用于传输,所述传输可以使用自治传输被充分地发送。该移动台不需要经历由请求和后续的授权引入的延迟。而是,其可以在下一个ARQ信道中立即发送。在这个示例的系统中,移动台将不进行请求,除非其具有大于可以以自治传输发送的数据量。传输速率、调制格式和功率电平将由在这个例子中由参数T/PMax_auto给出的允许自治传输的最大业务量导频比(T/P)来限制。因此,该移动台不需要进行请求,除非其具有超出T/PMax_auto的可用发射功率。移动台可以选择在进行请求的同时使用自治传输,以开始数据传输(在下面进一步详述)。即使当数据量和可用发射功率大于请求的最小值时,该移动台可以先行一个请求,如果该系统拒绝接受自治传输,则可以尽可能地避免请求和授权处理以及其相关的延迟。在这个例子中,该移动台在3个ARQ信道中发送其数据。
由移动台传送的数据被标识在标注为“MS Tx”的线路上。在该数据抵达之后,该移动台选择在4个可用的ARQ信道中的3个上发送数据。这三个5ms传输被标注为自治的TX 1-3。注意,R-RICH被连同导频一起传送,如上所述。通常,该移动台的传输可以由单个基站或者在软切换中的多个基站接收。为了清楚,在图5中,仅示出一个基站响应该移动台传输。该基站通过在F-CACKCH上向该移动台发送ACK、NAK或者ACK和继续命令给来响应。对第一传输即自治的TX 1的响应与自治的TX 3被同时发送,在中间的有一个子分组间隙,以允许该基站有时间充分地接收、解调和解码该第一传输,并且确定是否该子分组被正确地接收。如上所述,先前传送的子分组可以与当前的子分组在解调的过程中合并。在这个例子中,第一传输没有被正确地接收。因此,该基站将以NAK响应。在这个实施例中,ACK被作为+1发送,NAK被作为0发送,并且ACK和继续被作为-1发送。因此,因为NAK被作为0发送,所以通过不在F-CACKCH上发送来指示NAK,如上所述。第二和第三传输被正确地接收,并且因此被确认。注意,三个ARQ信道被该移动台使用,并且第四个被保留为空闲。通常,移动台可以在任何的ARQ周期期间自治地发送。
在这个例子中,对第一传输发送的NAK并不用于最后的子分组(在这个例子中,对于每个分组允许多达四个子分组传输)。因此,该移动台将会重传。为了接收和解码F-CACKCH命令,在NAK 1和第一传输的重传Re-Tx 1之间将会出现子分组延迟。因此,在这个例子中,如所示出的,存在20ms的重传延迟。
图6说明一个示例系统,其中移动台与调度基站通信。一组移动台MSA-MSN没有数据要发送。另一组移动台MSN+1-MSN+M将不经请求自治地发送。四个移动台MS1-MS4将向该调度基站BS发出请求,以及在等待可能的授权的同时自治地发送。这些传输和请求出现在标注为请求的列中。
当移动台具有足够的功率和足够的数据的时候,该移动台请求R-ESCH高速传输。可支持的R-ESCH T/P至少是比T/PMax_auto高一个等级,并且在考虑到授权延迟期间的自治传输和T/PMax_auto之后,在缓冲器中的数据足以满足至少一个大于由T/PMax_auto支持的编码器分组。在这个实施例中,也可以利用最小的重新请求时间来限制请求。为了避免过多的请求,当刚刚描述的功率和队列条件得到满足时,定时器可用于确保在先前的请求和新的请求之间已经有预先确定的时间量。注意该定时器长度可以被可确定地或者随机地设置。当该缓冲器大小已经增加或者由于最后的请求也变化导致可支持的T/P已经变化的时候,各种实施例可以允许不考虑定时器需求。在这个实施例中,移动台使用R-REQCH请求R-ESCH传输。一个示例的请求消息包括4比特,每个用于可支持的R-ESCH T/P、数据队列长度和QoS级别。无数的请求消息结构可以预见的,并且按照在此处所讲的,将会很容易地由本领域技术人员采用。
也可以采用各种优先方案。例如,QoS等级可以确定是否、或者以什么速率,该移动台可以发送一个请求。例如,与经济用户相比高级用户可以被赋予更高的访问优先级。不同的数据类型也可以被分配不同的优先级。优先方案可以是确定的或者随机的。与该优先方案有关的参数可以经由信令被更新,并且可以基于诸如负载这样的系统状态来改变。
在标识为“授权:单独和公共”的列中,调度基站BS接收传输和请求。BS基于所接收的请求确定如何去分配授权。该BS可以考虑所期望的自治传输的数目和可用的反向链路容量(按照其他支持的信道,包括非DV信道,诸如语音及其他反向链路数据或者控制信道),以便确定如果有的话可以支持什么类型的授权。在这个例子中,GCH0被定义为公共授权信道。公共授权被发出,包括对于该授权的类型、QoS和T/P。在这个例子中,标识出类型“000”,服务质量QoS1和T/P=5dB被赋予给该公共授权。本领域技术人员将会理解,在任何给定的系统中可以采用许多的类型或者QoS指定(designation)。在一个替换的实施例中,公共授权可以简单地用于任何请求的移动台,具有服务质量需求高于某个级别的任何请求的移动台、或者任何期望的复杂度级别可以被采用去配置不同的移动台,以基于在移动台之间期望的区别级别来响应一个授权。在另一个替换的实施例中,可以采用多个公共授权信道,并且不同的移动台被分配去在授权信道的不同的子集上响应授权。这个分配可以基于移动台需要的QoS级别、该移动台的软切换状况或者其他的因素。
在这个实施例中,基站可以同时地对高达N个移动台进行特定的授权或单独授权,以发送一个新的编码器数据分组。单独授权的数目N可以按照该系统容量以及变化的负载情况来确定。
在示出的例子中,每个F-GCH(除公共授权信道GCH0之外)授权一个移动台,虽然在一个替换的实施例中,特定授权可以被送往一组移动台,其中该组移动台通过使用公共(组)ID被分配给一个授权信道,该公共(组)ID被分配给在该组中的移动台。在这个例子中,授权消息包括12比特有用负荷,其中是8比特的移动台ID和4比特允许的R-ESCH T/P。该单独授权适用于单个ARQ信道。在一个替换的实施例中,还可以支持长授权消息,以及一个标记以用于在该授权中包括一个或多个附加的ARQ信道。在此处描述的各种实施例中,为了清楚将描述单个ARQ信道的特定授权。本领域技术人员将会容易地将公开的原理扩展为长授权。
为了降低在移动台中解码授权的复杂度,可以通知移动台只是监视该授权信道的子集。
在这个实施例中,基站可以使用F-GCH0为剩余的请求MS进行公共授权。由于公共GCH在一个固定的沃尔什码上,因此不需要移动台ID。如在下面进一步详述的,在F-GCH0上消息的被重复超过20ms(4个ARQ信道),以节省前向链路功率。(回想一下,公共授权的一个好处是到达低的几何形状的移动台,特定的授权对于其将会是相对代价高的)。授权消息的内容是可扩展的:在这种情况下,3比特被指定用于一个TYPE(类型)字段。该TYPE字段可以指定任何期望的参数。在这个例子中,其还确定用于QoS指定的格式(即,TYPE=“000”对应于QoS等级j的3比特的T/Pj,j=0,1,2)。在该领域已知的任何其他的类型可用于扩展这个信道。
在这个例子中,对移动台MS1和MS3进行两个特定授权,如由MAC_ID 1和3所指示的。这些授权在授权信道GCH1和GCH2上进行。该两个特定授权分别地允许8dB和12dB的T/P。被赋予特定授权的移动台将能够确定对于每个分配的T/P所期望的数据速率和调制格式(在下面进一步详述)。注意到,仅仅MS1和MS3接收特定授权。因此,MS2和MS4将会依赖于公共授权,并且其较低的T/P为5dB。
在标注的传输列中,如果有数据的话,不同的移动台将会按照公共和特定授权、或者自治地,来发送数据。
图7说明响应于在图6的例子中给出的授权和自治传输的该系统载荷。为期望的总体系统负载定义了目标负载。标识出一个干扰分量,其可以包括各种由该系统支持的可替换的语音和/或数据信道(例如,在1xEV-DV系统中的非DV信道)。确定公共和单独授权以允许授权的传输(公共和单独)、期望的自治传输和等于或低于该目标负载的干扰的总和。如果目标负载被超出(需要过多的重传),吞吐量会被降低,降低了容量。当系统负载低于目标负载的时候,一些反向链路容量未被利用。因此,调度基站确定单独授权以有效地装载该反向链路。对应于在图6中描述的示例请求,示出了由移动台MS1-MS4进行的传输。基站在调度方面具有灵活性。例如,在这种情况下,基站从其请求中知道,MS2将会基于该公共授权在两个数据分组内结束其传输。因此,可以对于示出的后面两个数据分组提高对MS1的单独授权。
图8是一个时序图,示出了连同自治传输和F-CACKCH的操作一起的请求和授权操作。这个例子示出一个无需软切换而与调度基站通信的移动台。在这个例子中,采用四个5ms ARQ信道。一个本领域技术人员按照在此处公开的原理可以采用无数的其他配置。
在数据到达该移动台供传输之后,该移动台确定支持对于反向链路上增长的吞吐量的授权请求的条件。该移动台形成一个请求消息,并且将其连同一个自治传输TX 1一起传送以便开始。在这个例子中,该请求有5ms的持续时间。较短的请求和/或授权便于更快地分配反向链路资源,以及更快地调整那些分配。更长的请求和/或授权可以以较低的功率传送,或者可以更容易到达较低的几何形状的移动台。分组持续时间、请求持续时间、授权持续时间等的任何不同的置换是可以预见的到的,并且按照在此处的所讲的,将会容易地由本领域技术人员采用。
在以下的ARQ信道期间,基站接收该请求,连同来自其他支持的移动台的任何请求,并且将其解码。在解码之后,该基站进行调度判定,即,如果有的话,将会进行什么类型的单独或者公共授权。在这期间,该移动台自治地在第二ARQ信道上发送第二个子分组TX 2。移动台也使用这个分组持续时间以解码所接收的TX 1。
在第三个ARQ信道期间,由调度基站对移动台进行5ms授权。上面描述了一个示例的授权消息。除了识别对其进行授权(其可以以各种方法进行,包括使用移动台ID,或者用于该移动台的特定授权信道等)的移动台之外,一个最大的T/P被分配用于该授权的持续时间。同时,该移动台继续其自治传输,发送TX 3。该基站必须花费时间去解码TX 1,并且确定是否其被正确地接收。在这个例子中,其被正确地接收,因此,在该调度(或者授权)基站的F-CACKCH上,在分配给这个移动台的子信道上,发送了一个ACK。本领域技术人员将理解,也可以采用任何可替换的技术或者装置以将该ACK传送给发送的移动台。
在第四个ARQ信道期间,该移动台将会从调度基站接收和解码ACK和授权。同时,其继续其自治传输,发送TX 4。在这个例子中,调度基站没有正确地接收TX 2的自治传输,因此,对TX 2的NAK是通过在F-CACKCH上的无传输指示的。
已经在第四个ARQ信道中解码了NAK和授权,该移动台在第五个数据分组中进行调度传输,其是第一个ARQ信道的再一次。注意,为了降低前向链路开销,一个替换的实施例在单独GCH正在发送一个授权给移动台的同时,不发送ACK。也就是说,该移动台将会把接收的授权理解为并发的授权和一个ACK。该移动台确定授权的T/P所期望的速率和调制格式,并且进行那个传输,TX 5,而不是以受限的自治的T/P发送。注意,在这个例子中,R-RICH被发送,同时速率指示器处于提高的功率,以在解调更高的速率传输方面给予帮助,如上所述。注意在第一个子分组持续时间中的请求、在第三个子分组持续时间中所响应的授权和在第五个中按照该授权的传输之间的因果关系。此外,在这个第五个子分组持续时间期间,该基站对应于TX 3发送一个ACK。
在第六个子分组持续时间,或者ARQ 2中,该移动台已经解码对TX 2的NAK,并且重传那个子分组。同时,该基站响应于正确解码自治的TX 4而发送一个ACK,并且将会试图去解码在先前的帧中发送和接收的TX 5。
在第七个子分组持续时间中,基站已经确定TX 5被错误地解码,并且指示一个NAK,即,在这个例子中,不发送。这可能是由于以下的事实,即,移动台在由授权指定的T/P参数内,对其期望的数据传输类型具有某些自行判断的能力。因此,如果期望低等待时间的吞吐量,该移动台将选择可能导致第一个子分组被正确地解码的速率和调制格式(虽然可能仍然需要一个或多个子分组,在这种情况下,可以按照第一个传输期望的成功概率来选择该速率)。或许,在这个例子中,该移动台已经代之以选择一个速率和格式以在授权期间获取最大的数据吞吐量。在这种情况下,在进行正确解码之前,有可能需要所有允许的子分组(在这个例子中是4个)。因此,接下来两个重传的分组5也有可能被否定确认。该基站合并来自每个后续传输的子分组,以提高解调性能,如上所述。当然,该速率也可以被选择使得可能仅仅需要两个重传等。这个选择过程将会在下面更详细地描述。同时,该移动台自治地在这个ARQ信道(在这个例子中,ARQ信道3)上发送TX 6。
在第八个子分组持续时间期间,该移动台被赋予一个机会,以解码在先前的帧中发送和接收的NAK。同时,自治传输继续在这个第四个ARQ信道上作为TX 7被发送。
在第九个子分组持续时间中,该移动台已经解码对TX 5的NAK,因此,TX 5被重传。注意,在这个例子中,从一个传输到后续帧中那个分组的重传存在20ms延迟。还要注意的是,从该请求到第一个机会为止存在20ms延迟,该第一个机会,如果有的话,用于响应于按照该请求做出的授权来发送。
图9是一个说明ACK和继续命令的示例操作的时序图。这个示意图非常类似于图8,因此,将仅突出差别。采用了与在图8中相同的四个5ms ARQ信道,并且一样存在自治传输。TX 2也被否定确认,如前所述。
但是,在这个例子中,注意,响应于请求进行的单独授权仅是用于一个编码器分组。当TX 5响应该授权被传送的时候,在TX 5被正确地接收(在图8是被错误地接收,并且必须被重传)时基站有二个备选方案。该基站将会知道是否该移动台的缓冲器包含更多的数据,如在请求中给出的。为了避免与新的授权和请求有关的信令上的开销和花费,该基站可以确定应该继续该单独授权。当然,该基站考虑到期望的自治的载荷、来自其他信道的干扰以及其他公共和单独授权。在这个例子中,该基站进行这样的确定,并且在F-CACKCH上发送ACK和继续。这向移动台指示TX 5被正确地接收,不需要额外的重传。此外,该移动台知道无需一个额外的请求其可以继续其调度传输。因此,如所示,响应于ACK和继续命令,该移动台发送调度传输TX8。
如果无论什么原因该基站已经判定该移动台最好不继续发送,可以发送一个ACK,而不是ACK和继续。然后,该移动台将会仍然意识到TX 5被正确地接收,并且将不需要重传。但是,该移动台的授权现在已经期满,因此,在第九个子分组持续时间(未示出细节)期间,将仅可利用自治传输。在下面将进一步详述采用ACK和ACK和继续的各种选择和技术。
图10是一个说明公共授权操作的时序图。如上所述,所有请求的移动台可以通过最大R-ESCH T/P T/PMax_common的公共授权被授权,这里T/PMax_common≥T/PMax_auto。没有单独授权的移动台可以使用在请求之后在时间Dreq_grant上接收的第一个F-GCH0公共授权。这个延迟确保调度基站有时间来接收该请求,并且相应地改变该公共授权。对于在该授权结束之后5ms开始的F-GCH0的重复持续时间,该公共授权是有效的。这些特定的参数仅仅是为了论述清楚而定义的,因为在替换的实施例中可以采用任何的参数。
如在图9中描述的,基站可以使用ACK和继续来扩展用于被公共授权的移动台的该授权。这实际上使用先前的公共授权来设置传输参数,转换选择的移动台的公共授权为一个用于每个的单独授权。此外,发送一个新的公共授权可用于降低对那些未接收到ACK和继续的移动台的T/P。基站可以自由地避免发送一个新的公共授权,因此几乎除去所选择的移动台。发送ACK给选择的移动台可以用于除去对那些移动台的公共授权。当然,可以给一个或多个预先地被公共授权的移动台进行特定授权以减少或者撤消其公共授权,虽然可以证明用于这个目的特定授权的耗费太高了。在一个替换的实施例中,如果如此期望,一个新的T/PMax_common可以利用ACK和继续操作,被应用于被公共授权的移动台,允许其授权被以单个公共授权来整体修改。在又一个备选方案中,如果利用ACK和继续在公共授权之下继续的移动台所使用的公共授权T/P提高,该移动台可以利用更高的T/P。可以采用这些技术的任何组合。信令可用于响应于公共授权来修改移动台的行为,并且不同类别的移动台可以基于其类别遵循不同的规则。因此例如,高级的或者经济的状态可以被赋与移动台,或者被赋与不同分类的数据类型。
因此,在这个例子中,在图10中示出的该请求太迟,而不能允许MS1去使用公共授权1,如所示。在示出的该请求之后的一个可能的请求将会太迟,而不能允许MS1去使用公共授权2。注意,在这个例子中,在GCH2和GCH1上发送的单独授权都不送往MS1。在这个公共授权例子中,该公共授权被在GCH0上传送并且被重复20ms以上。这允许该公共授权被以比单独授权相对更低的功率发送,降低该公共授权需要的反向链路容量,并且允许其被用于到达更低的几何形状的移动台。可以采用任何的编码方案以提高该公共授权有效的到达。例如,该授权可以被重复4次,每个重复5ms。该移动台可以合并解码该授权所需数量的授权重复。在另一个备选方案中,可以采用前向差错控制(FEC)编码方案,其在整个公共授权周期上扩展该授权。各种编码方案在本领域是公知的。
响应于公共授权2而发送MS1的调度传输,在公共授权2的末尾和该调度传输的开始两者之间有5ms帧,以允许该移动台有时间来解码该公共授权。该公共授权对于20ms或者4个ARQ信道是有效的。在这个实施例中,虽然可以采用任何长度的授权持续时间,但是使用了一个比单独授权更长的公共授权持续时间。这允许公共授权(当单独授权是昂贵的时候可以使用)的频率对于一定量的数据传输更低。一个替换的实施例具有公共授权信道,其可以具有更短的或者更长的持续时间,但是有更少的有效载荷(每个授权更少的比特),以便降低前向链路功率消耗。注意,在前向链路上的沃尔什空间开销也将通过一个具有更少比特的授权信道被降低。
从请求到调度传输的延迟,即公共授权延迟因此是最小35ms,如果该请求相对于公共授权2的开始更早地发生,其可能是更长。这个例子允许基站采用一种保守的调度方法,其中所有的请求在公共授权发出前是已知的。在相对更自由的备选方案中,移动台可以被允许去钉在最新有效地接收的公共授权上,如果利用公共授权的请求的数目证明是太高,需要基站减少公共授权。
注意,为了清楚,在图10中,自治传输被省略。MS1有可能将会发送在公共授权延迟期间所可用的数量的自治传输。一个系统实施例可以指示MS1利用可用的自治传输,但是这不是强制性的。在各种替换的实施例中,移动台可以被允许进行选择来进行请求同时进行自治传输,当请求和等待授权时可以被要求自治地发送,或者当请求被挂起时可以被禁止自治地发送。本领域技术人员将会使用单独和公共授权的各种组合,容易地采用自治的和调度传输的无数配置。
图11是一个时序图,说明在软切换中非授权基站参与解码来自移动台的反向链路传输和到该移动台的确认。最初的六个帧类似于在图8中所描述。该移动台进行请求以发送数据,以及进行自治传输TX 1-4。授权基站接收该请求,对其解码,并且确定适宜的调度。进行了一个单独授权,在其之后,该移动台发送调度传输TX 5。如在图8中,该授权基站没有正确地解码TX 2,并且否定确认那个子分组。在软切换中监视该移动台的反向链路传输的非授权基站,没有正确地解码最初的4个自治传输TX 1-4的任何一个。因此,如在图8中,没有基站确认TX 2,并且该移动台重传TX 2。如在图8中,授权基站也否定确认调度传输TX 5。但是,非授权基站确实正确地解码了TX 5,因此,在非授权基站的F-CACKCH上发送一个ACK。因此,在图8中示出的TX 5的重传在图11的例子中被省略(如由圈出的重传的虚线外框所指示的)。这是一个软切换基站参与的例子。
取决于基站的协调,可以采用具有不同结果的移动台行为的各种实施例。在一个无需在基站之间紧密协调的示例系统中,授权以及ACK和继续命令仅仅来自授权基站。在这种情况下,该授权基站可能已经分配某些容量用于预期的重传。一个选择是使移动台在分配用于重传的时隙中发送新的数据,以利用所分配的容量。但是,在不同的实施例中,一个新的授权、或者一个ACK和继续允许该移动台去发送预定数量的子分组(在这个例子中是4个)。因此,如果该移动台的新数据需要在那些分配用于TX 5后剩余部分的以外的额外子分组,该授权将会被扩展。一种方案是该基站识别该新的数据,并且将可允许的扩展计算进未来的调度。一种备选方案是限制该移动台选择用于新的数据传输的速率和格式,所述新的数据传输被期望在先前的授权(或者ACK和继续)中分配的剩余的子分组内终止。该授权基站可以然后确认该新的数据,以停止任何额外的延续,如果期望的话。该移动台也可以在先前授权的末端放弃该新的数据,如果其没有被确认的话(即,该移动台对于新的数据传输将自身限制于更小数量的可用子分组)。
在一个示例系统中,其中处于软切换中的基站更紧密地协调,非授权基站可以被准许去发送一个ACK和继续。然后,基站可以视情况而定协调适当的系统负载分配。
在示例实施例中,虽然在软切换中ACK和NAK可以从多个基站发送,但ACK和继续仅来自调度基站扇区。因此,不需要基站间调度,这对于基站供应商和系统操作员可以是一个好处。一个优点可能是在基站之间可以不必需要超高速链路。例如,在多个基站之间将需要高速回程链路以支持数据在一个5ms帧中到达,并且5ms去解码,继之以传输协调的ACK、NAK,或者ACK和继续。因此,在一个实施例中,移动台仅对于授权和/或ACK和继续听从该服务或者调度基站。在一个替换的实施例中,仍然利用未协调的基站授权,在软切换中该移动台可以对于授权和/或ACK和继续听从多个基站,并且当冲突信号到达的时候,可以采用某些仲裁方案。例如,为了不超出任何授权的基站可以预料的系统负载,移动台可以以在该移动台的活动集中所有基站之中最小允许的授权T/P发送。注意,可以使用除“在所有当中最小的”之外其他的移动台规则,包括基于所允许的授权T/P的随机行为。对于图11,包括一个ACK和继续的冲突响应可以如上所述处理。
在一个替换的实施例中,利用在基站之间更快的回程,可以在基站之间进行协调以发送给单个移动台。因此,例如,从所有的基站发送的相同的命令可以被协调和发送(即,或者授权的类型、或者ACK和继续)。
图12是一个说明示例实施例的时序图,其中重传被赋予高于调度的授权的优先级。当自治地发送TX 1时,移动台进行请求。授权基站解码该请求,并且做出调度决定,其将包括一个移动台请求的授权。但是,TX 1在基站上没有被正确地解码,因此,TX 1被否定确认。由于将被分配用于该调度传输的ARQ信道也是在其上将重传TX1的ARQ信道,因此该基站延迟该授权。对那个ARQ信道的反向链路分配可以被分配给不同的移动台。在这个例子中,该授权被在后面的帧上发出。因此,该移动台在第五个帧上重传TX 1,并且在后续的ARQ信道上发送调度的TX 5。以这种方法,基站可以分配授权以避免与重传冲突。在一个实施例中,为了利用更高可靠性的授权信道,移动台可以相对于来自较低可靠性的信道(F-CACKCH)的任何的NAK、ACK,或者ACK-和继续命令,给接收的授权以优先级。
图13是一个说明丢失请求的结果的时序图。如前所述,在供传输的数据到达之后,移动台进行请求。如果有响应的话,该移动台将会期望所响应的最快的授权在在该请求之后的时间Dreq_giant上到达。这将对应于所示的其中TX 3被发送的帧。但是,该请求由于某种原因没有被在基站上接收到,如由解码失败所指示的。因此,不进行授权,如由在该授权基站F-GCH上的虚线外框所指示的。如果已经做出一个授权,该移动台将使用第四个帧去对其解码。在这种情况下,没有做出授权,因此没有授权被解码。因此,在第五个帧开始时该移动台将会首先启动一个新的请求。因此,从第一个请求开始的四个帧将会是跟在丢失的请求之后的重新请求的最小的延迟。因此,注意,在跟随该请求的三个帧期间,没有做出请求,如由虚线外框所指示的。
对于重新请求的第一个可用的帧用标注为“可能的重新请求”的虚线外框来说明。但是,在这个实施例中,如所指示的,该移动台配备以在发送一个新的请求之前等待一个额外的重新请求延迟。在这个例子中,该延迟是两个帧。基站可以使用该重新请求延迟,以降低由该重复的请求产生的反向链路负载,或者通过使某个类别的移动台比其它的更快地重新请求来提供QoS差异(differentiation)。重新请求延 迟可以被用信号通知给移动台。其可以是确定的或者随机的,即,其可以是随机选择的。例如,移动台为每个重新请求产生一个随机数,并且据此确定该重新请求。通过适当地偏离该随机数以相对于经济等级的移动台或数据类型,给高等级的移动台或者数据类型提供更高可能性的较低重新请求延迟,从而可以包括QoS差异。
在图13中,移动台发送该重新请求,如在帧7中指示的,并且授权基站在帧8期间正确地接收和解码该重新请求。作为响应,一个授权被在第九个帧中发出。注意,由于请求被丢失,在帧9以前没有在F-GCH上发出授权。
虽然在图13中说明了丢失请求的例子,但是所描述的该移动台的行为与其中移动台抑制给该移动台做出单独的或者公共的任何授权的情形是相同的。移动台并不区分可能丢失的授权和拒绝的授权。采用重新请求机制以控制移动台的重新请求。
还要注意的是,丢失的请求对于授权基站的调度的冲击。当请求没有在授权基站上被正确地接收的时候,由那个基站发出的所有后续的公共授权也将对其请求没有被正确解码的该移动台授权。因此,那个移动台将发送并消耗共享资源的一部分,该部分并没有被计算进该基站的分配中。存在若干方法来处理这个问题。首先,该授权基站可以简单地将可能的额外的移动台计算进下一个分配,必要时,改变该公共授权的T/P以使其适应该额外的传输。虽然或许耗费过高,但另一个备选方案是,该基站用一个指示替换的T/P的单独授权,或者用一个指示该移动台的授权被终止的专用标记,来向那个移动台发信号通知。但是,使用一个ACK是更有效率和效果的方式,以除去一个错误地做出的授权或者不再期望的授权。该基站可以简单地确认和继续那些希望公共授权仍然是有效的移动台,并且确认那些该公共授权将被终止的移动台。
图14是一个说明由丢失的授权所引起的延迟的时序图。在示出的第一个帧中,该移动台已经发出一个请求并正在自治地发送TX 1。调度基站在同一个帧期间对于该移动台发出一个授权。但是,该授权没有被正确地接收,因此,在接着的帧中,该移动台并没有解码授权。在第三个帧中,该移动台重新请求。同时,由该移动台发送自治传输TX 3。但是,如果该授权没有被丢失,在帧3中该移动台可能已经发送一个调度传输。代替的是,调度基站在第五个帧中授权该新的请求,该移动台在第六个帧中正确地接收和解码该授权。该移动台在第七个帧中进行调度传输TX 7。注意,在调度传输中由于丢失的授权导致四个帧延迟。
在一个示例实施例中,当调度基站在帧3中接收到局限于该自治的T/P的传输的时候,该调度基站可以检测到授权丢失。该基站可以确定该授权被丢失,或者和在丢失的授权中允许的期望的T/P相比,移动台另外是功率受限的。虽然有可能已经接收了一个有更高的T/P的单独授权的移动台将以较低的自治的T/P限制来发送,但这也许是不太可能的,并且该基站可以利用所检测的可能丢失的授权。在图14示出的例子中,进行重新请求而没有重新请求延迟。因此,在授权的ARQ信道中的下一个帧(帧7)将会被如所期望的那样用于一个调度传输。在一个未示出的替换的例子中,如果移动台遭受重新请求延迟,重新请求不会在帧4被调度基站接收。该调度基站于是将能够将已分配给移动台用于帧7的T/P重新分配给另一个移动台,使得该系统资源不会是利用不足的。
图15是一个说明调度和确认传输的方法1500的流程图。在一个示例实施例中,这个方法可以被无穷地重复,对于每个子分组帧(例如,5ms)重复该过程一次。该过程在步骤1510开始,在这里调度基站从一个或多个移动台接收访问请求。注意,该调度基站可以服务多个移动台。那些移动台的一个子集可以不必具有任何待发送的数据。另一个子集可以仅自治地发送。另一个子集可以发送一个访问的请求(如果是可应用的,连同一个自治的数据传输一起)。
在步骤1520中,调度基站将共享资源分配给期望数量的自治传输、如果有的话,一个或多个单独授权、如果期望的话,一个对于该请求的剩余部分的公共授权、和将从先前的授权(单独或者公共)扩展的任何授权。某些移动台可以根本不必发送,并且估计发送基站数目的技术在该领域是已知的,该技术包括使用系统统计、先前的传输、先前发送的数据的类型、和许多其它的因素。可以包括允许不确定性的适当余量,当条件变化时,其可以被预先确定或者动态地更新。希望发送的移动台的剩余部分将是已知的,具有某些例外,这是由于访问请求也可以指示要发送的数据量。基站可以跟踪从请求的移动台中的每个剩余多少数据要发送。一个例外可以是丢失请求,对其基站将是不知道的。如上所述,在这种情况下,如果发出了公共授权,则其请求被丢失的移动台仍然可以按照公共授权来发送。基站可以包括允许这样的意外传输的某些余量。基站也可以使用ACK命令、而不是ACK和继续命令来迅速地放弃意外的传输。基于期望的自治传输和所有可用的余量,基站可以将共享资源分配给共享和公共授权,如果有的话。同样,可以基于移动台的几何形状,以及被算进来的QoS来选择移动台用于增长的传输,以提高给定系统负载的吞吐量,同时保持服务级别。在示例的1xEV-DV系统中,如上所述,共享资源是未分配给其他信道的反向链路的平衡。用于分配给R-ESCH的反向链路容量的量因此可以随着时间而变化。
在步骤1530中,基站发送授权。单独授权可以在一个或多个单独授权信道上发送。移动台可以被分配来监视该移动台专用的授权信道,或者一个或多个单独授权信道,其中在所述一个或多个单独授权信道上多个移动台可以被单独地授权。在一个实施例中,单个公共授权信道被用于发送一个公共授权。在一个替换的实施例中,可以分配多个公共授权,并在多个公共授权信道上发送。移动台可以被分配去监视一个或多个公共授权信道,并且监视的数量可以是公共授权信道总数的子集。
在步骤1540中,基站从移动台接收数据传输。这些传输将包括自治传输,以及响应于任何单独或者公共授权进行的任何传输。基站可以接收意外的传输。例如,一个丢失的请求可能导致移动台响应于公共授权来发送。作为另一个例子,移动台可能错误地解码一个送往另一个移动台的单独授权,并且按照该单独授权来发送,而不是按照公共授权、或者在没有发出公共授权的情况下抑制传输。在又一个例子中,移动台可能错误地将一个ACK或者NAK解码为一个ACK和继续,从而错误地扩展先前的授权或者终止一个未完成的传输并扩展先前的授权。基站解码每个所接收的传输,并且确定是否传输被错误地解码。
在步骤1550中,如果分配允许,基站有选择地扩展先前的授权给许多先前被授权的移动台。基站使用ACK和继续命令,从而避免与额外的请求和授权有关的开销。那些错误地接收的传输将会被否定确认,并且如果没有到达重传(或子分组)的最大数,重传将会接着进行。那些授权不被允许扩展(并且其传输被解码而没有检测到差错)的移动台将会被发送一个ACK。然后,过程停止(并且可以对于下一个帧重复)。
图16是一个说明进行请求、接收授权和确认以及相应的数据传输的方法1600的流程图。这个方法适合于部署在与调度基站通信的移动台中。那个基站可以使用诸如上述的方法1500这样的方法。这个过程可以用与方法1500类似的方式对于每个帧重复。
过程在判定模块1605开始。如果移动台没有数据要发送,该过程停止。供传输的数据可以在将来的重复中抵达。如果有数据,即,在数据缓冲器中,进入到步骤1610和/或1615。
步骤1610和1615可以同时地执行,或者不管顺序连续地执行。如在这个实施例中描述的,监视HARQ信道和授权信道的功能可以是相关的,或者可以是可分离的。这个实施例说明了每个的特点。本领域技术人员将容易地将在此处公开的原理采用于无数的替换的实施例,包括示出的步骤或者其子集。
在步骤1610中,监视F-CACKCH,以监视基于先前的传输送往移动台的任何HARQ命令。如上所述,在这个例子中,移动台可以接收一个ACK、NAK或者ACK和继续(如果先前的传输是响应于一个授权)。当先前来自移动台的请求已经发出的时候,在步骤1615,分配给移动台用于监视单独和/或公共两者的授权信道被监视,该授权信道可以是授权信道的总数的子集。自然地,如果既没有进行在先的传输又没有进行在先的请求,移动台不需要分别地监视F-CACKCH、或者授权信道。
在判定框1620中,该过程的HARQ部分开始。如果没有先前的传输,移动台不期望在F-CACKCH上有任何的响应,因此,过程可以跳到判定框1640(为了清楚,省略详述)。如果响应于先前的传输(和先前的授权)接收到一个ACK和继续命令,进入到步骤1665。移动台基于先前的授权被授权扩展的访问,并且可以使用先前授权的T/P。注意,在替换的实施例中,在公共授权中的变化可以或者可以不必适用于改变先前的授权T/P,如上所述。如果没有接收到一个ACK和继续,进入到判定框1625。
在判定框1625,如果接收到一个ACK,如果有先前的授权的话,则其不被扩展。也不需要重传。移动台还可以自治地发送,如在该流程图的剩余部分中清晰可见的。在示例实施例中,该流程图的剩余部分,其处理确定是否发出一个新的授权,是不适用的,因为移动台将不具有一个未完成的请求(由于这样做将会消耗容量,采用ACK和继续的特点来防止其发生)。但是,在替换的实施例中,可以允许同时有未完成的多个请求,或许允许请求多个ARQ信道。这些替换落入本发明的范围之内,但是为了清楚起见没有示出细节。如果接收到一个ACK,进入到判定框1640。注意,判定框1625可以包括是否进行了先前的传输的测试,并且如果没有,将不期望ACK(或者ACK和继续),进入到判定框1640。
在判定框1625中,如果没有接收到一个ACK,那么NAK被假设为默认。进入到判定框1630。在判定框1630中,如果已经发送了最大数目的子分组,不允许重传。进入到判定框1640以对于所有进来的授权进行测试,或者自治地发送,如将在下面描述的。如果子分组剩余,进入到步骤1635,并且按照先前的传输,无论是自治的或者调度的来重传。然后,该过程可以对于当前的帧停止。
当已经进行了先前的请求的时候,判定框1640和1645是可适用的,并且可以接收一个类型或者另一个类型的授权。如果没有进行先前的请求,移动台可以直接进入到判定框1650(为了清楚,省略了细节)。注意,在这种情况下,移动台也不需要已经执行了步骤1615。作为选择,判定框1640和1645可以在测试中包括是否进行了先前的请求,并且忽略一个单独授权(很可能被错误地解码),或者一个公共授权(其对于非请求的移动台不会是有效的)。
在判定框1640中,如果响应于先前的请求,接收到一个单独授权,则进入到步骤1670。移动台被授予一个如在单独授权中指定的T/P。如果没有接收到单独授权,则进入到判定框1645。
在判定框1645中,如果响应于先前的请求,接收到一个公共授权,则进入到步骤1675。移动台被授予一个如在公共授权中指定的T/P。如果没有接收到公共授权,则进入到判定框1650。
在判定框1650中,移动台确定是否其想要进行一个请求。在上面详述的各种因素可以包括在该判定中。例如,可能有最小量的数据值得进行请求。等候传输的数据量应超出可以自治地发送的量。此外,如果后续的自治传输可能比等待请求和授权更快地用完该数据,那么不需要进行请求。服务质量可以结合进该判定中。移动台可以确定一个请求是为了某个类型的数据,但是自治传输适合于其它的。或者,移动台可能被限制了基于该移动台的QoS级别来进行请求的能力。在上面详述了各种其它的例子,其它的对于本领域技术人员将是显而易见的。注意,对于具有不同的QoS级别的数据缓冲器或者这样的数据缓冲器组,可以做出判定要发送个请,以使提供给这些数据缓冲器的质量和延迟合适。如果期望一个请求,则进入到判定框1655。如果不是,进入到步骤1680。移动台(除非另外受限)可以使用被指定为最大自治的T/P的该T/P进行自治传输。
在判定框1655中,如果已经进行了先前的请求,所有的重新请求条件必须满足(在上面相对于图13详述的例子)。先前的请求可能已经被丢失,或者基于基站的分配过程故意地不授权。或者,先前的请求可能已经被单独地或者公共地授权,然后被用一个ACK终止(或者未能用一个ACK和继续被扩展)。总之,如果不满足可适用的重新请求条件,进入到步骤1680以使用自治的T/P,如刚刚描述的。如果满足重新请求条件,进入到步骤1660并且发送请求。在示例实施例中,该请求包括在缓冲器中的数据量,和可由移动台支持的T/P(其可能随着时间而变化)。如果有请求,则响应于该请求而进行的授权,将在稍后的帧中出现,由此随后重复这个过程1600。在示例实施例中,移动台可以立即进行一个自治传输,因此进入到步骤1680,如刚刚描述的。
步骤1665-1680每个对移动台分配一个T/P以在发送时使用。从那些步骤的任何一个开始,进入到步骤1685。在步骤1685中,移动台基于所分配的T/P来选择传输参数。注意,T/P仅仅被用作一个例子。在替换的实施例中可以采用其它的系统分配参数。例如,可以使用其它的功率值,其允许移动台来选择传输参数。作为选择,可以提供给移动台更少的灵活性,且可以专门地分配一个或多个传输参数(无论在授权中,或者发信号以供在自治传输中使用)。用于选择传输参数的各种方法在该领域是已知的。已经在上面描述了其他新颖的方法。以下详述的图17详述了一个用于执行步骤1685方法的例子以及备选方案。一旦已经选择了传输参数,进入到步骤1690。
在步骤1690中,移动台发送与所选择的参数兼容和符合所选择的参数的数据量。该参数可以包括编码器数据大小、调制格式、用于业务和/或导频(包括主要、辅助或者附加的导频)的功率电平,和任何其他在领域中已知的传输参数。在该示例实施例中,对于一个单独授权,在ARQ信道上发送一个子分组。如果采用一个长授权标记,并且包括在该单独授权中,则该移动台可以在一个以上的ARQ信道上发送。在该示例实施例中,一个公共授权对于20ms,或者4个ARQ信道是有效的。公共地授权的移动台可以使用它们全部。虽然在图16中省略了细节,如在此处详述的,这种方法适合于与多个子分组和ARQ信道使用。这些仅仅是例子,并且本领域技术人员将容易地将这些原理扩展为无数的实施例配置。在传输之后,然后对于当前的帧该过程停止。
图17是一个说明响应于可用的T/P来选择传输参数方法的流程图。其适合于在上面详述的步骤1685中、以及其中传输参数是基于T/P来选择的任何其他的实施例中使用。该过程在判定框1710中开始。分配T/P供移动台使用。如果该移动台的可用的发射功率不足以利用所分配的T/P,进入到步骤1720来降低该T/P,以适应可用的发射功率。
在示例实施例中,一个T/P被分配。P参数与导频功率相关,其是由基站功率控制的。取决于所选择的速率和格式,可能需要附加的导频功率。这个例子中,在辅助导频信道上传送附加的导频功率,在这种情况下,该辅助导频信道是R-RICH。移动台可能想要包括一个余量,因为功率控制命令的未来方向是未知的,并且可能需要附加的导频功率。该移动台确定其可用的发射功率,并且把它与导频功率(主要的和辅助的)、业务功率和适宜的任何余量的总和相比较,以确定是否可以支持所授权(或者分配给自治传输)的T/P。根据需要改变的该T/P将被用于选择传输参数。进入到判定框1730。
判定框1730是一个可以给移动台提供灵活性的例子。在这个例子中为了清楚起见使用了单个判定,不过正如对于本领域技术人员将显而易见的是,可以引进附加的级别。在这种情况下,进行判定期望的是最大吞吐量还是低等待时间。如果期望低等待时间,进入到步骤1750。如果期望最大吞吐量,进入到步骤1740。
在两种情况下,一组可用的参数被定义。在这个例子中,使用在表1中详述的参数。可以采用参数的无数组合。系统可以依照期望通过信令来更新参数。QoS可以被计算在内以将移动台具有的选择限制到参数组合的总集合的子集。例如,一个经济的移动台或者数据类型可以具有最大的T/P,而与所授权的T/P无关(调度基站也可以同样地限制该授权)。或者一个经济的移动台可能被迫始终选择最大吞吐量。有时候,额外的灵活性放松了调度基站在反向链路信道上具有的紧密的控制。通过限制灵活性,可以获得额外的容量。因此,限制经济的移动台的灵活性或者数据类型可能是适宜的。
在步骤1740中,移动台期望最大吞吐量,并因此选择T/P允许的最大的编码器大小,假定最大数目的子分组,并且期待所有的子分组将需要被平均起来发送。在表1中,这对应于限制行给指定为具有四个5ms时隙的那些。对于每个编码器分组大小,有这样一行。然后,选择编码器分组大小,所述编码器分组由T/P值索引。剩余的参数,诸如重复因子、调制格式、沃尔什信道选择、编码率等等被在合适的行中给出。除了在表1中示出的那些之外,本领域技术人员将容易地将此扩展为无数组的信道参数。
在步骤1750中,期望更低的等待时间,因此,选择比最大数目的子分组更少的子分组,用于期望数目的子分组重传(取决于信道状态、误差概率等等,重传的实际数目将变化)。对于可能的最低等待时间,移动台可以选择一行,使得该期待(在期望的概率内)是在单个子分组中的成功传输。当然,如果要被发送的数据不适合在单个子分组中,给出了可用的T/P,可以通过选择具有一个以上的子分组(即,2或者3)的一行来降低实际的等待时间。注意,基站可以能重新分配移动台未使用的子分组(即,进行判定以使用比最大值更少的子分组)。在示例实施例中,假设移动台有权使用所有的子分组,进行T/P授权。如果一个以前的子分组被正确地接收,基站可以ACK和继续(如果额外的数据正在等候传输),或者重新分配随后的ARQ信道时隙给不同的移动台。同样,给移动台提供太大的活动余地可能导致对RoT更少地紧密控制,因此,可能导致潜在的输出损耗。本领域技术人员对于期望的系统性能,将适度调整灵活性。
按照在此处所讲的,对于本领域技术人员来说,用于从可能的组合的表中选择行的各种方法是显而易见的。一个例子是基于对于数据速率(和其他的参数)的每个组合需要的T/P和子分组的期望数目对该表进行排序。然后移动台将从可由给出的T/P支持的子集中选择具有期望的特性(等待时间、吞吐量等)的组合。或者,更简单地,T/P可以是特定行的索引。被索引的行可以通过信令来更新。如果期望额外的灵活性,对于给定的T/P,所选择的子分组的数目可以被索引。某些数据类型,诸如FTP,例如可以始终选择最大吞吐量选项(即,具有最大的期望数目的子分组重传的最大的编码器分组大小)。
同样,使用示例的T/P系统分配参数来描述这个例子。替换的实施例可以使用一个替换的参数,或者可以特别地指明一个或多个供移动台使用的参数。从步骤1740或者1750开始,一旦已经选择了该参数,该过程可以停止。
应当注意到,在如上所述的所有的实施例中,方法步骤可以被互换而不背离本发明的范围。在此处公开的描述在很多情况下参照了与1xEV-DV标准有关的信号、参数和过程,但是本发明的范围不受此限制。本领域技术人员将会容易地将此处的原理施加于各种其他的通信系统。这些和其他的修改对于本领域技术人员来说将是显而易见的。
本领域技术人员应该明白,信息和信号可以使用各种不同的技术和方法的任何一个来描述。例如,贯穿上述描述所参照的数据、指令、命令、信息、信号、比特、符号和码片可以由电压、电流、电磁波、磁场或者粒子、光场或者粒子、或者其任意的组合来表示。
那些技术人员将进一步理解,与在此处公开的实施例结合描述的各种说明性的逻辑块、模块、电路和算法步骤可以作为电子硬件、计算机软件或者两者的组合来实现。为了清楚地说明这种硬件和软件的可互换性,各种说明性的部件、块、模块、电路和步骤已经被在上面通常依据他们的功能来描述。取决于特别的应用和施加于整个系统的设计约束,上述的功能被作为硬件或者软件实现。本领域技术人员可以对于每个特殊的应用以变化的方法来实现所描述的功能,但是这样的实现决定不应该被解释为导致偏离本发明的范围。
与在此处公开的实施例相结合描述的各种说明性的逻辑块、模块和电路可以被利用通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他的可编程序逻辑设备、分离的门电路或者晶体管逻辑、分离的硬件元件或者设计成执行在此处描述的功能的其任意的组合来实现或者执行。通用处理器可以是微处理器,但是在备选方案中,该处理器可以是任何常规的处理器、控制器、微型控制器或者状态机。处理器还可以被作为计算设备的组合来实现,例如,DSP和微处理器、多个微处理器、结合有一个DSP核心的一个或多个微处理器或者任何其他这样的配置的组合。
与在此处公开的实施例相结合描述的方法或者算法的步骤可以被直接以硬件、以由处理器执行的软件模块或者以两者的组合来实施。软件模块可以驻留在RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、活动磁盘、CD-ROM或者任何在本领域已知的其他形式的存储介质中。示范的存储介质被耦合到处理器,从而该处理器可以从该存储介质读取信息,和将信息写入到该存储介质中。在备选方案中,存储介质可以被集成进处理器中。处理器和存储介质可以驻留在ASIC中。该ASIC可以驻留在用户终端中。在备选方案中,处理器和存储介质可以作为分立元件驻留在用户终端中。
提供了所公开的实施例的上面的描述,以使任何的本领域技术人员实现或者使用本发明。对这些实施例的各种修改对于本领域的技术人员来说是显而易见的,并且没有脱离本发明的实质或者范围,在此处定义的一般原理可以应用于其他的实施例。因此,本发明不意欲被限制在此处示出的实施例,而是要被给予与在此处公开的原理和新颖的特点相一致的最宽的范围。