CN1763516A - 具有用于微观流体分析系统的可接近的导电性接触垫的分析模块的制造方法 - Google Patents

具有用于微观流体分析系统的可接近的导电性接触垫的分析模块的制造方法 Download PDF

Info

Publication number
CN1763516A
CN1763516A CNA2005101087319A CN200510108731A CN1763516A CN 1763516 A CN1763516 A CN 1763516A CN A2005101087319 A CNA2005101087319 A CN A2005101087319A CN 200510108731 A CN200510108731 A CN 200510108731A CN 1763516 A CN1763516 A CN 1763516A
Authority
CN
China
Prior art keywords
insulated substrate
laminate layers
electrode
electrically conductive
microchannel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2005101087319A
Other languages
English (en)
Inventor
M·斯蒂恩
T·A·里奇特
J·I·罗杰斯
M·麦伦南
J·莫法特
A·麦克尼拉格
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LifeScan Inc
Original Assignee
LifeScan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LifeScan Inc filed Critical LifeScan Inc
Publication of CN1763516A publication Critical patent/CN1763516A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502715Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by interfacing components, e.g. fluidic, electrical, optical or mechanical interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502707Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/48785Electrical and electronic details of measuring devices for physical analysis of liquid biological material not specific to a particular test method, e.g. user interface or power supply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/12Specific details about manufacturing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/06Auxiliary integrated devices, integrated components
    • B01L2300/0627Sensor or part of a sensor is integrated
    • B01L2300/0645Electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/08Geometry, shape and general structure
    • B01L2300/0887Laminated structure
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0272Adaptations for fluid transport, e.g. channels, holes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • H05K1/117Pads along the edge of rigid circuit boards, e.g. for pluggable connectors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/20Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by affixing prefabricated conductor pattern

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Hematology (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biophysics (AREA)
  • Dispersion Chemistry (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Urology & Nephrology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Pathology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

一种具有可接近的导电性接触垫的分析模块的制造方法,所述方法包括形成一个绝缘基板,所述绝缘基板具有一个上表面、位于上表面内的微通道以及布置在上表面上的导电性接触垫。该方法还包括产生一个层压层,所述层压层具有一个底面、至少一个位于该层压层底面上的电极和至少一个位于该层压层底面上的导电迹线。该方法还包括将层压层粘合到绝缘基板上,以便层压层的底面的一部分被粘合到绝缘基板的上表面的一部分上、各个电极暴露于至少一个微通道之下;并且各个导电迹线与至少一个导电性接触垫电接触。此外,该粘合使得导电性接触垫的至少一个表面仍然是暴露的并且可用于电连接。

Description

具有用于微观流体分析系统的可接近的 导电性接触垫的分析模块的制造方法
技术领域
本发明总的来说涉及分析装置,并尤其涉及微观流体分析系统的制造方法。
背景技术
在基于流体样品的分析装置(即,流体分析装置)中,应当以高度的准确度和精确度控制必要的流体样品以便得到可靠的分析结果。但对于使用小体积,例如10纳升至10微升的流体样品的“微观流体”分析装置而言,这种控制是特别需要的。在这种微观流体分析装置中,流体样品一般地被包含于尺寸为大约例如10微米至500微米的微通道中,并在其中输送。
这种对微通道内部的小体积流体样品的控制(例如,输送、位置检测、流速测定和/或体积测定)在各种分析过程的成功进行中是必要的,其中所述分析过程包括测定间隙流体(ISF)样品中的葡萄糖浓度。例如,获得可靠的结果可能需要掌握流体样品位置的信息,以确保在开始分析之前流体样品已经到达检测区。
然而,微现流体分析装置中的流体样品和微通道的相对较小的尺寸可能会导致难以进行这种控制。例如,微通道和环绕结构(如,基板和电极)可能缺乏均匀的结构完整性,以至于这些微通道不是充分液密性和/或气密性。
此外,基于包括被分析物的检测和流体样品的控制(例如,流体样品位置检测和流体样品输送)等各种目的,微观流体分析装置常常使用电极。然而,用于微观流体分析装置的电极相对较小并且在本质上可能是易碎的。因此,这些电极容易受到不完全的或弱的电接触的影响,从而导致在操作期间产生假信号和/或有害信号。此外,包括微通道和电极的微观流体分析装置的的制造是昂贵和/或困难的。
因此,在本技术领域仍然需要一种分析装置的制造方法,其中所述的装置能够与其中的电极安全且牢固地电连接。并且,该方法应该是简便和成本低廉的。此外,该方法应该产生基本上为液密性和/或气密性的分析装置。
发明概述
用于制造带有可接近的导电性接触垫的分析模块的方法,其中所述的分析模块用于根据本发明的具体实例的微现流体分析系统,并且在该分析模块内部提供与电极的安全牢固的电连接。此外,该方法是简便且成本低廉的。而且,该方法的各种具体实例产生基本上是液密性和/或气密性的分析模块。
用于制造根据本发明的具体实例的分析模块的方法包括形成一个绝缘基板,所述绝缘基板具有上表面、在上表面内部的至少一个微通道和布置于该上表面上的至少一个导电性接触垫。该方法还包括产生一个层压层,所述层压层具有一个底面、至少一个布置在该层压层底面的电极和至少一个布置在该层压层底面的导电迹线。
该方法还包括将层压层粘合到绝缘基板上,使得:(i)该层压层的底面的至少一部分被粘合到绝缘基板的上表面的至少一部分上;(ii)各个电极被暴露于至少一个微通道之下;以及(iii)每个导电迹线与至少一个导电性接触垫电连接。此外,该粘合使得导电性接触垫的至少一个表面仍然是暴露的并且可用于电连接。
如果需要,将层压层粘合到绝缘基板的步骤可以包括:将层压层熔合到绝缘基板上以形成一个液密性和/或气密性的微通道。为了进一步提高液密性或者气密性微通道的形成,还可以实施粘合以便导电迹线和/或电极熔合在该绝缘基板的上表面上。
由于本发明的方法的具体实例得到了一个分析模块,其中所述的分析模块包括一个带有至少一个用于电连接的暴露的且可接近的表面的导电性接触垫,因此所述的表面可以经由导电性接触垫和导电迹线在该分析模块内部与电极安全且牢固地电连接。此外,可以使用成本低廉和简单的工艺形成绝缘基板(例如,塑模和压花工艺),以制造具有电极和导电迹线的层压层(例如导电油墨印刷技术)并将层压层粘合到绝缘基板上(例如,丝网工艺)。
附图的简要说明
结合下述运用本发明的原理对说明性具体实例所作的详细说明、以及附图,可以更好地理解本发明的特征和优点,其中:
图1为一个描述用于提取体液样品并检测其中的被分析物的系统的简化框图,利用该系统可以使用本发明的微观流体分析系统的具体实例;
图2为与本发明的微观流体分析系统的具体实例相关的位置电极、微通道、被分析物传感器和仪表结构的简要示意图;
图3为本发明的示例性具体实例的微观流体分析系统的分析模块的简化俯视图(虚线表示隐藏元件);
图4为沿图3的A-A线获得的图3的分析模块的简化剖视图;
图5为与微观流体分析系统的电气装置电连接的图3的分析模块的简化剖视图;
图6为与另一个电气装置的一部分电连接的图3的分析模块的简化剖视图;
图7为本发明的微观流体分析系统的另一个分析模块的简化剖视图;
图8为描述本发明的方法的具体实例的流程图;和
图9A和9B为说明图8的方法中的步骤的剖视图。
优选实施方式
为了在整个说明书中保持一致以及为了清楚地理解本发明,对于其中所使用的术语定义如下:
术语“熔合的”是指通过或好象是通过一起熔化而已经被连结的状态。
术语“熔合”是指通过或好象是通过一起熔化而变成连结在一起的行为。
本领域熟练技术人员将认识到,本发明的具体实例的微观流体分析系统可被用作例如各种分析分析装置中的子系统。例如,本发明的具体实例可被用作如图1所述的系统100的分析模块。系统100被配置成用于提取体液样品(例如,ISF样品)并检测其中的被分析物(例如,葡萄糖)。系统100包括一个可置换盒112(包含在虚线框内)、一个局部控制器模块114和一个远程控制器模块116。
在系统100中,可置换盒112包括一个用于从身体(B,例如用户的皮肤层)提取身体流体样品(即,ISF样品)的采样模块118、以及一个用于测量体液中的被分析物(即,葡萄糖)的分析模块120。采样模块118可以是本领域技术人员已知的任何适宜的采样模块,而分析模块120可以是一个根据本发明的具体实例的微观流体分析系统。适宜的采样模块如国际专利申请PCT/GB01/05634(公开号为WO02/49507A1,公开日2002年6月27日)和美国专利申请案第10/653023号所述,这两篇文献都在此被全文引为参考。然而,在系统100中,由于采样模块118是可置换盒112的一个组件,因而被配置成可置换的。
图2为与理解本发明的微观流体分析系统相关的位置电极、微通道、被分析物传感器和计量结构200的简要示意图。结构200包括第一位置电极202、第二位置电极204、阻抗仪206、计时器208、微通道210和被分析物传感器212。在图2的结构中,波形线表示微通道210内部的流体流体样品(例如,ISF、血液、尿液、血浆、血清、缓冲剂或试剂流体样品)。
结构200可被用于测定微通道210中的流体样品的位置或流速。在图2的结构中,被分析物传感器212位于第一位置电极202和第二位置电极204之间。阻抗仪206适用于测量第一位置电极202和第二位置电极204之间的阻抗。这种测量可以通过例如如下步骤来完成:利用一个电压源以便在第一位置电极202和第二位置电极204之间施加一个连续的电压或者交流电压,从而可以测量由传导通路所形成的阻抗,其中所述的传导通路是通过微通道210内部和第一位置电极202与第二位置电极204之间的流体样品所形成的,得到一个指示该流体的存在的信号。
此外,当阻抗仪206测量由于第一和第二位置电极之间存在样品所导致的阻抗变化时,可以将一个信号送入定时器208以记录在第一和第二位置电极之间第一次存在液体的时间。当该测量的阻抗表明流体样品已经到达第二位置电极时,可将另一个信号送入计时器208中。第一和第二位置电极之间第一次存在流体样品时的时间与流体样品达到第二位置电极时的时间的差值可被用于测定流体样品流速(假定已知第一和第二位置电极之间的微通道210的体积)。此外,有关流体样品的流速和/或流体样品的位置的信息可被用于测定总的流体样品体积。此外,还可将用于表示流体样品到达第二位置电极204的时间点的信号送入一个局部控制器模块(例如,图1和2的局部控制器模块114)中以用于操作。
关于可用于根据本发明的具体实例的微观流体分析系统的微观流体分析装置的进一步的说明包括在美国专利申请案第10/811,446号中,其全文在此引为参考。
图3、4和5为根据本发明示例性具体实例的用于监测流体样品中的被分析物的微观流体分析系统300的简要说明图。微观流体分析系统300包括一个分析模块302和一个电气装置304(例如,一个仪表和/或电源)。
分析模块302包括一个带有上表面308的绝缘基板306。上表面308中具有微通道310。分析模块302还包括三个布置在绝缘基板306的上表面上的导电性接触垫312、三个布置在微通道310上方的电极314、与各个电极314连接的以及与各个导电性接触垫312连接的导电迹线316以及一个层压层318。层压层318被布置在电极314、导电迹线316和绝缘基板306的上表面308的一部分的上方。
电气装置304包括三个弹簧触头320(其中一个如图5所述)以及一个底盘322(参阅图5)。微观流体分析系统300的导电性接触垫312具有可接近的暴露表面324和326,所述的暴露表面324和326经由弹簧触头320提供与电气装置304的电连接。
绝缘基板306可以是由本领域技术人员已知的任何适宜材料形成的。例如,绝缘基板306可以是由绝缘聚合物例如聚苯乙烯、聚碳酸酯、聚甲基丙烯酸甲酯、聚酯及其任意组合形成的。为了使电气装置和和导电性接触垫之间实现电连接,特别希望绝缘基板基本上是不可压缩的、并且具有足够的硬度,可插入到电气装置中。绝缘基板306可以是任意适宜的厚度,并且通常厚度为大约2mm。
导电性接触垫312可以是由本领域技术人员已知的任何适宜的导电材料形成的,这些导电材料包括例如如下所述的导电油墨和导电性颜料材料(例如,适用于注模和印刷术的石墨、负载了铂、金和银的聚合物)。
导电性接触垫可以具有任意适宜的厚度。然而,为了实现与电气装置的安全且牢固的连接,电连接导电性接触垫厚度最好为5微米至5毫米,优选厚度为大约50微米。在这一方面,应指出,导电性接触垫的厚度可以是明显厚于电极或导电迹线,从而在实现电极和电气装置之间的安全和牢固的电连接(经由导电迹线和导电性接触垫)的同时使得电极和导电迹线的厚度相对较薄。
电极314和导电迹线316还可以是由任何适宜的导电材料形成的,这些材料包括但不限于,通常用于照相平版印刷、丝网印刷和胶版印刷技术的导电材料。用于电极和导电迹线的材料中所包括的组分的实例为碳、贵金属(例如,金、铂和钯)、贵金属合金、以及形成电势的金属氧化物和金属盐。还可以使用导电油墨(例如市售的,商品名为Electrodag418 SS的银导电油墨,Acheson Colloids公司制造,美国休仑港MI 48060,华盛顿大街1600号)形成电极314和导电迹线316。电极314和导电迹线316的厚度通常为例如20微米。
对于多个电极的情况而言,可以使用相同的导电油墨,例如国际专利申请PCT/US97/02165(公开号WO97/30344,公开日1997年8月21日)所述的导电油墨来形成各个电极,也可以使用不同的导电油墨来形成各个电极以便为各个电极提供所需要的各种特征。
层压层318还可以由本领域技术人员已知的任何适宜的材料形成,这些材料包括但不限于聚苯乙烯、聚碳酸酯、聚甲基丙烯酸甲酯和聚酯。当层压层318为柔韧薄片和/或柔性板的形式时,根据本发明的具体实例的微现流体分析系统的制造可以被简化。例如,层压层318可以是一个厚度为大约5μm~大约500μm的柔韧薄板。在这一点上,已经发现厚度为大约50μm的层压厚度对于简化制造是有利的。层压层318一般比绝缘基板306薄,并且可以是足够薄的,以便在制造分析模块302期间热量可以轻易地从层压层318传递到绝缘基板306。
当(i)层压层318与绝缘基板306的上表面308的一部分熔合在一起使得微通道310基本上是液密性和/或气密性的时候、和/或(ii)具有与绝缘基板306的的上表面308融合在一起的电极314和/或导电迹线316使得微通道310基本上是液密性和/或气密性的时候,在微观流体分析系统300中可以实现一个基本上液密性和/或气密性的微通道。实现这种融合结构的示例性方法具体如下所述。
图6为与另一个电气装置304’连接的微观流体分析系统300的分析模块302的说明图,所述的电气装置包括三个弹簧触点320’(其中一个如图6所述)以及一个底盘322’(参阅图6)。图6显示了与可接近的暴露表面326相连的弹簧触点320’。
在图3、4、5和6的具体实例中,导电性接触垫312被布置在上表面308的一个凹槽328中。通过将导电性接触垫312设置在绝缘基板306的上表面上的凹槽中,可以容易地形成具有大于电极和导电性接触垫的厚度的导电性接触垫312,从而能够从该导电性接触垫的顶面(例如可接近的暴露表面324)或端面(例如,可接近的暴露表面326)中的任何一个与电气装置实现安全且牢固的连接。然而,图7描述了另一个可供选择的结构,其中该导电性接触垫被布置在绝缘基板的一个基本上平坦的上表面上。图7描述了本发明的微观流体分析系统的一个分析模块700。分析模块700包括一个带有上表面708的绝缘基板706。在上表面708中具有微通道710。
分析模块700还具有一个布置在绝缘基板706的上表面的导电性接触垫712、一个布置在微通道710上方的电极714、一个与电极714和导电性接触垫712相连的导电迹线716以及一个层压层718。层压层718被布置在电极714、导电迹线716和绝缘基板706的上表面708的一部分的上方。
在理解了本发明所公开的内容的条件下,本领域熟练技术人员将能认识到:本发明的微观流体分析系统的分析模块可包括多个微通道、多个电极(例如多个工作电极和多个参比电极)、多个导电迹线以及多个导电性接触垫。此外,绝缘基板和层压层可以为任何适宜的形状。例如,绝缘基板和层压层可以圆形的,并且导电性接触垫被布置在这种圆形绝缘基板的周围。
图8为说明在过程800中用于制造用于微观流体系统的具有可接近的导电性接触垫的分析模块的阶段的流程图。过程800包括,如步骤810所述,形成一个绝缘基板,所述的绝缘基板具有一个上表面、在上表面内部具有至少一个微通道、以及至少一个布置在该上表面上的导电性接触垫。图9A描述通过绝缘基板950,绝缘基板950的上表面952、微通道954和导电性接触垫956所表示的这种形成步骤的结果。
可以使用任何适宜的工艺来执行步骤810。例如,可以通过利用蚀刻技术、烧蚀技术、注塑技术或热压花技术在绝缘基板的上表面中形成微通道。对于使用注塑技术的情况而言,可以使用绝缘聚合材料(已知其在高温高压条件下很好地流入到模具中)。这种绝缘聚合材料的实例包括但不局限于:聚苯乙烯、聚碳酸酯、聚甲基丙烯酸甲酯和聚酯。此外,可以在形成绝缘基板期间利用例如导电油墨的丝网印刷或者导电性接触垫的共模制从而形成导电性接触垫。
如图8的步骤820所述,制造了一个具有布置在层压层的底面上的至少一个电极和至少一个导电迹线的层压层。图9A还描述了如层压层958、电极960和导电迹线962所代表的这种制造步骤的结果。可以通过本领域熟练技术人员所已知的任何适宜的导电油墨印刷技术在层压层上形成电极和导电迹线。
随后,在过程800的步骤830中,该层压层被粘合到该绝缘基板上,使得:
(i)层压层的底面的至少一部分被粘合到绝缘基板的上表面的至少一部分上;
(ii)电极被暴露于至少一个微通道之下;
(iii)每个导电迹线与至少一个导电性接触垫电连接,和
(iv)导电性接触垫的至少一个表面仍然是暴露的并且可用于电连接。图9B描述了步骤830所得的结构。
在粘合步骤830过程中,层压层可与绝缘基板的上表面的至少一部分熔合,使得至少一个微通道基本上是液密性的,或者,也基本上是气密性的。这种熔合可以通过施加足够的热量和/或压力以引起层压层和绝缘基板的局部软化和/或熔融来实现。可以经由加热的滚筒来实现热量和/或压力的施加。一般认为,但是并不局限于此,熔合被归因于物理粘合而非化学键合,并且熔合是层压层和绝缘层的熔融状态与固态中的“机械键控”(mechunical keying)之间的表面湿润的结果。机械键控是指两个材料表面经由一种机制而连结,所述的机制包括一种材料物理渗透到存在或形成于第二种材料的空隙中。
为了实现液密性和/或气密性的微通道的熔合与产生,必需预先测定层压层与绝缘基板的熔融特征。例如,为了在层的熔融部分的流动与掺杂之前可以出现层压层与绝缘层之间的分界面的有效湿润,在粘合步骤期间,层压层与绝缘基板的表面基本上同时变得熔融是有利的。随后的冷却形成一个与绝缘层的一部分熔合的层压层,在所述的绝缘层上方,按照与制造液密性和/或气密性的微通道相同的方式配置层压层。
对于层压层与绝缘层都是由聚苯乙烯形成的情况,可以在5巴的压力下以及在120℃的温度下进行熔合3秒钟。为了进一步促进液密性、或者气密性的微通道的生成,还可以进行该粘合步骤以便导电迹线和/或电极与绝缘基板的上表面熔合在一起。在这种情况下,对形成导电迹线(和/或电极)的材料进行预先测定,以便在和熔融层压层与绝缘层相同的压力、温度和时间条件下实现材料与绝缘层的熔合。然而,在粘合步骤期间,形成导电迹线(和/或电极)的材料必须不丢失主要的定义。
此外,为了提高导电迹线与导电性接触垫之间的电连接,导电迹线与导电性接触垫的材料可以是由在粘合步骤期间变得熔合的材料(例如具有过量导电颜料的材料)形成的。然而,在导电迹线与导电性接触垫之间的电连接还可以是由在粘合步骤期间所产生的物理机械接触所形成的。
粘合步骤的通常的条件为例如80℃~200℃的温度、约0.5巴~10巴的压力、以及大约0.5秒~大约5秒的持续时间。
实施例——分析模块的制造
本发明的微现流体分析装置的一个具体实例是使用一个绝缘基板与一个层压层制造的,其中所述的绝缘基板是由聚苯乙烯材料(即,Polystyrol 144C,购自BASF公司,商业单位聚苯乙烯、D-67056,路德维希港,德国)形成的,所述的层压层是由另一种聚苯乙烯材料(即,NorfiexFilm,购自NSW塑料技术公司,Norddeutsche SeekabeiwerkeAG,26954 Nordenham,德国)形成的。
使用导电油墨将电极和导电迹线印刷在层压层上。此外,使用相同的导电油墨将导电性接触垫印刷在绝缘衬垫上。用于印刷导电迹线、导电性接触垫与电极的导电油墨具有如下的质量百分比组成:
18.5%的包含质量比为l∶9的铂与碳的微粉化的粉末(例如,MCA20V披铂碳,购自MCA Services,Unit 1 A Long Barn,North End,Meldreth,South Cambridgeshire,SG8 6NT,U.K);
19.0%的聚(双酚A-共-表氯醇)-缩水甘油基封端的聚合物(例如,EpikoteTM 1055,购自Resolution Enhanced Products,Resolution EuropeBV,PO Box 606,3190 AN Hoogvliet Rt,The Netherlands);和
62.5%的甲基卡必醇(二甘醇单甲醚)溶剂(购自Dow BeneluxB.V.,Prins Boudewijnlaan 41,2650 Edegem,Belgium)。
上面所述的导电油墨组合物特别适合与聚苯乙烯层压层以及聚苯乙烯绝缘基板一起使用(如下所述)。然而,一般来说,可以在保持微粉化的粉末与聚合物的比例为大约3∶1~1∶3的同时,该组成可以是可变的。
在理解了本发明所公开的内容的条件下,本领域熟练技术人员将能够认识到,可以改变导电油墨中的溶剂的百分比以便使之适合用于将导电油墨施加到层压层和/或绝缘基板的工艺(例如,喷涂、热压印和胶版印刷)。此外,可以使用任何适宜的溶剂代替甲基卡必醇(二甘醇一甲基醚),这些溶剂包括例如,醇类、丁酮、丁二醇、乙酸苯甲酯、二乙酸乙二酯、异佛尔酮和芳香烃。
随后在所施加的温度和压力条件下将绝缘基板粘合到层压层上,以便使层压层和绝缘层发生软化和熔合。通过如下方法将温度和压力施加到层压层和绝缘基板上:使层压层和绝缘基板以30mm/sec~3mm/sec的速度通过加热滚筒。
此外,该温度和压力足以引起导电油墨的软化、和导电油墨与绝缘基板之间的熔合、以及导电油墨和层压层之间的熔合。尽管发生了这种软化合熔合,该导电油墨仍然保持了它的导电性质。因此,该导电油墨也被称为可熔导电油墨。
在粘合步骤过程中所使用的温度通常为大约80℃~150℃,并且特别为大约120℃,而压力通常为1巴~10巴,并且特别为5巴。
粘合步骤所形成的液密微通道在绝缘基板、层压层与导电油墨之间的任何物理接触点之间不存在缝隙。
为了促进最佳熔合,相对于层压层和绝缘基板的熔点,该导电油墨的熔点理想地为+30℃~-50℃。此外,更理想的情况是相对于基材的熔点,导电油墨的熔程为0℃~-30℃,并且优选相对于基材的熔点,油墨的熔程为-5℃~-15℃。在这一点上,应当指出的是所报道的环氧树脂Epikote 1055的熔点范围为79℃~87℃,而形成层压层和绝缘基板的聚苯乙烯的熔点为90℃。
此外,为了促进由导电油墨所形成的组分(例如,电极、导电迹线与导电性接触垫)与绝缘基板或层压层之间的熔合,优选使用包括分子量低于聚合材料(其中所述的材料可以形成绝缘基板与层压层)的分子量的组分的导电油墨。
应了解,对此处所述的本发明的具体实施方案的各种替换选择方案也可被用于实施本发明。本发明的范围将由如下权利要求来限定,并且这些权利要求范围内的结构及其等同技术方案将被包括在其中。

Claims (7)

1.一种用于微观流体分析系统的具有一个可接近的导电性接触垫的分析模块的制造方法,该方法包括:
形成一个绝缘基板,所述的绝缘基板具有:
一个上表面;
至少一个在该上表面内部的微通道;和
至少一个布置在该上表面上的导电性接触垫,
产生一个层压层,该层压层具有:
一个层压层的底面;
至少一个布置在该层压层的底面上的电极,和
至少一个布置在该层压层的底面上的导电迹线,以及
将层压层粘合到绝缘基板上,使得:
该层压层的底面的至少一部分被粘合到绝缘基板的上表面的至少一部分上;
各个电板暴露于至少一个微通道之下;
各个导电迹线与至少一个导电性接触垫电连接,并且
导电性接触垫的至少一个表面仍然是暴露的并且可用于电连接。
2.如权利要求1所述的方法,其中该粘合步骤包括将层压层与绝缘基板的上表面的一部分熔合,使得至少一个微通道是基本上液密性的。
3.如权利要求2所述的方法,其中所述层压层与所述绝缘基板的上表面的一部分的熔合是通过加热加压来完成的。
4.如权利要求1所述的方法,其中所述的粘合步骤包括将所述的导电迹线与所述的绝缘基板的上表面熔合。
5.如权利要求1所述的方法,其中所述的粘合步骤包括将所述的至少一个电极与所述的绝缘基板的上表面熔合。
6.如权利要求1所述的方法,其中所述的产生步骤包括产生一个层压层,其中使用导电油墨形成所述的至少一个电极和所述的至少一个导电迹线。
7.如权利要求1所述的方法,其中所述的形成步骤包括形成一个绝缘基板,其中所述的至少一个导电性接触垫被布置在绝缘基板的上表面的一个凹槽中。
CNA2005101087319A 2004-09-30 2005-09-30 具有用于微观流体分析系统的可接近的导电性接触垫的分析模块的制造方法 Pending CN1763516A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/957,440 US20060065361A1 (en) 2004-09-30 2004-09-30 Process for manufacturing an analysis module with accessible electrically conductive contact pads for a microfluidic analytical system
US10/957440 2004-09-30

Publications (1)

Publication Number Publication Date
CN1763516A true CN1763516A (zh) 2006-04-26

Family

ID=35229866

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2005101087319A Pending CN1763516A (zh) 2004-09-30 2005-09-30 具有用于微观流体分析系统的可接近的导电性接触垫的分析模块的制造方法

Country Status (9)

Country Link
US (1) US20060065361A1 (zh)
EP (1) EP1642645A1 (zh)
JP (1) JP2006105987A (zh)
KR (1) KR20060051969A (zh)
CN (1) CN1763516A (zh)
AU (1) AU2005204327A1 (zh)
CA (1) CA2521585A1 (zh)
SG (1) SG121083A1 (zh)
TW (1) TW200615145A (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7402616B2 (en) * 2004-09-30 2008-07-22 Lifescan, Inc. Fusible conductive ink for use in manufacturing microfluidic analytical systems
US20080181107A1 (en) * 2007-01-30 2008-07-31 Moorthi Jay R Methods and Apparatus to Map and Transfer Data and Properties Between Content-Addressed Objects and Data Files
US8573259B2 (en) * 2009-03-25 2013-11-05 The Regents Of The University Of Michigan Modular microfluidic assembly block and system including the same
US20110266151A1 (en) * 2010-04-23 2011-11-03 Fredrik Jansson Microfluidic systems with electronic wettability switches
DE102011109338B3 (de) * 2011-08-03 2013-01-31 Dietrich Reichwein Vorrichtung zur Speicherung elektromagnetischer Energie
US9180449B2 (en) * 2012-06-12 2015-11-10 Hach Company Mobile water analysis
CN109668949B (zh) 2017-10-13 2023-08-08 马克西姆综合产品公司 具有分配化学品和微流体盖件的分析物传感器封装体
WO2020106556A1 (en) * 2018-11-20 2020-05-28 Xatek, Inc. Dielectric spectroscopy sensing apparaus and method of use

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3456334A (en) * 1967-05-03 1969-07-22 Sylvania Electric Prod Method of producing an array of semiconductor elements
US4908112A (en) * 1988-06-16 1990-03-13 E. I. Du Pont De Nemours & Co. Silicon semiconductor wafer for analyzing micronic biological samples
US5047283A (en) * 1989-09-20 1991-09-10 Ppg Industries, Inc. Electrically conductive article
US6176962B1 (en) * 1990-02-28 2001-01-23 Aclara Biosciences, Inc. Methods for fabricating enclosed microchannel structures
US5857983A (en) * 1996-05-17 1999-01-12 Mercury Diagnostics, Inc. Methods and apparatus for sampling body fluid
US5707502A (en) * 1996-07-12 1998-01-13 Chiron Diagnostics Corporation Sensors for measuring analyte concentrations and methods of making same
US5906723A (en) * 1996-08-26 1999-05-25 The Regents Of The University Of California Electrochemical detector integrated on microfabricated capillary electrophoresis chips
US6391622B1 (en) * 1997-04-04 2002-05-21 Caliper Technologies Corp. Closed-loop biochemical analyzers
US5888390A (en) * 1997-04-30 1999-03-30 Hewlett-Packard Company Multilayer integrated assembly for effecting fluid handling functions
JP2001517789A (ja) * 1997-09-19 2001-10-09 アクレイラ バイオサイエンシズ,インコーポレイティド 液体移送装置および液体移送方法
US6068782A (en) * 1998-02-11 2000-05-30 Ormet Corporation Individual embedded capacitors for laminated printed circuit boards
US6033202A (en) * 1998-03-27 2000-03-07 Lucent Technologies Inc. Mold for non - photolithographic fabrication of microstructures
US5990849A (en) * 1998-04-03 1999-11-23 Raytheon Company Compact spiral antenna
US6110576A (en) * 1998-10-16 2000-08-29 Lucent Technologies Inc. Article comprising molded circuit
US6503359B2 (en) * 1999-03-05 2003-01-07 Burstein Technologies, Inc. Monomolecular adhesion methods for manufacturing microfabricated multilaminate devices
AU7698500A (en) * 1999-10-14 2001-04-23 Ce Resources Pte Ltd Microfluidic structures and methods of fabrication
SE0000300D0 (sv) * 2000-01-30 2000-01-30 Amersham Pharm Biotech Ab Microfluidic assembly, covering method for the manufacture of the assembly and the use of the assembly
US20020189946A1 (en) * 2000-02-11 2002-12-19 Aclara Biosciences, Inc. Microfluidic injection and separation system and method
US6632400B1 (en) * 2000-06-22 2003-10-14 Agilent Technologies, Inc. Integrated microfluidic and electronic components
US6939451B2 (en) * 2000-09-19 2005-09-06 Aclara Biosciences, Inc. Microfluidic chip having integrated electrodes
US6627058B1 (en) * 2001-01-17 2003-09-30 E. I. Du Pont De Nemours And Company Thick film conductor composition for use in biosensors
US6981522B2 (en) * 2001-06-07 2006-01-03 Nanostream, Inc. Microfluidic devices with distributing inputs
US6729869B2 (en) * 2001-07-16 2004-05-04 Sca Hygiene Products Gmbh Device for applying an embossing to a web of tissue paper
ATE407096T1 (de) * 2002-05-16 2008-09-15 Micronit Microfluidics Bv Verfahren zur herstellung eines mikrofluidischen bauteiles
US20030230488A1 (en) * 2002-06-13 2003-12-18 Lawrence Lee Microfluidic device preparation system
KR100480338B1 (ko) * 2002-08-08 2005-03-30 한국전자통신연구원 극소량의 유체제어를 위한 미세 유체제어소자
US7258673B2 (en) * 2003-06-06 2007-08-21 Lifescan, Inc Devices, systems and methods for extracting bodily fluid and monitoring an analyte therein

Also Published As

Publication number Publication date
JP2006105987A (ja) 2006-04-20
AU2005204327A1 (en) 2006-04-13
TW200615145A (en) 2006-05-16
CA2521585A1 (en) 2006-03-30
US20060065361A1 (en) 2006-03-30
EP1642645A1 (en) 2006-04-05
SG121083A1 (en) 2006-04-26
KR20060051969A (ko) 2006-05-19

Similar Documents

Publication Publication Date Title
CN1754924B (zh) 用于制造微观流体分析系统的可熔的导电油墨
CN1763516A (zh) 具有用于微观流体分析系统的可接近的导电性接触垫的分析模块的制造方法
CN1763515A (zh) 带有可接近的导电性接触垫的微观流体分析系统
Chang et al. A large area flexible array sensors using screen printing technology
CN112179410B (zh) 一种多功能柔性触觉传感器及其制备方法
CN113125537B (zh) 一种可穿戴式汗液监测传感器及其制备方法
Vomero et al. A novel pattern transfer technique for mounting glassy carbon microelectrodes on polymeric flexible substrates
CN106441645A (zh) 一种石墨烯压力传感器阵列系统及其制备方法
CA2324827A1 (en) Embedded metallic deposits
KR870006239A (ko) 고체중합체 전해질 전극
CN112781757A (zh) 一种基于石墨烯的柔性电容式压力传感器及其制备方法
Velten et al. Microfluidics on foil: state of the art and new developments
CN101890809B (zh) 一种电热丝压印法制备塑料毛细管电泳芯片的方法
KR102138217B1 (ko) 유연 전기 소자 및 이를 포함하는 센서
CN111948267A (zh) 一种利用超长纳米线制备电化学纳米点阵列电极的方法
CN101354375B (zh) 一种快速检测试条电极的制备方法
CN100542381C (zh) 柔性线路板的压合方法及专用于该方法的填充层
CN219038909U (zh) 一种微流体的信号采集装置
CN114660140B (zh) 生物检测装置、生物芯片、微电极结构及其制备方法
Huang et al. Recent Advances in Laser Manufacturing: Multifunctional Integrative Sensing Systems for Human Health and Gas Monitoring
KR20230116676A (ko) 정전 용량 방식의 압력 센서
Wang et al. Bio-inspired design of tactile sensors based on ionic polymer metal composites
CN101044802A (zh) 电子元件安装在载体、有利地是软载体上的方法以及由此获得的电子单元例如护照
Cherian Expanding the versatility and functionality of iontronic devices
CN1592680A (zh) 耐磨电极和器件

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20060426