CN1759286A - 低温天然气加工厂的lng生产 - Google Patents
低温天然气加工厂的lng生产 Download PDFInfo
- Publication number
- CN1759286A CN1759286A CNA2004800062765A CN200480006276A CN1759286A CN 1759286 A CN1759286 A CN 1759286A CN A2004800062765 A CNA2004800062765 A CN A2004800062765A CN 200480006276 A CN200480006276 A CN 200480006276A CN 1759286 A CN1759286 A CN 1759286A
- Authority
- CN
- China
- Prior art keywords
- natural gas
- logistics
- stream
- gas stream
- cooling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 title claims abstract description 240
- 239000003345 natural gas Substances 0.000 title claims abstract description 98
- 238000012545 processing Methods 0.000 title claims abstract description 54
- 238000004519 manufacturing process Methods 0.000 title description 20
- 239000003949 liquefied natural gas Substances 0.000 claims abstract description 139
- 238000000034 method Methods 0.000 claims abstract description 106
- 238000001816 cooling Methods 0.000 claims abstract description 100
- 239000007788 liquid Substances 0.000 claims abstract description 68
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 39
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 38
- 238000009833 condensation Methods 0.000 claims description 37
- 230000005494 condensation Effects 0.000 claims description 37
- 239000004215 Carbon black (E152) Substances 0.000 claims description 36
- 230000005540 biological transmission Effects 0.000 claims description 29
- 206010000060 Abdominal distension Diseases 0.000 claims description 22
- 208000024330 bloating Diseases 0.000 claims description 22
- 238000000926 separation method Methods 0.000 claims description 9
- 238000000605 extraction Methods 0.000 claims 24
- 230000000881 depressing effect Effects 0.000 claims 3
- 238000011084 recovery Methods 0.000 abstract description 63
- 238000004821 distillation Methods 0.000 abstract description 15
- 230000008569 process Effects 0.000 abstract description 9
- 239000007789 gas Substances 0.000 description 137
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 44
- 230000006835 compression Effects 0.000 description 41
- 238000007906 compression Methods 0.000 description 41
- 239000012530 fluid Substances 0.000 description 28
- 238000005265 energy consumption Methods 0.000 description 27
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 24
- 239000001569 carbon dioxide Substances 0.000 description 22
- 229910002092 carbon dioxide Inorganic materials 0.000 description 22
- 238000001704 evaporation Methods 0.000 description 18
- 230000008020 evaporation Effects 0.000 description 18
- 239000002737 fuel gas Substances 0.000 description 17
- 239000003507 refrigerant Substances 0.000 description 17
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 14
- 150000001335 aliphatic alkanes Chemical class 0.000 description 12
- 230000004907 flux Effects 0.000 description 12
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 12
- 239000001294 propane Substances 0.000 description 12
- 238000003860 storage Methods 0.000 description 12
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 11
- 239000000203 mixture Substances 0.000 description 11
- 239000002994 raw material Substances 0.000 description 11
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 9
- 239000001273 butane Substances 0.000 description 8
- 239000000284 extract Substances 0.000 description 7
- 238000004088 simulation Methods 0.000 description 7
- 238000013461 design Methods 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 238000000746 purification Methods 0.000 description 6
- 238000005057 refrigeration Methods 0.000 description 6
- 238000011144 upstream manufacturing Methods 0.000 description 6
- 241000282326 Felis catus Species 0.000 description 5
- 239000002253 acid Substances 0.000 description 5
- QUJJSTFZCWUUQG-UHFFFAOYSA-N butane ethane methane propane Chemical compound C.CC.CCC.CCCC QUJJSTFZCWUUQG-UHFFFAOYSA-N 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 239000000446 fuel Substances 0.000 description 4
- 230000009466 transformation Effects 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 239000002826 coolant Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000005194 fractionation Methods 0.000 description 3
- 230000014509 gene expression Effects 0.000 description 3
- -1 sulphur compound Chemical class 0.000 description 3
- 230000001131 transforming effect Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 229910001868 water Inorganic materials 0.000 description 3
- 239000005864 Sulphur Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000018044 dehydration Effects 0.000 description 2
- 238000006297 dehydration reaction Methods 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 238000007701 flash-distillation Methods 0.000 description 2
- NNPPMTNAJDCUHE-UHFFFAOYSA-N isobutane Chemical compound CC(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 description 2
- 239000003915 liquefied petroleum gas Substances 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 238000005204 segregation Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 101100102130 Human cytomegalovirus (strain AD169) US33 gene Proteins 0.000 description 1
- 101150064138 MAP1 gene Proteins 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- 239000012080 ambient air Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 235000019628 coolness Nutrition 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000002283 diesel fuel Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000003502 gasoline Substances 0.000 description 1
- 239000005431 greenhouse gas Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000001282 iso-butane Substances 0.000 description 1
- 235000013847 iso-butane Nutrition 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 1
- 239000003129 oil well Substances 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0228—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
- F25J3/0242—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 3 carbon atoms or more
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/0002—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
- F25J1/0022—Hydrocarbons, e.g. natural gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0032—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
- F25J1/0035—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0032—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
- F25J1/004—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0032—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
- F25J1/0042—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by liquid expansion with extraction of work
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0032—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
- F25J1/0045—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by vaporising a liquid return stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0201—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using only internal refrigeration means, i.e. without external refrigeration
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0228—Coupling of the liquefaction unit to other units or processes, so-called integrated processes
- F25J1/0229—Integration with a unit for using hydrocarbons, e.g. consuming hydrocarbons as feed stock
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0204—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
- F25J3/0209—Natural gas or substitute natural gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0228—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
- F25J3/0233—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0228—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
- F25J3/0238—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 2 carbon atoms or more
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/02—Processes or apparatus using separation by rectification in a single pressure main column system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/04—Processes or apparatus using separation by rectification in a dual pressure main column system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/70—Refluxing the column with a condensed part of the feed stream, i.e. fractionator top is stripped or self-rectified
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/72—Refluxing the column with at least a part of the totally condensed overhead gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2205/00—Processes or apparatus using other separation and/or other processing means
- F25J2205/02—Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
- F25J2205/04—Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum in the feed line, i.e. upstream of the fractionation step
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2210/00—Processes characterised by the type or other details of the feed stream
- F25J2210/06—Splitting of the feed stream, e.g. for treating or cooling in different ways
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2215/00—Processes characterised by the type or other details of the product stream
- F25J2215/04—Recovery of liquid products
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2220/00—Processes or apparatus involving steps for the removal of impurities
- F25J2220/60—Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
- F25J2220/66—Separating acid gases, e.g. CO2, SO2, H2S or RSH
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2230/00—Processes or apparatus involving steps for increasing the pressure of gaseous process streams
- F25J2230/60—Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being hydrocarbons or a mixture of hydrocarbons
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2240/00—Processes or apparatus involving steps for expanding of process streams
- F25J2240/02—Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2240/00—Processes or apparatus involving steps for expanding of process streams
- F25J2240/30—Dynamic liquid or hydraulic expansion with extraction of work, e.g. single phase or two-phase turbine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2245/00—Processes or apparatus involving steps for recycling of process streams
- F25J2245/02—Recycle of a stream in general, e.g. a by-pass stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2245/00—Processes or apparatus involving steps for recycling of process streams
- F25J2245/90—Processes or apparatus involving steps for recycling of process streams the recycled stream being boil-off gas from storage
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2260/00—Coupling of processes or apparatus to other units; Integrated schemes
- F25J2260/20—Integration in an installation for liquefying or solidifying a fluid stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/02—Internal refrigeration with liquid vaporising loop
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/90—External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Separation By Low-Temperature Treatments (AREA)
- Filling Or Discharging Of Gas Storage Vessels (AREA)
Abstract
本发明公开一种与加工天然气以回收天然气液体(NGL)相结合的液化天然气方法。该方法中,从NGL回收工厂的物流之一取出待液化的天然气物流,在压力下冷却,使之冷凝。从NGL回收工厂取出一种蒸馏物流,以提供冷凝天然气物流所需的某些冷却。已冷凝物流的一部分膨胀到中压,然后用来提供冷凝天然气物流所需的某些冷却,之后再按规定路线送到NGL回收工厂,从而其含有的任何更重质的烃回收在NGL产品中。已冷凝物流的其余部分膨胀到低压,形成液化的天然气物流。
Description
发明背景
本发明涉及加工天然气以生产高甲烷纯度的液化天然气(LNG)的方法。特别地,通过集成在利用低温工艺回收天然气液体(NGL)和/或液化石油气(LPG)的天然气加工厂中,本发明很好地适用于联产LNG。
天然气典型地从钻入地下储藏的油井中回收。它通常含有主要部分的甲烷,即甲烷占该气体的至少50摩尔%。根据特定的地下储藏,天然气还含有相对少量的更重质烃如乙烷、丙烷、丁烷、戊烷等,以及水、氢、氮、二氧化碳和其它气体。
大多数天然气以气体形式被处理。将天然气从气源输送到气体加工厂,以及之后输送到天然气消费者的最常见手段是高压气体传输管网。但是,在许多情况下,已经发现,必须和/或理想的是使天然气液化以便输送或使用。例如,在偏远地区,通常没有管网设施允许方便地输送天然气到市场上。这种情况下,由于LNG的比容比气态天然气小很多,允许用货船或运货卡车输送LNG,从而大大减少了运输费用。
支持天然气液化的另一情况是它作为机动车辆燃料的用途。在大都市地区有大批的公交车、出租车和卡车,如果有可获得的经济的LNG来源,那么这些车辆都可由LNG提供动力。与由燃烧更高分子量烃的汽油和柴油提供动力的类似车辆相比,这些以LNG为燃料的车辆产生显著少的空气污染,这是因为天然气的清洁燃烧性质。此外,由于甲烷的C∶H比低于全部其它的烃燃料,如果LNG具有高的纯度(即甲烷纯度为95摩尔%或更高),那么产生的二氧化碳(一种“温室气体”)量将显著减少。
本发明总体上涉及作为低温气体加工厂联产品的天然气的液化,该低温气体加工厂还生产天然气液体(NGL)如乙烷、丙烷、丁烷和更重质烃组分。根据本发明的待加工天然气物流的典型分析,以近似摩尔百分数计,为92.3%甲烷,4.4%乙烷和其它C2组分,1.5%丙烷和其它C3组分,0.3%异丁烷,0.3%正丁烷,0.3%的戊烷和更高烷,其余为氮气和二氧化碳。某些时候还存在含硫气体。
已知很多用于使天然气液化的方法。例如,参见Finn,Adrian J.,Grant L.Johnson和Terry R.Tomlinson,″LNG Technology forOffshore and Mid-Scale Plants″,Proceedings of theSeventy-Ninth Annual Convention of the Gas ProcessorsAssociation,第429-450页,Atlanta,Georgia,2000年3月13-15日,以及Kikkawa,Yoshitsugi,Masaaki Ohishi和Noriyoshi Nozawa,″Optimize the Power System of Baseload LNG Plant″,Proceedingsof the Eightieth Annual Convention of the Gas ProcessorsAssociation,San Antonio,Texas,2001年3月12-14,可纵览大量的这类方法。美国专利4,445,917;4,525,185;4,545,795;4,755,200;5,291,736;5,363,655;5,365,740;5,600,969;5,615,561;5,651,269;5,755,114;5,893,274;6,014,869;6,053,007;6,062,041;6,119,479;6,125,653;6,250,105 B1;6,269,655 B1;6,272,882 B1;6,308,531 B1;6,324,867 B1;6,347,532 B1;2001年11月22日公开的国际专利公开第WO01/88447A1号;2001年4月20日提交的我们的共同未决美国专利申请序列号第09/839,907号;2002年6月4日提交的我们的共同未决美国专利申请序列号第10/161,780号;以及2002年10月23日提交的我们的共同未决美国专利申请序列号第10/278,610号也描述了相关的方法。这些方法总体上包括多个步骤,其中,天然气被纯化(通过除去水和不可取化合物如二氧化碳和含硫化合物)、冷却、冷凝和膨胀。天然气的冷却和冷凝可通过很多不同的方式完成。“级联冷却”采用天然气与数种致冷剂的热交换,该数种致冷剂具有依次降低沸点,如丙烷、乙烷和甲烷。作为可选方案,这一热交换可利用单一致冷剂,通过在各种不同压力程度下蒸发该致冷剂实现。“多组分冷却”采用天然气与一种或多种致冷剂流体的热交换,该致冷剂流体由数种致冷剂组分构成,代替了多个单组分致冷剂。天然气的膨胀可等焓地(例如用Joule-Thomson膨胀)和等熵地(例如用做功-膨胀涡轮机)实现。
虽然这些方法的任一种都能用来生产车用级LNG,但是,与这些方法相关的资本和操作费用总体上使这类设备的安装不经济。例如,液化之前从天然气除去水、二氧化碳、硫化合物等所需的纯化步骤,就像所采用冷却循环的驱动器一样,意味着这类设备的相当大资本和操作费用。这使本发明人研究将LNG生产集成入从天然气回收NGL的低温气体加工厂的可行性。这样一种集成LNG生产方法将消除对单独的气体纯化设备和压缩设备的需求。此外,将LNG液化的冷却/冷凝和NGL回收所需工艺冷却集成在一起的潜力,将导致LNG液化方法显著的效率提高。
根据本发明,已经发现,利用比现有技术方法更少的能量,能够从低温NGL回收工厂联产甲烷纯度超过99%的LNG,同时不会减少NGL的回收水平。本发明虽然适用于较低压力和较高温度,但特别有利的是,在400~1500psia(2,758~10,342kPa(绝压))或更高,在要求NGL回收塔的塔顶温度为-50°F(-46℃)或更低的条件下,加工原料气体。
为了更好地了解本发明,可参考下面的实施例和附图。参见附图:
图1是根据美国专利第4,278,457号的现有技术的低温天然气加工厂流程图。
图2是根据现有技术方案改造所述低温天然气加工厂使之适于联产LNG时的流程图。
图3是利用根据美国专利第5,615,561号的现有技术方案,改造所述低温天然气加工厂使之适于联产LNG时的流程图。
图4是利用根据共同未决美国专利申请序列号09/839,907的一个实施方案,改造所述低温天然气加工厂使之适于联产LNG时的流程图。
图5是根据本发明,所述低温天然气加工厂适于联产LNG时的流程图。
图6是流程图,示出由所述低温天然气加工厂联产LNG的本发明应用的一个可选方法。
图7是流程图,示出由所述低温天然气加工厂联产LNG的本发明应用的另一个可选方法。
在对上述附图的以下说明中,提供了一些按代表性工艺条件计算的流量汇总表。为了方便起见,在本说明书的表格中,流量数值(以摩尔/小时)已四舍五入成最接近的整数。表中所列的总物流流量包括所有非烃组分,因此它通常大于烃组分物流流量之和。所列温度为近似值,已四舍五入成最接近的温度。还应当指出,为了比较图中所示工艺而进行的方法设计计算都基于一个假设,即从周围环境到工艺或从工艺到周围环境没有热损失。商业上可获得的绝缘材料的质量使这一假设成为非常合理的假设,而且这一假设为本领域技术人员所典型采用。
为方便起见,用传统的英制单位和国际单位制体系(SI)报告工艺参数。表格所列摩尔流量可解释为磅·摩尔/小时,或千克·摩尔/小时。报告为马力(HP)或千·英制热单位/小时(MBTU/Hr)的能耗对应于所述以磅·摩尔/小时计的摩尔流量。报告为千瓦的能耗对应于所述以千克·摩尔/小时计的摩尔流量。报告为加仑/天(gallons/D)或磅/小时(Lbs/hour)的LNG产量对应于所述以磅·摩尔/小时计的摩尔流量。报告为立方米/天(m3/D)或千克/小时(kg/H)的LNG产量对应于所述以千克·摩尔/小时计的摩尔流量。
现有技术描述
现在参看图1,为了比较的目的,我们从不联产LNG的NGL回收工厂实施例开始。在根据US4,278,457的现有技术NGL回收工厂模拟中,90°F(32℃)和740psia(5,102kPa(a))的进料气作为物流31进入工厂。如果进料气含有使产品物流不能符合规格的某一浓度二氧化碳和/或硫化合物,那么通过适当的原料气预处理(未示出)除去这些化合物。另外,原料流通常脱水,以防止在低温条件下生成水合物(冰)。固体干燥剂典型地用于此目的。
原料流31在换热器10内与-66°F(-55℃)的冷甲烷馏除器塔顶蒸汽(物流36a),来自甲烷馏除器底泵18的56°F(13℃)塔底液体产品(物流41a),36°F(2℃)的甲烷馏除器再沸器液体(物流40),-35°F(-37℃)的甲烷馏除器侧再沸器液体(物流39)进行热交换,从而原料流31被冷却。应当注意的是,在所有情况下,换热器10表示多个单独的换热器,或一个多通道换热器,或它们的任何组合(对于指定的冷却设备,决定是否采用多个换热器取决于很多因素,包括但不限于进料气流量、换热器尺寸、物流温度等)。冷却后的物流31a在-43°F(-42℃)和725psia(4,999kPa(a))下进入分离器11,冷凝液(物流35中)与蒸汽(物流32)分离。
从分离器11出来的蒸汽(物流32)被分成两股物流,33和34。占总蒸汽约27%的物流33流过换热器12,与甲烷馏除器塔顶蒸汽流36进行热交换,使物流33a冷却和基本冷凝。-142°F(-9 7℃)的已基本冷凝的物流33a然后通过一个合适的膨胀设备如膨胀阀13,急骤膨胀到分馏塔17的操作压力(约320psia(2,206kPa(a))。膨胀期间,一部分物流蒸发,使总物流冷却。在图1所示方法中,离开膨胀阀13的已膨胀物流33b达到-153°F(-103℃),之后送入位于分馏塔17上部区域的分离段17a中。在分离段17a中分离的液体成为甲烷馏除器17b的塔顶进料。
从分离器11出来的其余73%蒸汽(物流34)进入做功膨胀机14,由这部分高压原料提取机械能。做功膨胀机14使蒸汽从约725psia(4,999kPa(a))基本上等熵膨胀到塔操作压力,做功膨胀使膨胀后的物流34a冷却到约-107°F(-77℃)。典型的商业可获得膨胀机能回收80~85%的理想等熵膨胀的理论可获得功。回收的功常用来驱动例如再次压缩残余气体(物流38)的离心压缩机(如附图标记15)。膨胀后的部分冷凝物流34a作为原料,在中间点送入蒸馏塔中。分离器液体(物流35)被膨胀阀16类似地膨胀到塔的操作压力,从而物流35a冷却到-72°F(-58℃),然后在较低的中间塔进料处,进入分馏塔17的甲烷馏除器中。
分馏塔17中的甲烷馏除器是一个常规蒸馏塔,包括多个垂直间隔的塔盘,一个或多个填充床,或塔盘和填料的某种组合。和天然气加工厂常见的情况一样,分馏塔由两段构成。上段17a是分离器,其中部分蒸发的塔顶进料分成相应的蒸汽部分和液体部分,从较低的蒸馏级或甲烷馏除器17b上升的蒸汽与塔顶进料的蒸汽部分合并,形成冷的甲烷馏除器顶蒸汽(物流36),在-150°F(-101℃)下离开塔的顶部。较低的甲烷馏除器17b装有塔盘和/或填料,它提供下降液体和上升蒸汽之间的必要接触。甲烷馏除器还包括再沸器,它们加热沿塔下降的部分液体并使之蒸发,因而提供向上流过塔的汽提蒸汽。
液体产品物流41在51°F(10℃)下离开塔的底部,它基于一种典型规格,即以底部产品的摩尔计,甲烷∶乙烷为0.028∶1。该物流在泵18中加压到约650psia(4,482kPa(a))(物流41a)。约56°F(13℃)的物流41a在换热器10中被加热到85°F(29℃)(物流41b),它同时提供对物流31的冷却。(泵的排放压力通常由液体产品的最终目标设定。通常,液体产品流到储罐,泵的排放压力被如此设定以防止物流41b在换热器10中加热时出现任何蒸发。)
甲烷馏除器的塔顶蒸汽(物流36)与进入原料气逆流地通过换热器12,被加热到-66°F(-55℃)(物流36a);再通过换热器10,被加热到68°F(20℃)(物流36b)。加热后的甲烷馏除器塔顶蒸汽的-部分被取出作为加工厂的燃料气体(物流37),其余部分成为残余气体(物流38)。(必须取出的燃料气体量很大程度上取决于驱动工厂气体压缩机的发动机和/或涡轮机所需燃料),如该实施例中的压缩机19。残余气体再经两级压缩。第一级是膨胀机14驱动的压缩机15。第二级是补充能源驱动的压缩机19,它把残余气体(物流38b)压缩到销售管网压力。残余气体产品(物流38c)在排放冷却器20中被冷却到120°F(49℃),之后在740psia(5,102kPa(a))下流到销售气体管网内,该压力足以满足管网要求(通常为进料压力数量级)。
图1所示方法的物流流量和能耗汇总列入下表:
表I
(图1)
物流流量汇总——磅·摩尔/小时(千克·摩尔/小时)
物流 | 甲烷 | 乙烷 | 丙烷 | 丁烷及更高烷 | 合计 |
313235333436373841 | 35,47335,2102639,50725,70335,43253134,90141 | 1,6891,614754361,17821132081,478 | 58549887134364606579 | 33118015149131000331 | 38,43237,85158110,22027,63135,95153935,4122,481 |
回收率*
乙烷 87.52%
丙烷 98.92%
丁烷及更高烷 99.89%
能量
残余气体压缩 14,517HP(23,866kW)
*(基于未四舍五入的流量)
图2示出图1的NGL回收工厂经改造适于联产LNG的一种方式,这种情况下是通过应用类似于Price所述的现有技术LNG生产方法实现上述改造(Brian C.Price,″LNG Production for Peak ShavingOperations″,Proceedings of the Seventy-Eighth AnnualConvention of the Gas Processors Association,第273-280页,Atlanta,Georgia,2000年3月13-15日)。图2所示方法考虑的进料气组成和条件与图1所示相同。在这一实施例和下面所有实施例中,模拟都基于联产公称50,000加仑/天(417立方米/天)LNG,其中LNG体积在流动(非标准)条件下测量。
在图2方法的模拟中,NGL回收工厂的进料气冷却、分离和膨胀设计与图1所用相同。这种情况下,NGL回收工厂产生的已压缩和冷却的甲烷馏除器塔顶蒸汽(物流45c)分成两部分。一部分(物流38)是用于工厂的残余气体,被引入销售气体管网。另一部分(物流71)是LNG生产工厂的原料物流。
NGL回收工厂的进料气(物流31)在加工之前未经二氧化碳去除处理。虽然进料气的二氧化碳浓度(约0.5摩尔%)不会对NGL回收工厂产生任何操作问题,但是,这一二氧化碳显著部分将在甲烷馏除器塔顶蒸汽(物流36)中离开工厂,接下来污染LNG生产段的原料流(物流71)。此物流中的二氧化碳浓度为约0.4摩尔%,高于该现有技术方法所能容忍的浓度(约0.005摩尔%)。因此,在进入LNG生产段之前,原料流71必须在二氧化碳去除段50中进行加工,以避免由二氧化碳结冰导致的操作问题。虽然很多不同的方法能用于去除二氧化碳,但是其中的很多方法导致处理后的气流部分或完全被水饱和。由于原料流中的水也会导致LNG生产段的结冰问题,因此非常可能的是,二氧化碳去除段50还必须包括处理后的气流脱水。
处理后的原料流作为物流72,在120°F(49℃)和730psia(5,033kPa(a))下进入LNG生产段,在换热器51中通过与-261°F(-163℃)的致冷剂混合物(物流74b)进行热交换而冷却。换热器51的目的是将原料流冷却到基本上冷凝,而且,优选使该物流过冷,以消除后续膨胀步骤产生的任何闪蒸蒸汽。但对于前述条件,由于原料流的压力高于临界凝结压力,所以物流冷却时没有液体冷凝。相反地,冷却后的物流72a在-256°F(-160℃)下作为浓相流体离开换热器51。(临界凝结压力是蒸汽相能存在于多相流体的最大压力。在低于临界凝结压力的压力下,物流72a典型地将作为过冷液体流离开换热器51。)
物流72a进入做功膨胀机52,由这一高压物流提取机械能。膨胀机52使浓相流体从约728psia(5,019kPa(a))基本上等熵膨胀到稍高于大气压的LNG储存压力(18psia[124kPa(a)])。做功膨胀使膨胀后的物流72b冷却到约-257°F(-160℃),之后该物流被引入容纳LNG产品的LNG储罐53中(物流73)。
物流72的所有冷却都由一个封闭循环的制冷循环提供。此循环的工作流体是烃和氮的混合物,混合物的组成根据需要调节,从而在用可获得的冷却介质在合理压力下冷凝的同时,提供所需的致冷剂温度。这种情况下,由于已经假设用环境大气冷凝,所以图2方法的模拟中采用由氮、甲烷、乙烷、丙烷和更重质烃组成的致冷剂混合物。以近似摩尔百分比计,该物流的组成为5.2%氮,24.6%甲烷,24.1%乙烷和18.0%丙烷,其余为更重质烃。
致冷剂物流74在120°F(49℃)和140psia(965kPa(a))下离开分凝器56。它进入换热器51,冷凝,并随后被闪蒸的致冷剂物流74b过冷至-256°F(-160℃)。过冷的液体物流74a在膨胀阀54中基本上等焓地从约138psia[951kPa(a)]急骤膨胀到约26psia[179kPa(a)]。膨胀时,一部分物流蒸发,使总物流冷却到-261°F(-163℃)(物流74b)。急骤膨胀后的物流74b然后再次进入换热器51,在蒸发和过热的同时提供对原料气(物流72)和致冷剂(物流74)的冷却。
过热的致冷剂蒸汽(物流74C)以110°F(43℃)离开换热器51并流到由补充电源驱动的致冷剂压缩机55。压缩机55压缩致冷剂到145psia(1000kPa(a)),然后,压缩后的物流74d返回到分凝器56以完成循环。
图2所示方法的物流流量和能耗汇总列入下表:
表II
(图2)
物流流量汇总——磅·摩尔/小时(千克·摩尔/小时)
物流 | 甲烷 | 乙烷 | 丙烷 | 丁烷及更高烷 | 合计 |
313637717274384173 | 35,47335,43259645245249234,38441452 | 1,6892114334812041,4783 | 585600036165790 | 331000056203310 | 38,43235,9516054594572,00034,8872,481457 |
回收率*
乙烷 87.52%
丙烷 98.92%
丁烷及更高烷 99.89%
LNG 50,043加仑/天[417.7立方米/天]
7,397′磅/小时[7,397千克/小时]
LNG纯度* 98.94%
能量
残余气体压缩 14,484HP(23,811kW)
致冷剂压缩 2,282HP(3,752kW)
总压缩 16,766HP(27,563kW)
*(基于未四舍五入的流量)
如前所述,图2中的NGL回收工厂和图1方法中的工厂同样操作,故表II所列乙烷、丙烷、丁烷及更高烷的回收程度与表I完全相同。唯一的显著区别在于两方法用的工厂燃料气体量(物流37)。比较表I和II可见,图2方法的工厂燃料气消耗较大,这因为致冷剂压缩机55的附加能耗(假设由燃气轮机或涡轮机驱动)。因此相应更少量的气体进入残余气体压缩机19(物流45a),所以与图1方法相比,图2方法的此压缩机能耗稍少。
图2方法比图1方法的压缩能量净增为2,249HP[3,697kW],它用来产生了公称50,000加仑/天[417立方米/天]的LNG。由于LNG的密度根据其储存条件变化显著,因此更一致的是评价单位质量LNG的能耗。这种情况下,LNG产量为7,397磅/小时[7,397千克/小时],故图2方法的单位能耗为0.304马力-小时/磅[0.500千瓦-小时/千克]。
对于改造将NGL回收工厂的残余气体用作LNG生产原料气源的现有技术LNG生产方法,从LNG原料气除去更重质烃的设备并未包括在内。因此,原料气中存在的全部更重质烃成为LNG产品的一部分,降低了LNG产品纯度(即甲烷浓度)。如果需要更高的LNG纯度,或者原料气来源含有更高浓度的更重质烃(例如进料气物流31),就要求在原料物流72冷却到中压之后,从换热器51中取出该物流,分离出冷凝液体,使未冷凝蒸汽随后返回换热器51中以冷却到最终出口温度。这些冷凝液体优选含主要量的更重质烃,以及显著部分的液体甲烷,它们然后被再次蒸发,用来供给部分的工厂燃料气体需求。不幸的是,这意味着从LNG原料物流中去除的C2组分、C3组分和更重质烃组分不会从NGL回收工厂的NGL产品中回收,失去了它们对工厂操作者而言作为液体产品的价值。另外,对诸如本实施例所考虑的原料物流而言,由于方法的操作条件(即在高于物流的临界凝结压力的压力下操作),原料物流的液体冷凝可能是不可能的,这就意味着这类情况下不能实现更重质烃的去除。
图2的方法基本上是独立的LNG生产设备,没有利用NGL回收工厂的工艺物流或设备。图3示出了另一种方式,其中通过应用根据美国专利第5,615,561号将LNG生产方法集成在NGL回收工厂中的LNG生产现有技术方法,改造图1的NGL回收工厂,使之适于联产LNG。图3所示方法中所考虑的进料气组成和条件与图1和图2所示相同。
图3方法的模拟中,NGL回收工厂的进料气冷却、分离和膨胀设计与图1所用相同。主要的区别在于对NGL回收工厂产生的冷甲烷馏除器塔顶蒸汽(物流36)、压缩且冷却的甲烷馏除器塔顶蒸汽(物流45c)的安排。进料气在90°F(-32℃)和740psia(5,102kPa(a))下作为物流31进入工厂,在换热器10内与-69°F(-56℃)的冷甲烷馏除器塔顶蒸汽(物流36b),48°F(9℃)来自甲烷馏除器底部泵18的塔底液体产品(物流41a),26°F(-3℃)的甲烷馏除器再沸器液体(物流40),以及-50°F(-46℃)的甲烷馏除器侧再沸器液体(物流39)进行热交换,从而冷却。冷却的物流31a在46°F[-43℃]和725psia[4,999kPa(a)]下进入分离器11,将冷凝液体(物流35)与蒸汽(物流32)分离。
从分离器11出来的蒸汽(物流32)被分成两股物流,33和34。占总蒸汽约25%的物流33流过换热器12,与冷的甲烷馏除器塔顶蒸汽流36a进行热交换,被冷却到-142°F(-97℃)。产生的已基本冷凝物流33a然后通过膨胀阀13,急骤膨胀到分馏塔17的操作压力(约291psia(2,006kPa(a))。膨胀期间,一部分物流蒸发,使总物流冷却。在图3所示方法中,离开膨胀阀13的已膨胀物流33b达到-158°F(-105℃),在顶部塔的进料位置送入分馏塔17中。物流33b的蒸汽部分与沿塔的顶分馏级上升的蒸汽合并,形成甲烷馏除器的塔顶蒸汽物流36,从塔上部区域取出。
从分离器11出来的其余75%蒸汽(物流34)进入做功膨胀机14,由这部分高压原料提取机械能。做功膨胀机14使蒸汽从约725psia(4,999kPa(a))基本上等熵膨胀到塔操作压力,做功膨胀使膨胀后的物流34a冷却到约-116°F(-82℃)。膨胀后的部分冷凝物流34a随后作为原料在中间点送入蒸馏塔17。分离器液体(物流35)被膨胀阀16类似地膨胀到塔操作压力,从而使物流35a冷却到-80°F(-62℃),然后再在较低的中间塔进料处进入分馏塔17。
液体产品(物流41)在42°F(6℃)下离开塔17底部。该物流在泵18中被加压到约650psia(4,482kPa(a))(物流41a),在换热器10中被加热到83°F(28℃)(物流41b),在加热的同时它提供了对物流31的冷却。形成塔顶物流的蒸馏蒸汽物流(物流36)在-154°F(-103℃)下离开甲烷馏除器17,分成两部分。一部分(物流43)引入LNG生产段的换热器51中,在加热到-42°F(-41℃)(物流43a)的同时提供该换热器中的大部分冷量。另一部分(物流42)绕过换热器51,由控制阀21调节绕过量以调节换热器51完成的冷却。两部分合并为-146°F(-99℃),形成物流36a,该物流与进入的原料气逆流地通过换热器12,被加热到-69°F(-56℃)(物流36b);再通过换热器10,被加热到72°F(22℃)(物流36c)。物流36c与来自LNG生产段的高压(HP)闪蒸蒸汽(物流73a)合并,形成72°F(22℃)的物流44。此物流的一部分被取出(物流37)作为加工厂燃料气体的一部分,其余(物流45)再经两级压缩,即膨胀机14驱动的压缩机15和补充能源驱动的压缩机19,然后在排放冷却器20中冷却到120°F(49℃)。冷却的压缩物流(物流45c)然后分成两部分。一部分是残余气体产品(物流38),在740psia(5,102kPa(a))下流到销售气体管网。其余部分(物流71)为LNG生产段的原料物流。
NGL回收工厂的进料气(物流31)在加工前未经二氧化碳去除处理。虽然进料气的二氧化碳浓度(约0.5摩尔%)不会对NGL回收工厂产生任何操作问题,但二氧化碳的显著部分将在甲烷馏除器塔顶蒸汽(物流36)中离开工厂,接下来污染LNG生产段的原料流(物流71)。物流中的二氧化碳浓度为约0.4摩尔%,高于此现有技术方法所能容忍的浓度(约0.005摩尔%)。对图2方法而言,在进入LNG生产段之前,原料流71必须在二氧化碳去除段50(可能还包括待处理气流的脱水)中进行加工,以避免由于二氧化碳结冰导致的操作问题。
处理后的原料气作为物流72在120°F(49℃)和730psia(5,033kPa(a))下进入LNG生产段,在换热器51中与-200°F(-129℃)的低压(LP)闪蒸蒸汽(物流75),-164°F(-109℃)的高压闪蒸蒸汽(物流73),-154°F(-103℃)的来自NGL回收工厂的一部分甲烷馏除器塔顶蒸汽(物流43)进行热交换,从而冷却。换热器51的目的是将原料流冷却到基本上冷凝,而且优选使该物流过冷,从而减少在LNG冷却部分的后续膨胀步骤产生的闪蒸蒸汽量。但是,对前述条件而言,原料流的压力高于临界凝结压力,所以物流冷却时没有液体冷凝。相反地,冷却后的物流72a在-148°F(-100℃)下作为浓相流体离开换热器51。在低于临界凝结压力的压力下,物流72a典型地将作为冷凝(优选过冷)的液体物流离开换热器51。
物流72a在膨胀阀52中基本上等焓地从约727psia(5,012kPa(a))急骤膨胀到高压闪蒸槽53的操作压力,约279psia[1,924kPa(a)]。膨胀时,-部分物流蒸发,使总物流冷却到-164°F(-109℃)(物流72b)。急骤膨胀的物流72b然后进入高压闪蒸槽53中,分离出高压闪蒸蒸汽(物流73),如前所述将其引入换热器51。高压闪蒸槽的操作压力被设定为使离开换热器51的已加热高压闪蒸蒸汽(物流73a)处于足够压力下,从而允许其并入离开NGL回收工厂的已加热的甲烷馏除器塔顶蒸汽(物流36c)中,而且在取出一部分(物流37)作为工厂燃料气体部分之后,由压缩机15和19压缩。
来自高压闪蒸槽53的高压闪蒸液体(物流74)在膨胀阀54中从高压闪蒸槽的操作压力基本上等熵地急骤膨胀到低压闪蒸槽55的操作压力,约118psia[814kPa(a)]。膨胀时,一部分物流蒸发,使总物流冷却到-200°F(-129℃)(物流74a)。急骤膨胀的物流74a然后进入低压闪蒸槽55中,分离出低压闪蒸蒸汽(物流75),如前所述将其引入换热器51。低压闪蒸槽的操作压力被设定为使离开换热器51的已加热低压闪蒸蒸汽(物流75a)处于足够压力下,从而允许其用作工厂燃料气体。
来自低压闪蒸槽55的低压闪蒸液体(物流76)在膨胀阀56中从低压闪蒸槽的操作压力基本上等熵地急骤膨胀到稍高于大气压的LNG储存压力(18psia[124kPa(a)])。膨胀时,一部分物流蒸发,使总物流冷却到-254°F(-159℃)(物流76a),然后引入LNG储罐57中,从LNG产品(物流78)中分离出膨胀产生的闪蒸蒸汽(物流77)。
来自LNG储罐77的闪蒸蒸汽(物流77)压力太低不能用作工厂燃料气且温度太低不能直接进入压缩机。因此,首先将其在加热器58中加热到-30°F(-34℃)(物流77a),然后用压缩机59和60(由补充能源驱动)压缩该物流(物流77c)。在后冷器61中冷却后,115psia(793kPa(a))的物流77d与物流37和75a合并成为工厂燃料气(物流79)。
图3所示方法的物流流量和能耗汇总列入下表::
表III
(图3)
物流流量汇总——磅·摩尔/小时(千克·摩尔/小时)
物流 | 甲烷 | 乙烷 | 丙烷 | 丁烷及更高烷 | 合计 |
3132353334364371727374757677374579384178 | 35,47335,1553188,64826,50735,4322,8358158158573015058013033035,18761034,37241450 | 1,6891,599903931,206210175505050220822031,4795 | 58548210311936350000000005055800 | 3311661654112500000000000003310 | 38,43237,7516819,28728,46435,9482,8768278248673815158713233535,69961834,8722,484455 |
回收率*
乙烷 87.60%
丙烷 99.12%
丁烷及更高烷 99.92%
LNG 50,063加仑/天[417.8立方米/天]
7,365Lb/Hr[7,365kg/Hr]
LNG纯度* 98.91%
能量
残余气体压缩1 7,071HP(28,065kW)
闪蒸蒸汽压缩 142HP(233kW)
总压缩 17,213HP(28,298kW)
*(基于未四舍五入的流量)
图3的方法利用冷甲烷馏除器塔顶蒸汽(物流36)的一部分(物流43)为LNG生产方法提供制冷,这夺去NGL回收工厂的某些制冷。比较用于图3方法的表III和用于图2方法的表II所示回收程度,显示二者方法的NGL回收保持为基本上相同的程度。但是,这导致图3方法公用消耗的费用增加。比较表III和表II的公用消耗,显示图3方法的残余气体压缩高于图2方法几乎18%。因此,保持图3方法的回收程度只能通过降低甲烷馏除器17的操作压力,增加膨胀机14的做功膨胀,并因此降低甲烷馏除器塔顶蒸汽(物流36)的温度,从而弥补在物流43中从NGL回收工厂损失的制冷。
比较表I和III可见,图3方法的工厂燃料气体消耗较高,这是因为闪蒸蒸汽压缩机59和60的附加能耗(假设它们由燃气轮机或涡轮机驱动),以及残余气体压缩机19的较高能耗。因此,相应地较少量的气体进入残余气体压缩机19中(物流45a),但是因为较高的压缩比,图3方法中该压缩机的能耗仍高于图1方法。图3方法比图1方法的压缩功率净增为2,696HP[4,432kW],产生了50,000加仑/天[417立方米/天]的LNG。图3方法的单位能耗为0.366HP-H/Lb[0.602kW-H/kg],或者高于图2方法约20%。
图3方法没有在LNG生产段提供从原料气除去更重质烃的设备。虽然原料气中存在的某些更重质烃在闪蒸蒸汽(物流73和75)中离开分离器53和55,但是大多数的更重质烃成为LNG产品的一部分,降低了纯度。图3方法不能增加LNG纯度,而且,如果含较高浓度更重质烃的原料气(例如进料气物流31,或甚至当NGL回收工厂在较低回收程度下操作时的残余气体物流45c)为LNG生产工厂供给原料气,则LNG纯度甚至低于此实施例所述。
图4示出图1的NGL回收工厂经改造适于联产LNG的另一种方式,这种情况下改造是通过应用根据我们的共同未决美国专利申请序列号No.09/839,907的一个实施方案的LNG生产方法,该方法也将LNG生产方法集成在NGL回收工厂中。图4所示方法中考虑的进料气组成和条件与图1、2和3相同。
在图4方法的模拟中,NGL回收工厂的进料气冷却、分离和膨胀设计与图1所用相同。主要的区别在于对NGL回收工厂产生的冷甲烷馏除器塔顶蒸汽(物流36)、压缩且冷却的第三残余气体(物流45a)的安排。进料气在90°F(-32℃)和740psia(5,102kPa(a))下作为物流31进入工厂,通过在换热器10内与-66°F(-55℃)的冷甲烷馏除器塔顶蒸汽(物流42a),52°F(11℃)的来自甲烷馏除器底部泵18的塔底液体产品(物流41a),31°F(0℃)的甲烷馏除器再沸器液体(物流40),以及-42°F(-41℃)的甲烷馏除器侧再沸器液体(物流39)的热交换而冷却。冷却的物流31a在-44°F[-42℃]和725psia[4,999kPa(a)]下进入分离器11,将冷凝液体(物流35)与蒸汽(物流32)分离。
从分离器11出来的蒸汽(物流32)被分成两股物流,33和34。占总蒸汽约26%的物流33流过换热器12,与冷的蒸馏蒸汽流42进行热交换,冷却到-146°F(-99℃)。产生的已基本冷凝的物流33a然后通过膨胀阀13急骤膨胀到分馏塔17的操作压力(约306psia(2,110kPa(a))。膨胀期间,一部分物流蒸发,使总物流冷却。图4所示方法中,离开膨胀阀13的已膨胀物流33b达到-155°F(-104℃),在顶部塔的进料位置送入分馏塔17中。物流33b的蒸汽部分与从塔的顶分馏级上升的蒸汽合并,形成蒸馏蒸汽物流36,从塔的上部区域取出。
从分离器11出来的其余74%蒸汽(物流34)进入做功膨胀机14,由这部分高压原料提取机械能。做功膨胀机14使蒸汽从约725psia(4,999kPa(a))基本上等熵膨胀到塔的操作压力,做功膨胀使膨胀后物流34a冷却到约-110°F(-79℃)。膨胀后的部分冷凝物流34a随后作为原料在中间点处送入蒸馏塔17。分离器液体(物流35)被膨胀阀16类似地膨胀到塔操作压力,从而将物流35a冷却到-75°F(-59℃),然后在较低的中间塔进料处进入分馏塔17。
液体产品(物流41)在47°F(8℃)下离开塔17底部。该物流在泵18中被加压到约650psia(4,482kPa(a))(物流41a),在换热器10中被加热到83°F(28℃)(物流41b),它同时提供了对物流31的冷却。形成塔顶物流的蒸馏蒸汽物流(物流36)在-151°F(-102℃)下分成两部分。一部分(物流43)引入LNG生产段。其余部分(物流42)与进入的原料气逆流地通过换热器12,被加热到-66°F(-55℃)(物流42a);再通过换热器10,被加热到72°F(22℃)(物流42b)。已加热的蒸馏蒸汽物流的一部分被取出(物流37)作为加工厂燃料气体的一部分,其余成为第一残余气体(物流44)。第一残余气体然后再经两级压缩,即膨胀机14驱动的压缩机15和补充能源驱动的压缩机19,形成压缩的第一残余气体(物流44b)。
现在转到LNG生产段,原料物流71在120°F(49℃)和740psia(5,102kPa(a))下进入换热器51。在换热器51中,与冷的LNG闪蒸蒸汽(物流83a)、来自NGL回收工厂的-151°F(-120℃)的蒸汽蒸汽物流(物流43)、闪蒸液体(物流80)和-142°F(-97℃)的蒸馏塔再沸器液体(物流76)进行热交换,原料物流71被冷却为-120°F(-84℃)。(对于所述条件,原料物流压力高于临界凝结压力,因此物流冷却时没有液体冷凝。相反地,冷却物流71a作为浓相液体离开换热器51。对于其它加工条件,可能原料气体压力将低于其临界凝结压力,这种情况下原料物流冷却到基本上冷凝。)产生的已冷却物流71a通过一个合适的膨胀设备如膨胀阀52,急骤膨胀到蒸馏塔56的操作压力(420psia(2,896kPa(a))。膨胀期间,一部分物流蒸发,使总物流冷却。在图4所示方法中,离开膨胀阀52的已膨胀物流71b达到-143°F(-97℃),随后作为原料在中间点送入蒸馏塔56中。
蒸馏塔56充当LNG纯化塔,它回收原料流(物流71b)中存在的几乎全部二氧化碳和比甲烷更重质的烃作为塔底产品(物流77),使塔顶(物流74)的唯一显著杂质是原料物流所含的氮。蒸馏塔56的回流是通过在换热器51中,使塔的塔顶蒸汽(物流74,-144°F(-98℃))与-155°F(-104℃)的冷LNG闪蒸蒸汽(物流83a)和-157°F(-105℃)的闪蒸液体(物流80)进行热交换,使之冷却和冷凝从而获得的。-146°F(-99℃)的已冷凝物流74a分成两部分。一部分(物流78)成为LNG冷却部分的原料。另一部分(物流75)进入回流泵55。泵送后,-145°F(-98℃)的物流75a从塔顶进料点进入LNG纯化塔56,为塔提供回流液体。这一回流液体精馏沿塔上升的蒸汽,从而塔顶物流(物流74)和接下来的LNG冷却部分原料物流78含有少量的二氧化碳以及比甲烷更重质的烃。
用于LNG冷却部分的原料流(已冷凝液体物流78)在-146°F(-99℃)下进入换热器58,通过与-255°F(-159℃)的冷LNG闪蒸蒸汽(物流83)及冷闪蒸液体(物流79a)的热交换而过冷。该冷闪蒸液体通过从换热器58取出一部分过冷原料流(物流79),经适当膨胀设备如膨胀阀59急骤膨胀到略高于分馏塔17的操作压力产生。膨胀期间,一部分物流蒸发,使总物流从-156°F(-104℃)冷到-160°F(-106℃)(物流79a)。急骤膨胀的物流79a随后如前所述送入换热器58。
其余部分的部分过冷原料物流在换热器58中进一步过冷到-169°F(-112℃)(物流82)。然后进入做功膨胀机60,由这部分中压物流提取机械能。做功膨胀机60使过冷的液体从约414psia(2,854kPa(a))基本上等熵膨胀到略高于大气压的LNG储存压力(18psia(124kPa(a)),做功膨胀使膨胀后物流82a冷却到约-255°F(-159℃),之后该物流送入LNG储罐61,从LNG产品(物流84)中分离出膨胀产生的闪蒸蒸汽(物流83)。
来自LNG纯化塔56的塔底物流77被膨胀阀57急骤膨胀到略高于分馏塔17的操作压力。膨胀期间,一部分物流蒸发,使总物流从-141°F(-96℃)冷到-156°F(-105℃)(物流77a)。急骤膨胀后的物流77a随后与离开换热器58的-155°F(-104℃)已加热闪蒸液体物流79b合并,形成-157°F(-105℃)的混合闪蒸液体物流(物流80),送入换热器51中。该物流被加热到-90°F(-68℃)(物流80a),它同时如前所述为LNG原料流71和塔顶蒸汽物流74提供冷却,之后,该物流在较低的塔中间进料点处送入分馏塔17中。
来自LNG储罐61的闪蒸蒸汽(物流83)与进料液体逆流地通过换热器58,被加热到-155°F(-104℃)(物流83a)。然后进入换热器51,被加热到115°F(46℃)(物流83b),同时为LNG原料流71和塔顶物流74提供冷却。由于此物流在低压下(15.5psia(107kPa(a)),因此在用作工厂燃料气体之前,必须被压缩。用包括中间冷却器64的压缩机63和65(由附加能源驱动)压缩该物流(物流83e)。在后置冷却器66中冷却之后,115psia(793kPa(a))的物流83f与物流37合并,成为工厂的燃料气体(物流85)。
来自NGL回收工厂的冷蒸馏蒸汽物流(物流43)在换热器51中,在为LNG原料流71提供冷却的同时被加热到115°F(46℃),成为第二残余气体(物流43a),随后在附加能源驱动的压缩机62中被再次压缩。压缩后的第二残余气体(物流43b)和压缩后的第一残余气体(物流44b)合并,形成第三残余气体物流45。第三残余气体物流45a在排放冷却器20中冷却到120°F(49℃),之后分成两个部分。一部分(物流71)成为LNG生产段的原料物流。另一部分(物流38)成为残余气体产品,在740psia(5,102kPa(a))下流入销售气体管网。
图4所示方法的物流流量和能耗汇总列入下表:
表IV
(图4)
物流流量汇总-磅·摩尔/小时(千克·摩尔/小时)
物流 | 甲烷 | 乙烷 | 丙烷 | 丁烷及更高烷 | 合计 |
3132353334364237717477757879838543384184 | 35,47335,2012729,25825,94336,68434,7843761,9231,2291,173479750792165921,90034,38541455 | 1,6891,611784241,18722221021201200002122081,4790 | 5854959013036566000000000065790 | 3311781534713100000000000003310 | 38,43237,8355979,95127,88437,22235,2943821,9511,2421,193484758802226041,92834,8892,483456 |
回收率*
乙烷 87.52%
丙烷 99.05%
丁烷及更高烷 99.91%
LNG 50,070加仑/天[417.9立方米/天]
7,330磅/小时[7,330千克/小时]
LNG纯度* 99.84%
能量
第一残余气体压缩 15,315HP(25,178kW)
第二残余气体压缩 1,124HP(1,848kW)
闪蒸蒸汽压缩 300HP(493kW)
总压缩 16,739HP(27,519kW)
*(基于未四舍五入的流量)
比较图4方法的表IV和图1方法的表I所示回收程度可知,二者NGL回收工厂的回收基本上保持为相同程度。图4方法比图1方法的压缩功率净增为2,222HP(3,653kW),产生了50,000加仑/天[417立方米/天]的LNG,故图4方法的单位能耗为0.303HP-H/Lb[0.498kW-H/kg]。这与图2方法的单位能耗大约相同,低于图3方法约17%。
发明内容
图5示出根据本发明方法的流程图。图5所示方法考虑的进料气组成和条件与图1~4所示方法相同。因此,可将图5的方法与图2~4的方法进行比较,以说明本发明的优点。
在图5模拟的方法中,NGL回收工厂的进料气冷却、分离和膨胀设计与图1所用基本相同。主要的区别在于对NGL回收工厂产生的冷甲烷馏除器塔顶蒸汽(物流36)、压缩且冷却的第三残余气体(物流45a)的安排。进料气在90°F(32℃)和740psia(5,102kPa(a))下作为物流31进入工厂,通过在换热器10内与-66°F(-55℃)的冷甲烷馏除器塔顶蒸汽(物流42a),53°F(12℃)的来自甲烷馏除器底部泵18的塔底液体产品(物流41a),32°F(0℃)的甲烷馏除器再沸器液体(物流40),以及-42°F(-41℃)的甲烷馏除器侧再沸器液体(物流39)的热交换而冷却。冷却的物流31a在-44°F[-42℃]和725psia[4,999kPa(a)]下进入分离器11,将冷凝液体(物流35)与蒸汽(物流32)分离。
从分离器11出来的蒸汽(物流32)被分成两股物流,33和34。占总蒸汽约26%的物流33流过换热器12,与冷的蒸馏蒸汽流42进行热交换,被冷到-146°F(-99℃)。产生的已基本冷凝的物流33a然后通过膨胀阀13急骤膨胀到分馏塔17的操作压力(约306psia(2,110kPa(a))。膨胀期间,一部分物流蒸发,使总物流冷却。图5所示方法中,离开膨胀阀13的已膨胀物流33b达到-155°F(-104℃),在顶部塔的进料位置送入分馏塔17中。物流33b的蒸汽部分与从塔的顶分馏级上升的蒸汽合并,形成蒸馏蒸汽物流36,从塔的上部区域取出。
从分离器11出来的其余74%蒸汽(物流34)进入做功膨胀机14,由这部分高压原料提取机械能。做功膨胀机14使蒸汽从约725psia(4,999kPa(a))基本上等熵膨胀到塔的操作压力,同时做功膨胀使膨胀后物流34a冷却到约-110°F(-79℃)。膨胀后的部分冷凝物流34a随后作为原料在中间点处送入蒸馏塔17。分离器液体(物流35)被膨胀阀16类似地膨胀到塔操作压力,从而物流35a冷却到-75°F(-59℃),然后在较低的中间塔进料处进入分馏塔17。
液体产品(物流41)在47°F(9℃)下离开塔17底部。该物流在泵18中被加压到约650psia(4,482kPa(a))(物流41a),在换热器10中被加热到83°F(28℃)(物流41b),同时提供了对物流31的冷却。形成塔顶物流的蒸馏蒸汽物流(物流36)在-152°F(-102℃)下分成两部分。一部分(物流43)引入LNG生产段。其余部分(物流42)与进入的原料气逆流地通过换热器12,被加热到-66°F(-55℃)(物流42a);再通过换热器10,被加热到72°F(22℃)(物流42b)。一部分已加热的蒸馏蒸汽物流被取出(物流37)作为加工厂燃料气体的一部分,其余成为第一残余气体(物流44)。第一残余气体然后再经两级压缩,即膨胀机14驱动的压缩机15和补充能源驱动的压缩机19,形成压缩的第一残余气体(物流44b)。
NGL回收工厂的进料气(物流31)在加工之前不经二氧化碳去除处理。虽然进料气的二氧化碳浓度(约0.5摩尔%)不会对NGL回收工厂产生任何操作问题,但这一二氧化碳的显著部分将在甲烷馏除器塔顶蒸汽(物流36)中离开工厂,接下来污染LNG生产段的原料流(物流71)。物流中的二氧化碳浓度为约0.4摩尔%,高于图5的本发明操作条件(约0.025摩尔%)。与图2和图3方法类似,在进入LNG生产段之前,原料流71必须在二氧化碳去除部分50(其可能还包括处理后气体物流的脱水)中进行加工,以避免由二氧化碳结冰导致的操作问题。
处理后的原料物流72在120°F(49℃)和730psia(5,033kPa(a))下进入换热器51。应当注意的是,在所有情况下,换热器51表示多个单独的换热器,或一个多通道换热器,或它们的任何组合(对于指定的冷却设备,决定是否采用多个换热器取决于很多因素,包括但不限于进料气流量、换热器尺寸、物流温度等。)通过在换热器51中与冷LNG闪蒸蒸汽(物流83a),来自NGL回收工厂的-152°F(-102℃)蒸馏蒸汽物流(物流43),以及闪蒸液体(物流79b)进行热交换,原料物流72被冷却到-120°F(-84℃)。(对所述条件而言,原料流的压力高于临界凝结压力,所以当物流冷却时没有液体冷凝。相反地,冷却后的物流72a作为浓相流体离开换热器51。对其它处理条件而言,有可能原料气体压力低于其临界凝结压力,这时原料物流将被冷却到基本上冷凝。)
用于LNG冷却部分的原料流(浓相72a)在-120°F(-84℃)下进入换热器58,通过与-254°F(-159℃)的冷LNG闪蒸蒸汽(物流83)及冷闪蒸液体(物流79a)的热交换而进一步冷却。该冷闪蒸液体是通过从换热器58取出一部分的部分过冷原料流(物流79),用适当膨胀设备如膨胀阀59急骤膨胀到略高于分馏塔17的操作压力从而产生。膨胀期间,一部分物流蒸发,使总物流从-155°F(-104℃)冷到-158 °F(-106℃)(物流79a)。急骤膨胀的物流79a随后如前所述被送入换热器58。应当注意的是,在所有情况下换热器58表示多个单独的换热器,或一个多通道换热器,或它们的任何组合。在某些情况下,合适的是将换热器51和换热器58的设备组合在一个单独的多通道换热器中。
其余部分的部分过冷原料物流在换热器58中被进一步冷却到-169°F(-112℃)(物流82)。然后进入做功膨胀机60,由这部分高压物流提取机械能。做功膨胀机60使过冷的液体从约720psia(4,964kPa(a))基本上等熵膨胀到略高于大气压的LNG储存压力(18psia(124kPa(a))。做功膨胀使膨胀后的物流82a冷却到约-254°F(-159℃),之后该物流被送入LNG储罐61,从LNG产品(物流84)中分离出膨胀产生的闪蒸蒸汽(物流83)。
在158°F(-105℃)下离开换热器58的已加热闪蒸液体物流79b被送入换热器51中。它被加热到-85°F(-65℃)(物流79c),同时如前所述为LNG原料物流72提供冷却,之后该物流在下部的塔中间进料点送入分馏塔17中。
来自LNG储罐61的闪蒸蒸汽(物流83)与进入的浓相物流逆流地通过换热器58,被加热到-158°F(-105℃)(物流83a)。然后进入换热器51,被加热到115°F(46℃)(物流83b),同时为LNG原料流72提供冷却。由于此物流在低压下(15.5psia(107kPa(a)),因此在其用作工厂燃料气体之前必须被压缩。用包括中间冷却器64的压缩机63和65(由附加能源驱动)压缩该物流(物流83e)。在后置冷却器66中冷却之后,115psia(793kPa(a))的物流83f与物流37合并,成为工厂的燃料气体(物流85)。
来自NGL回收工厂的冷蒸馏蒸汽物流(物流43)在换热器51中,在为LNG原料流72提供冷却的同时被加热到115°F(46℃),成为第二残余气体(物流43a),随后在附加能源驱动的压缩机62中被再次压缩。压缩后的第二残余气体(物流4 3b)和压缩后的第一残余气体(物流44b)合并,形成第三残余气体物流45。第三残余气体物流45a在排放冷却器20中冷却到120°F(49℃),之后被分成两部分。一部分(物流71)成为LNG生产段的原料物流。另一部分(物流38)成为残余气体产品,在740psia(5,102kPa(a))下流到销售气体管网中。
图5所示方法的物流流量和能耗汇总列入下表:
表V
(图5)
物流流量汇总-磅·摩尔/小时(千克·摩尔/小时)
物流 | 甲烷 | 乙烷 | 丙烷 | 丁烷及更高烷 | 合计 |
3132353334364237717279838543384184 | 35,47335,1982759,25725,94136,64634,7953911,8671,8671,2142035941,85134,38841450 | 1,6891,611784241,18721720621111702112041,4794 | 5854949113036466000000065790 | 3311771544713000000000003310 | 38,43237,8306029,94927,88137,18235,3043971,8941,8871,2262066031,87834,8912,476455 |
回收率*
乙烷 87.57%
丙烷 99.04%
丁烷及更高烷 99.90%
LNG 50,025加仑/天[417.5立方米/天]
7,354Lb/Hr[7,354kg/Hr]
LNG纯度* 99.05%
能量
第一残余气体压缩 15,332HP(25,206kW)
第二残余气体压缩 1,095HP(1,800kW)
闪蒸蒸汽压缩 273HP(449kW)
总压缩 16,700HP(27,455kW)
*(基于未四舍五入的流量)
比较图5方法的表V和图1方法的表I所示回收程度,显示二者的NGL回收工厂的回收基本上保持为相同程度。图5方法比图1方法的压缩功率净增为2,183HP(3,589kW),产生了50,000加仑/天[417立方米/天]的LNG,故图5方法的单位能耗为0.297HP-H/Lb[0.488kW-H/kg]。因此,本发明具有分别低于图2和图3现有技术方案2%和19%的单位能耗。
本发明还具有低于根据我们的共同未决美国专利申请序列号第09/839,907号的图4方法的单位能耗,该单位能耗减少约2%。更重要的是,本发明比图4方法更简单,因为没有类似于图4方法的NGL纯化塔56的第二蒸馏系统,从而显著减少了用本发明构建的工厂的资本费用。
其它实施方案
本领域熟练技术人员将意识到,本发明适用于允许联产LNG的任何类型NGL工厂。之前描述的实施例已经示出,将本发明用于采用美国专利第4,278,457号所披露方法的NGL回收工厂,以便于对比本发明和现有技术。但是,本发明通常适用于产生-50°F(-46℃)蒸馏蒸汽的任何NGL回收方法。这类NGL回收方法的实例公开和描述在美国专利3,292,380;4,140,504;4,157,904;4,171,964;4,185,978;4,251,249;4,278,457;4,519,824;4,617,039;4,687,499;4,689,063;4,690,702;4,854,955;4,869,740;4,889,545;5,275,005;5,555,748;5,568,737;5,771,712;5,799,507;5,881,569;5,890,378;5,983,664;6,182,469;重新出版的US33,408;和我们的共同未决申请第09/677,220号中,这些文献的全部公开内容整体引入此处作为参考。此外,本发明适用于设计回收NGL产品中C3组分和更重质烃组分(即没有显著的C2组分回收)的NGL回收工厂,或适用于这样的NGL回收工厂:该工厂设计用来回收NGL产品中C2组分和更重质烃组分,其被操作以将C2组分排除到残余气体中,从而仅回收NGL产品中的C3组分和更重质烃组分(即操作的乙烷排除模式)。
当进入LNG生产段的原料气体(物流72)的压力低于其临界凝结压力时,有利的是在冷却到中温后,取出原料物流,分离出可能形成的任何冷凝液体,然后在做功膨胀机中膨胀该蒸汽物流,之后再将膨胀后的物流冷却到基本上冷凝,这类似于图6所示实施方案。在分离器52中除去的冷凝液体(物流74)优选含原料气中的更重质烃,该物流随后被膨胀阀55急骤膨胀到分馏塔17的操作压力,并在较低的塔中间进料点送入分馏塔17中。这使这些更重质烃回收在NGL产品中(物流41),从而增加了LNG的纯度(物流84)。如图7所示,某些情况下可能优选将蒸汽物流(物流73)保持在高压下,而不用做功膨胀机减压。
对于工厂原料气(物流31,图5)含可能在低温下固化的烃如重质石蜡烃或苯的情况,通过在NGL产品中回收这些化合物,NGL回收工厂能充当LNG生产段的原料调节单元。离开NGL回收工厂的残余气体将不含显著量的更重质烃,从而在这类情况下,能够用本发明完成用于联产LNG的工厂残余气体的加工,同时没有在LNG产品和LNG冷却部分的换热器内形成固体的危险。如图6和7所示,如果工厂进料气不含在低温下固化的化合物,则工厂进料气的一部分(物流30)能用作本发明的原料气体(物流72)。关于在特定情况下采用本发明何种实施方案的决定还受多种因素影响,如进料气和残余气体压力程度、工厂规模、可获取设备、资本及操作费用的经济平衡等。
根据本发明,LNG生产段的原料物流冷却可以多种方式进行。在图5~7的方法中,原料物流72、膨胀后物流73a(针对图6方法)和蒸汽物流73(针对图7方法)的冷却是通过一部分甲烷馏除器塔顶蒸汽(物流43),以及LNG冷却部分产生的闪蒸蒸汽和闪蒸液体。但是,甲烷馏除器液体(如物流39)可用于供给图5~7中的物流72,或图6中的物流73a,或图7中的物流73的部分或全部冷却,就像图7所示急骤膨胀后的物流74a那样。此外,可采用任何温度低于物流待冷却温度的物流。例如,可以取出甲烷馏除器的侧蒸汽用于冷却。其它的冷却可能来源包括但不限于闪蒸的高压分离器液体,和机械制冷系统。对冷却来源的选择将取决于多种因素,包括但不限于原料气组成和条件、工厂规模、换热器尺寸、潜在冷源的温度等。本领域熟练技术人员还将意识到,可以组合使用前述冷源或冷却方法的任何组合,以获得理想的原料物流温度。
根据LNG原料气体的更重质烃量和LNG原料气体压力,离开换热器51的冷却原料物流72a可不含任何液体(因为高于其露点,或者因为高于其临界凝结压力),从而不需要图6所示的分离器52。这类情况下,冷却的原料物流能直接流入适当膨胀设备如做功膨胀机53中。
根据本发明,可采用外部制冷,以补给LNG原料气体从其它工艺物流可获取的冷却,特别是在原料气体比实施例所用更富集的情况下。对于各种具体应用而言,必须评估用于工艺换热的来自LNG冷却部分的闪蒸蒸汽和闪蒸液体的应用及分布,用于原料气冷却的换热器具体布置,以及为具体换热器设备选择工艺物流。
还将意识到的是,取出成为闪蒸液体(物流79)的物流72a(图5),物流73b(图6),或物流73a(图7)的相对量取决于多种因素,包括LNG原料气压力、LNG原料气组成,能经济地从原料提取的热量,以及可获得的马力。增加取出成为闪蒸液体的量,将减少闪蒸液体压缩的能耗,但是通过增加物流79回到甲烷馏除器17的循环量,从而增加了压缩第一残余气体的能耗。
在换热器58中,使冷凝液体物流72a(图5)、冷凝液体物流73b(图6)或冷凝液体物流73a(图7)过冷,减少了将物流膨胀到LNG储罐61操作压力时产生的闪蒸蒸汽(物流83)的量。这通过减少了闪蒸气体压缩机63和65的能耗,总体上降低了生产LNG的单位能耗。但是,某些环境可能偏向于消除任何过冷,以通过减小换热器58尺寸而降低设备资本费用。
虽然各物流膨胀示于特定膨胀设备中,但合适时可采用可选的膨胀装置。例如,可采用等焓闪蒸膨胀,以替代图5~7中过冷液体物流82的做功膨胀(其结果增加了由膨胀产生的闪蒸蒸汽相对量,从而增加了闪蒸蒸汽压缩的能耗),或者替代图6中蒸汽物流73的做功膨胀(其结果增加了第二残余气体压缩的能耗)。
虽然已经描述了我们认为的本发明最佳实施方案,但是本领域熟练技术人员应认识到,在此基础上可采用其它的和更进一步的变型,例如调节本发明以适于各种条件、原料类型或其它要求,这不背离由下面的权利要求书所限定的本发明精神。
Claims (8)
1、液化含甲烷和更重质烃组分的天然气物流的方法,其中:
(a)从回收天然气液体的低温天然气加工厂取出所述天然气物流;
(b)在加压下冷却所述天然气物流,以冷凝该物流的至少一部分,形成冷凝物流;
(c)从所述加工厂取出一种蒸馏物流以供应所述天然气物流的所述冷却的至少一部分;
(d)取出所述冷凝物流的第一部分,将其膨胀到中压,使之和所述天然气物流进行换热以供给所述冷却的至少一部分,之后将所述第一部分引入所述加工厂;和
(e)将其余部分的所述冷凝物流膨胀到低压,形成所述的液化天然气物流。
2、液化含甲烷和更重质烃组分的天然气物流的方法,其中:
(a)从回收天然气液体的低温天然气加工厂取出所述天然气物流;
(b)在加压下充分冷却所述天然气物流,以使之部分冷凝;
(c)从所述加工厂取出一种蒸馏物流,以供应所述天然气物流的所述冷却的至少一部分;
(d)将所述部分冷凝的天然气物流分离成液流和蒸汽流,之后将所述液流引入所述加工厂;
(e)在加压下进一步冷却所述蒸汽流,以冷凝该蒸汽流的至少一部分,形成冷凝物流;
(f)取出所述冷凝物流的第一部分,将其膨胀到中压,使之和所述膨胀的蒸汽流进行换热以供给所述冷却的至少一部分,之后将所述第一部分引入所述加工厂;和
(g)将其余部分的所述冷凝物流膨胀到低压,以形成所述的液化天然气物流。
3、液化含甲烷和更重质烃组分的天然气物流的方法,其中:
(a)从回收天然气液体的低温天然气加工厂取出所述天然气物流;
(b)在加压下充分冷却所述天然气物流,以使之部分冷凝;
(c)从所述加工厂取出一种蒸馏物流,以供应所述天然气物流的所述冷却的至少一部分;
(d)将所述部分冷凝的天然气物流分离成液流和蒸汽流,之后将所述液流引入所述加工厂;
(e)使所述蒸汽流膨胀到中压,并在该中压下进一步冷却,以冷凝该蒸汽流的至少一部分,形成冷凝物流;
(f)取出所述冷凝物流的第一部分,将其膨胀到中压,使之和所述膨胀的蒸汽流进行换热以供给所述冷却的至少一部分,之后将所述第一部分引入所述加工厂;和
(g)将其余部分的所述冷凝物流膨胀到低压,形成所述的液化天然气物流。
4、液化含甲烷和更重质烃组分的天然气物流的方法,其中:
(a)从回收天然气液体的低温天然气加工厂取出所述天然气物流;
(b)在加压下冷却所述天然气物流;
(c)从所述加工厂取出一种蒸馏物流,以供应所述天然气物流的所述冷却的至少一部分;
(d)使所述冷却的天然气物流膨胀到中压,并在该中压下进一步冷却,以冷凝该物流的至少一部分,形成冷凝物流;
(e)取出所述冷凝物流的第一部分,将其膨胀到中压,使之和所述膨胀的蒸汽流进行换热以供给所述冷却的至少一部分,之后将所述第一部分引入所述加工厂;
(f)使其余部分的所述冷凝物流膨胀到低压,形成所述的液化天然气物流。
5、液化含甲烷和更重质烃组分的天然气物流的装置,包括:
(a)第一取出设备,其连接于回收天然气液体的低温天然气加工厂,以取出所述天然气物流;
(b)换热设备,其连接于所述第一取出设备,以接收所述天然气物流并在加压下冷却,从而冷凝该物流的至少一部分,形成冷凝物流;
(c)第二取出设备,其连接于所述加工厂以取出一种蒸馏物流,所述第二取出设备进一步连接于所述换热设备,以加热所述蒸馏物流并因此供应所述天然气物流的所述冷却的至少一部分;
(d)第三取出设备,其连接于所述换热设备,以取出所述冷凝物流的第一部分;
(e)第一膨胀设备,其连接于所述第三取出设备以接收所述第一部分并将其膨胀到中压,所述第一膨胀设备进一步连接以将所述膨胀的第一部分供应给所述换热设备,以加热所述已膨胀的第一部分并因此供应所述冷却的至少一部分,之后所述已加热且膨胀的第一部分被引入所述加工厂;和
(f)第二膨胀设备,其连接于所述换热设备以接收所述冷凝物流的其余部分,并使之膨胀到低压,从而形成所述液化的天然气物流。
6、液化含甲烷和更重质烃组分的天然气物流的装置,包括:
(a)第一取出设备,其连接于回收天然气液体的低温天然气加工厂,以取出所述天然气物流;
(b)换热设备,其连接于所述第一取出设备,以接收所述天然气物流并在加压下充分冷却,从而部分冷凝该物流;
(c)第二取出设备,其连接于所述加工厂以取出一种蒸馏物流,所述第二取出设备进一步连接于所述换热设备,以加热所述蒸馏物流并因此供应所述天然气物流的所述冷却的至少一部分;
(d)分离设备,其连接于所述换热设备,以接收所述部分冷凝的天然气物流,并将其分离成蒸汽流和液流,之后所述液流被引入所述加工厂;
(e)所述分离设备被进一步连接以将所述蒸汽流供应给所述换热设备,其中所述换热设备适于进一步在加压下冷却所述蒸汽流,以冷凝该物流的至少一部分,形成冷凝物流;
(f)第三取出设备,其连接于所述换热设备,以取出所述冷凝物流的第一部分;
(g)第一膨胀设备,其连接于所述第三取出设备以接收所述第一部分并将其膨胀到中压,所述第一膨胀设备被进一步连接,以将所述已膨胀的第一部分供应给所述换热设备,从而加热所述已膨胀的第一部分并因此供应所述冷却的至少一部分,之后所述已加热且膨胀的第一部分被引入所述加工厂;和
(h)第二膨胀设备,其连接于所述换热部分,以接收所述冷凝物流的其余部分,并使之膨胀到低压从而形成所述液化的天然气物流。
7、液化含甲烷和更重质烃组分的天然气物流的装置,包括:
(a)第一取出设备,其连接于回收天然气液体的低温天然气加工厂,以取出所述天然气物流;
(b)换热设备,其连接于所述第一取出设备,以接收所述天然气物流并在加压下充分冷却,从而部分冷凝该物流;
(c)第二取出设备,其连接于所述加工厂以取出一种蒸馏物流,所述第二取出设备进一步连接于所述换热设备,以加热所述蒸馏物流并因此供应所述天然气物流的所述冷却的至少一部分;
(d)分离设备,其连接于所述换热设备,以接收所述部分冷凝的天然气物流,并将其分离成蒸汽流和液流,之后所述液流被引入所述加工厂;
(e)第一膨胀设备,其连接于所述分离设备以接收所述蒸汽流并将其膨胀到中压,所述第一膨胀设备被进一步连接以将所述已膨胀的蒸汽流供应给所述换热设备,其中所述换热设备适于在所述中压下进一步冷却所述已膨胀的蒸汽流,从而冷凝该物流的至少一部分,并形成冷凝物流;
(f)第三取出设备,其连接于所述换热设备,以取出所述冷凝物流的第一部分;
(g)第二膨胀设备,其连接于所述第三取出设备以接收所述第一部分并将其膨胀到中压,所述第二膨胀设备被进一步连接以将所述已膨胀的第一部分供应给所述换热设备,从而加热所述已膨胀的第一部分并因此供应所述冷却的至少一部分,之后所述已加热且膨胀的第一部分被引入所述加工厂;和
(h)第三膨胀设备,其连接于所述换热设备,以接收所述冷凝物流的其余部分并将其膨胀到低压,从而形成所述液化的天然气物流。
8、液化含甲烷和更重质烃组分的天然气物流的装置,包括:
(a)第一取出设备,其连接于回收天然气液体的低温天然气加工厂,以取出所述天然气物流;
(b)换热设备,其连接于所述第一取出设备,以接收所述天然气物流并在加压下冷却;
(c)第二取出设备,其连接于所述加工厂以取出一种蒸馏物流,所述第二取出设备进一步连接于所述换热设备,以加热所述蒸馏物流并因此供应所述天然气物流的所述冷却的至少一部分;
(d)第一膨胀设备,其连接于所述换热设备以接收所述冷却的天然气物流并将其膨胀到中压,所述第一膨胀设备被进一步连接以将所述已膨胀的天然气物流供应给所述换热设备,其中所述换热设备适于在所述中压下进一步冷却所述已膨胀的天然气物流,从而冷凝该物流的至少一部分,并形成冷凝物流;
(e)第三取出设备,其连接于所述换热设备,以取出所述冷凝物流的第一部分;
(f)第二膨胀设备,其连接于所述第三取出设备以接收所述第一部分并将其膨胀到中压,所述第二膨胀设备被进一步连接,以将所述已膨胀的第一部分供应给所述换热设备,从而加热所述已膨胀的第一部分并因此供应所述冷却的至少一部分,之后所述已加热且膨胀的第一部分被引入所述加工厂;
(g)第三膨胀设备,其连接于所述换热设备,以接收所述冷凝物流的其余部分并将其膨胀到低压,从而形成所述液化的天然气物流。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/384,038 | 2003-03-07 | ||
US10/384,038 US6889523B2 (en) | 2003-03-07 | 2003-03-07 | LNG production in cryogenic natural gas processing plants |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1759286A true CN1759286A (zh) | 2006-04-12 |
CN100436987C CN100436987C (zh) | 2008-11-26 |
Family
ID=32961334
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2004800062765A Expired - Fee Related CN100436987C (zh) | 2003-03-07 | 2004-02-06 | 低温天然气加工厂的lng生产 |
Country Status (13)
Country | Link |
---|---|
US (1) | US6889523B2 (zh) |
EP (1) | EP1606371A2 (zh) |
JP (1) | JP2006523296A (zh) |
CN (1) | CN100436987C (zh) |
AR (1) | AR043417A1 (zh) |
BR (1) | BRPI0408137A (zh) |
CA (1) | CA2516785C (zh) |
MX (1) | MXPA05009293A (zh) |
MY (1) | MY136573A (zh) |
NO (1) | NO20054262L (zh) |
NZ (1) | NZ541904A (zh) |
PE (1) | PE20041074A1 (zh) |
WO (1) | WO2004081151A2 (zh) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101711335A (zh) * | 2007-06-22 | 2010-05-19 | 坎法阿拉贡股份有限公司 | 用于生产lng的方法和系统 |
CN102027304A (zh) * | 2008-05-16 | 2011-04-20 | 奥特洛夫工程有限公司 | 液化天然气与烃气体处理 |
CN102112829A (zh) * | 2008-08-06 | 2011-06-29 | 奥特洛夫工程有限公司 | 液化天然气生产 |
CN102428334A (zh) * | 2009-05-15 | 2012-04-25 | 奥特洛夫工程有限公司 | 液化天然气与烃气体处理 |
CN103180657A (zh) * | 2010-11-03 | 2013-06-26 | 巴特勒能源同盟有限公司 | 升华系统和相关方法 |
CN104263402A (zh) * | 2014-09-19 | 2015-01-07 | 华南理工大学 | 一种利用能量集成高效回收管输天然气中轻烃的方法 |
CN106883897A (zh) * | 2017-03-29 | 2017-06-23 | 四川华亿石油天然气工程有限公司 | Bog分离提纯设备及工艺 |
CN107208964A (zh) * | 2015-02-27 | 2017-09-26 | 埃克森美孚上游研究公司 | 减少进入低温蒸馏过程的进料物流的冷冻和脱水负荷 |
CN108759305A (zh) * | 2018-06-11 | 2018-11-06 | 西南石油大学 | 一种多回流的天然气乙烷回收方法 |
CN111684225A (zh) * | 2017-12-15 | 2020-09-18 | 沙特阿拉伯石油公司 | 天然气凝液回收的过程集成 |
Families Citing this family (73)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070137246A1 (en) * | 2001-05-04 | 2007-06-21 | Battelle Energy Alliance, Llc | Systems and methods for delivering hydrogen and separation of hydrogen from a carrier medium |
US7050632B2 (en) * | 2002-05-14 | 2006-05-23 | Microsoft Corporation | Handwriting layout analysis of freeform digital ink input |
CN101156038B (zh) * | 2005-04-12 | 2010-11-03 | 国际壳牌研究有限公司 | 用于液化天然气流的方法和设备 |
US20070012072A1 (en) * | 2005-07-12 | 2007-01-18 | Wesley Qualls | Lng facility with integrated ngl extraction technology for enhanced ngl recovery and product flexibility |
CA2618576C (en) * | 2005-08-09 | 2014-05-27 | Exxonmobil Upstream Research Company | Natural gas liquefaction process for lng |
US20070044485A1 (en) * | 2005-08-26 | 2007-03-01 | George Mahl | Liquid Natural Gas Vaporization Using Warm and Low Temperature Ambient Air |
AU2006324972B2 (en) * | 2005-12-15 | 2012-04-12 | Sasol Technology (Proprietary) Limited | Production of hydrocarbons from natural gas |
WO2007131850A2 (en) * | 2006-05-15 | 2007-11-22 | Shell Internationale Research Maatschappij B.V. | Method and apparatus for liquefying a hydrocarbon stream |
KR20090088372A (ko) * | 2006-10-24 | 2009-08-19 | 쉘 인터내셔날 리써취 마트샤피지 비.브이. | 탄화수소 스트림을 처리하는 방법 및 장치 |
US20080098770A1 (en) * | 2006-10-31 | 2008-05-01 | Conocophillips Company | Intermediate pressure lng refluxed ngl recovery process |
US8887513B2 (en) * | 2006-11-03 | 2014-11-18 | Kellogg Brown & Root Llc | Three-shell cryogenic fluid heater |
JP2008169244A (ja) * | 2007-01-09 | 2008-07-24 | Jgc Corp | 天然ガス処理方法 |
US7777088B2 (en) | 2007-01-10 | 2010-08-17 | Pilot Energy Solutions, Llc | Carbon dioxide fractionalization process |
US20080264099A1 (en) * | 2007-04-24 | 2008-10-30 | Conocophillips Company | Domestic gas product from an lng facility |
WO2008136884A1 (en) * | 2007-05-03 | 2008-11-13 | Exxonmobil Upstream Research Company | Natural gas liquefaction process |
US9869510B2 (en) | 2007-05-17 | 2018-01-16 | Ortloff Engineers, Ltd. | Liquefied natural gas processing |
BRPI0815707A2 (pt) | 2007-08-24 | 2015-02-10 | Exxonmobil Upstream Res Co | Processo para a liquefação de uma corrente gasosa, e, sistema para o tratamento de uma corrente de alimentação gasosa. |
US8899074B2 (en) * | 2009-10-22 | 2014-12-02 | Battelle Energy Alliance, Llc | Methods of natural gas liquefaction and natural gas liquefaction plants utilizing multiple and varying gas streams |
US8555672B2 (en) | 2009-10-22 | 2013-10-15 | Battelle Energy Alliance, Llc | Complete liquefaction methods and apparatus |
US8061413B2 (en) | 2007-09-13 | 2011-11-22 | Battelle Energy Alliance, Llc | Heat exchangers comprising at least one porous member positioned within a casing |
US9574713B2 (en) | 2007-09-13 | 2017-02-21 | Battelle Energy Alliance, Llc | Vaporization chambers and associated methods |
US9217603B2 (en) | 2007-09-13 | 2015-12-22 | Battelle Energy Alliance, Llc | Heat exchanger and related methods |
US20090084132A1 (en) * | 2007-09-28 | 2009-04-02 | Ramona Manuela Dragomir | Method for producing liquefied natural gas |
US20100205979A1 (en) * | 2007-11-30 | 2010-08-19 | Gentry Mark C | Integrated LNG Re-Gasification Apparatus |
US20090182064A1 (en) * | 2008-01-14 | 2009-07-16 | Pennsylvania Sustainable Technologies, Llc | Reactive Separation To Upgrade Bioprocess Intermediates To Higher Value Liquid Fuels or Chemicals |
US7932297B2 (en) * | 2008-01-14 | 2011-04-26 | Pennsylvania Sustainable Technologies, Llc | Method and system for producing alternative liquid fuels or chemicals |
JP5683277B2 (ja) | 2008-02-14 | 2015-03-11 | シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイShell Internationale Research Maatschappij Beslotenvennootshap | 炭化水素流の冷却方法及び装置 |
US8534094B2 (en) | 2008-04-09 | 2013-09-17 | Shell Oil Company | Method and apparatus for liquefying a hydrocarbon stream |
RU2011106108A (ru) * | 2008-07-18 | 2012-08-27 | Шелл Интернэшнл Рисерч Маатсхаппий Б.В. (NL) | Двухстадийный способ производства очищенного газа |
US8522574B2 (en) * | 2008-12-31 | 2013-09-03 | Kellogg Brown & Root Llc | Method for nitrogen rejection and or helium recovery in an LNG liquefaction plant |
US8434325B2 (en) * | 2009-05-15 | 2013-05-07 | Ortloff Engineers, Ltd. | Liquefied natural gas and hydrocarbon gas processing |
EP2440870A1 (en) * | 2009-06-11 | 2012-04-18 | Ortloff Engineers, Ltd | Hydrocarbon gas processing |
US9021832B2 (en) * | 2010-01-14 | 2015-05-05 | Ortloff Engineers, Ltd. | Hydrocarbon gas processing |
DE102010007401A1 (de) | 2010-02-03 | 2011-08-04 | Kärcher Futuretech GmbH, 71364 | Vorrichtung und Verfahren zum automatisierten Formen und Abfüllen von Behältern |
JP5798180B2 (ja) * | 2010-03-31 | 2015-10-21 | オートロフ・エンジニアーズ・リミテッド | 炭化水素ガス処理 |
KR101714101B1 (ko) * | 2010-03-31 | 2017-03-08 | 오르트로프 엔지니어스, 리미티드 | 탄화수소 가스 처리 방법 |
JP5686989B2 (ja) * | 2010-05-13 | 2015-03-18 | エア・ウォーター株式会社 | 自動車用液化天然ガスの製法 |
CN102933273B (zh) * | 2010-06-03 | 2015-05-13 | 奥特洛夫工程有限公司 | 碳氢化合物气体处理 |
EP2466235A1 (en) * | 2010-12-20 | 2012-06-20 | Shell Internationale Research Maatschappij B.V. | Method and apparatus for producing a liquefied hydrocarbon stream |
FR2969745B1 (fr) * | 2010-12-27 | 2013-01-25 | Technip France | Procede de production d'un courant riche en methane et d'un courant riche en hydrocarbures en c2+ et installation associee. |
CA2728716C (en) * | 2011-01-18 | 2017-12-05 | Jose Lourenco | Method of recovery of natural gas liquids from natural gas at ngls recovery plants |
CA2763081C (en) * | 2011-12-20 | 2019-08-13 | Jose Lourenco | Method to produce liquefied natural gas (lng) at midstream natural gas liquids (ngls) recovery plants. |
US9612050B2 (en) * | 2012-01-12 | 2017-04-04 | 9052151 Canada Corporation | Simplified LNG process |
CA2772479C (en) * | 2012-03-21 | 2020-01-07 | Mackenzie Millar | Temperature controlled method to liquefy gas and a production plant using the method. |
CA2790961C (en) | 2012-05-11 | 2019-09-03 | Jose Lourenco | A method to recover lpg and condensates from refineries fuel gas streams. |
US10655911B2 (en) | 2012-06-20 | 2020-05-19 | Battelle Energy Alliance, Llc | Natural gas liquefaction employing independent refrigerant path |
CA2798057C (en) | 2012-12-04 | 2019-11-26 | Mackenzie Millar | A method to produce lng at gas pressure letdown stations in natural gas transmission pipeline systems |
CN105074370B (zh) | 2012-12-28 | 2017-04-19 | 林德工程北美股份有限公司 | 一种ngl(液化天然气回收)和lng(液化天然气)的组合工艺 |
CA2813260C (en) | 2013-04-15 | 2021-07-06 | Mackenzie Millar | A method to produce lng |
FR3012150B1 (fr) | 2013-10-23 | 2016-09-02 | Technip France | Procede de fractionnement d'un courant de gaz craque, mettant en oeuvre un courant de recycle intermediaire, et installation associee |
CN103868322B (zh) * | 2014-03-06 | 2016-04-20 | 中国海洋石油总公司 | 一种用于海上天然气开采的预冷式重烃回收系统及工艺 |
CN103868323B (zh) * | 2014-03-06 | 2016-04-20 | 中国海洋石油总公司 | 一种适用于海上的天然气膨胀重烃回收系统及工艺 |
US9964034B2 (en) * | 2014-04-09 | 2018-05-08 | Exxonmobil Upstream Research Company | Methods for producing a fuel gas stream |
CA2958091C (en) | 2014-08-15 | 2021-05-18 | 1304338 Alberta Ltd. | A method of removing carbon dioxide during liquid natural gas production from natural gas at gas pressure letdown stations |
EP3040405A1 (en) | 2014-12-30 | 2016-07-06 | Technip France | Method for improving propylene recovery from fluid catalytic cracker unit |
CA2977793C (en) * | 2015-02-24 | 2020-02-04 | Ihi E&C International Corporation | Method and apparatus for removing benzene contaminants from natural gas |
FR3034427B1 (fr) * | 2015-04-01 | 2020-01-03 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Procede de desazotation du gaz naturel |
US9816752B2 (en) | 2015-07-22 | 2017-11-14 | Butts Properties, Ltd. | System and method for separating wide variations in methane and nitrogen |
US11173445B2 (en) | 2015-09-16 | 2021-11-16 | 1304338 Alberta Ltd. | Method of preparing natural gas at a gas pressure reduction stations to produce liquid natural gas (LNG) |
US10551118B2 (en) | 2016-08-26 | 2020-02-04 | Ortloff Engineers, Ltd. | Hydrocarbon gas processing |
US10533794B2 (en) | 2016-08-26 | 2020-01-14 | Ortloff Engineers, Ltd. | Hydrocarbon gas processing |
US10551119B2 (en) | 2016-08-26 | 2020-02-04 | Ortloff Engineers, Ltd. | Hydrocarbon gas processing |
US10539364B2 (en) * | 2017-03-13 | 2020-01-21 | General Electric Company | Hydrocarbon distillation |
US20180259248A1 (en) * | 2017-03-13 | 2018-09-13 | General Electric Company | System for Producing Vehicle Fuel |
US11543180B2 (en) | 2017-06-01 | 2023-01-03 | Uop Llc | Hydrocarbon gas processing |
US11428465B2 (en) | 2017-06-01 | 2022-08-30 | Uop Llc | Hydrocarbon gas processing |
WO2019193740A1 (ja) * | 2018-04-06 | 2019-10-10 | 日揮株式会社 | 天然ガス処理方法、及び天然ガス処理装置 |
FR3082922B1 (fr) * | 2018-06-26 | 2020-10-16 | Air Liquide | Procede de liquefaction de gaz naturel integre a un procede de production de liquides extraits d'un courant d'alimentation de gaz naturel |
US20210063083A1 (en) * | 2019-08-29 | 2021-03-04 | Exxonmobil Upstream Research Company | Liquefaction of Production Gas |
CA3154957A1 (en) * | 2019-10-17 | 2021-04-22 | Jinghua CHAN | Standalone high-pressure heavies removal unit for lng processing |
US11650009B2 (en) | 2019-12-13 | 2023-05-16 | Bcck Holding Company | System and method for separating methane and nitrogen with reduced horsepower demands |
US11378333B2 (en) | 2019-12-13 | 2022-07-05 | Bcck Holding Company | System and method for separating methane and nitrogen with reduced horsepower demands |
CN112303769A (zh) * | 2020-11-16 | 2021-02-02 | 安瑞科(蚌埠)压缩机有限公司 | 一种lng冷能循环回收存储装置 |
Family Cites Families (82)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1072004A (en) * | 1912-06-13 | 1913-09-02 | George Hart | Valve-disk. |
US1138551A (en) * | 1913-06-12 | 1915-05-04 | Edmund F Gebhardt | Relief-valve. |
US1737588A (en) * | 1925-12-10 | 1929-12-03 | Cons Ashcroft Hancock Co | Incased adjustable weight-loaded valve |
US2935075A (en) * | 1954-11-01 | 1960-05-03 | Bendix Aviat Corp | Relief valve |
BE579774A (zh) * | 1958-06-23 | |||
US3292380A (en) | 1964-04-28 | 1966-12-20 | Coastal States Gas Producing C | Method and equipment for treating hydrocarbon gases for pressure reduction and condensate recovery |
US3831172A (en) * | 1972-01-03 | 1974-08-20 | Universal Res Labor Inc | Solid-state sound effect generating system |
US3837172A (en) | 1972-06-19 | 1974-09-24 | Synergistic Services Inc | Processing liquefied natural gas to deliver methane-enriched gas at high pressure |
US4171964A (en) | 1976-06-21 | 1979-10-23 | The Ortloff Corporation | Hydrocarbon gas processing |
US4157904A (en) | 1976-08-09 | 1979-06-12 | The Ortloff Corporation | Hydrocarbon gas processing |
US4140504A (en) | 1976-08-09 | 1979-02-20 | The Ortloff Corporation | Hydrocarbon gas processing |
US4251249A (en) | 1977-01-19 | 1981-02-17 | The Randall Corporation | Low temperature process for separating propane and heavier hydrocarbons from a natural gas stream |
US4185978A (en) | 1977-03-01 | 1980-01-29 | Standard Oil Company (Indiana) | Method for cryogenic separation of carbon dioxide from hydrocarbons |
US4278457A (en) | 1977-07-14 | 1981-07-14 | Ortloff Corporation | Hydrocarbon gas processing |
US4445917A (en) | 1982-05-10 | 1984-05-01 | Air Products And Chemicals, Inc. | Process for liquefied natural gas |
USRE33408E (en) | 1983-09-29 | 1990-10-30 | Exxon Production Research Company | Process for LPG recovery |
US4545795A (en) | 1983-10-25 | 1985-10-08 | Air Products And Chemicals, Inc. | Dual mixed refrigerant natural gas liquefaction |
US4525185A (en) | 1983-10-25 | 1985-06-25 | Air Products And Chemicals, Inc. | Dual mixed refrigerant natural gas liquefaction with staged compression |
US4519824A (en) | 1983-11-07 | 1985-05-28 | The Randall Corporation | Hydrocarbon gas separation |
DE3414749A1 (de) * | 1984-04-18 | 1985-10-31 | Linde Ag, 6200 Wiesbaden | Verfahren zur abtrennung hoeherer kohlenwasserstoffe aus einem kohlenwasserstoffhaltigen rohgas |
FR2571129B1 (fr) | 1984-09-28 | 1988-01-29 | Technip Cie | Procede et installation de fractionnement cryogenique de charges gazeuses |
US4617039A (en) * | 1984-11-19 | 1986-10-14 | Pro-Quip Corporation | Separating hydrocarbon gases |
FR2578637B1 (fr) | 1985-03-05 | 1987-06-26 | Technip Cie | Procede de fractionnement de charges gazeuses et installation pour l'execution de ce procede |
US4687499A (en) | 1986-04-01 | 1987-08-18 | Mcdermott International Inc. | Process for separating hydrocarbon gas constituents |
US4707170A (en) * | 1986-07-23 | 1987-11-17 | Air Products And Chemicals, Inc. | Staged multicomponent refrigerant cycle for a process for recovery of C+ hydrocarbons |
US4710214A (en) * | 1986-12-19 | 1987-12-01 | The M. W. Kellogg Company | Process for separation of hydrocarbon gases |
US4755200A (en) | 1987-02-27 | 1988-07-05 | Air Products And Chemicals, Inc. | Feed gas drier precooling in mixed refrigerant natural gas liquefaction processes |
US4854955A (en) | 1988-05-17 | 1989-08-08 | Elcor Corporation | Hydrocarbon gas processing |
US4869740A (en) | 1988-05-17 | 1989-09-26 | Elcor Corporation | Hydrocarbon gas processing |
US4889545A (en) | 1988-11-21 | 1989-12-26 | Elcor Corporation | Hydrocarbon gas processing |
US4851020A (en) * | 1988-11-21 | 1989-07-25 | Mcdermott International, Inc. | Ethane recovery system |
US4895584A (en) * | 1989-01-12 | 1990-01-23 | Pro-Quip Corporation | Process for C2 recovery |
US5114451A (en) * | 1990-03-12 | 1992-05-19 | Elcor Corporation | Liquefied natural gas processing |
FR2681859B1 (fr) | 1991-09-30 | 1994-02-11 | Technip Cie Fse Etudes Const | Procede de liquefaction de gaz naturel. |
JPH06299174A (ja) | 1992-07-24 | 1994-10-25 | Chiyoda Corp | 天然ガス液化プロセスに於けるプロパン系冷媒を用いた冷却装置 |
US5339630A (en) * | 1992-08-28 | 1994-08-23 | General Motors Corporation | Exhaust burner catalyst preheater |
JPH06159928A (ja) | 1992-11-20 | 1994-06-07 | Chiyoda Corp | 天然ガス液化方法 |
US5275005A (en) | 1992-12-01 | 1994-01-04 | Elcor Corporation | Gas processing |
US5520209A (en) * | 1993-12-03 | 1996-05-28 | The Dow Chemical Company | Fluid relief device |
FR2714722B1 (fr) | 1993-12-30 | 1997-11-21 | Inst Francais Du Petrole | Procédé et appareil de liquéfaction d'un gaz naturel. |
US5615561A (en) * | 1994-11-08 | 1997-04-01 | Williams Field Services Company | LNG production in cryogenic natural gas processing plants |
US5568737A (en) | 1994-11-10 | 1996-10-29 | Elcor Corporation | Hydrocarbon gas processing |
US5566554A (en) * | 1995-06-07 | 1996-10-22 | Kti Fish, Inc. | Hydrocarbon gas separation process |
RU2144556C1 (ru) | 1995-06-07 | 2000-01-20 | Элкор Корпорейшн | Способ разделения газового потока и устройство для его осуществления (варианты) |
US5555748A (en) | 1995-06-07 | 1996-09-17 | Elcor Corporation | Hydrocarbon gas processing |
MY117899A (en) | 1995-06-23 | 2004-08-30 | Shell Int Research | Method of liquefying and treating a natural gas. |
US5600969A (en) | 1995-12-18 | 1997-02-11 | Phillips Petroleum Company | Process and apparatus to produce a small scale LNG stream from an existing NGL expander plant demethanizer |
US5755115A (en) * | 1996-01-30 | 1998-05-26 | Manley; David B. | Close-coupling of interreboiling to recovered heat |
ES2183136T3 (es) | 1996-02-29 | 2003-03-16 | Shell Int Research | Procedimiento para disminuir la cantidad de componentes con bajos puntos de ebullicion en un gas natural licuado. |
US5799507A (en) | 1996-10-25 | 1998-09-01 | Elcor Corporation | Hydrocarbon gas processing |
US5755114A (en) | 1997-01-06 | 1998-05-26 | Abb Randall Corporation | Use of a turboexpander cycle in liquefied natural gas process |
JPH10204455A (ja) | 1997-01-27 | 1998-08-04 | Chiyoda Corp | 天然ガス液化方法 |
US5983664A (en) | 1997-04-09 | 1999-11-16 | Elcor Corporation | Hydrocarbon gas processing |
US5890378A (en) | 1997-04-21 | 1999-04-06 | Elcor Corporation | Hydrocarbon gas processing |
US5881569A (en) | 1997-05-07 | 1999-03-16 | Elcor Corporation | Hydrocarbon gas processing |
DE19720786A1 (de) * | 1997-05-17 | 1998-11-19 | Abb Research Ltd | Brennkammer |
DZ2535A1 (fr) * | 1997-06-20 | 2003-01-08 | Exxon Production Research Co | Procédé perfectionné pour la liquéfaction de gaz naturel. |
CA2294742C (en) | 1997-07-01 | 2005-04-05 | Exxon Production Research Company | Process for separating a multi-component gas stream containing at least one freezable component |
EP0918190A1 (de) * | 1997-11-21 | 1999-05-26 | Abb Research Ltd. | Brenner für den Betrieb eines Wärmeerzeugers |
EP0919768B1 (de) * | 1997-11-25 | 2003-02-05 | Alstom | Brenner zum Betrieb eines Wärmeerzeugers |
EG22293A (en) | 1997-12-12 | 2002-12-31 | Shell Int Research | Process ofliquefying a gaseous methane-rich feed to obtain liquefied natural gas |
US6182469B1 (en) | 1998-12-01 | 2001-02-06 | Elcor Corporation | Hydrocarbon gas processing |
US6116050A (en) * | 1998-12-04 | 2000-09-12 | Ipsi Llc | Propane recovery methods |
US6119479A (en) | 1998-12-09 | 2000-09-19 | Air Products And Chemicals, Inc. | Dual mixed refrigerant cycle for gas liquefaction |
MY117548A (en) | 1998-12-18 | 2004-07-31 | Exxon Production Research Co | Dual multi-component refrigeration cycles for liquefaction of natural gas |
US6125653A (en) | 1999-04-26 | 2000-10-03 | Texaco Inc. | LNG with ethane enrichment and reinjection gas as refrigerant |
US6336344B1 (en) | 1999-05-26 | 2002-01-08 | Chart, Inc. | Dephlegmator process with liquid additive |
US6324867B1 (en) | 1999-06-15 | 2001-12-04 | Exxonmobil Oil Corporation | Process and system for liquefying natural gas |
US6347532B1 (en) | 1999-10-12 | 2002-02-19 | Air Products And Chemicals, Inc. | Gas liquefaction process with partial condensation of mixed refrigerant at intermediate temperatures |
US6308531B1 (en) | 1999-10-12 | 2001-10-30 | Air Products And Chemicals, Inc. | Hybrid cycle for the production of liquefied natural gas |
CN1095496C (zh) * | 1999-10-15 | 2002-12-04 | 余庆发 | 液化天然气的生产方法 |
DE19950289A1 (de) * | 1999-10-19 | 2001-04-26 | Bosch Gmbh Robert | Kraftstoffversorgungseinrichtung für eine Brennkraftmaschine eines Kraftfahrzeugs |
GB0000327D0 (en) * | 2000-01-07 | 2000-03-01 | Costain Oil Gas & Process Limi | Hydrocarbon separation process and apparatus |
US6283142B1 (en) * | 2000-02-04 | 2001-09-04 | Robert Bosch Corporation | Dual fuel delivery module system for bifurcated automotive fuel tanks |
WO2001088447A1 (en) | 2000-05-18 | 2001-11-22 | Phillips Petroleum Company | Enhanced ngl recovery utilizing refrigeration and reflux from lng plants |
US6367286B1 (en) * | 2000-11-01 | 2002-04-09 | Black & Veatch Pritchard, Inc. | System and process for liquefying high pressure natural gas |
US6485294B2 (en) * | 2000-12-20 | 2002-11-26 | Lennox Manufacturing Inc. | NOx reduction device |
US6436287B1 (en) * | 2000-12-20 | 2002-08-20 | Robert Bosch Corportion | Fuel pump module and method for installing the same |
US6371153B1 (en) * | 2001-03-16 | 2002-04-16 | Robert Bosch Corporation | Dual fuel delivery module system for multi-chambered or multiple automotive fuel tanks |
US6526777B1 (en) * | 2001-04-20 | 2003-03-04 | Elcor Corporation | LNG production in cryogenic natural gas processing plants |
UA76750C2 (uk) * | 2001-06-08 | 2006-09-15 | Елккорп | Спосіб зрідження природного газу (варіанти) |
US7069743B2 (en) * | 2002-02-20 | 2006-07-04 | Eric Prim | System and method for recovery of C2+ hydrocarbons contained in liquefied natural gas |
-
2003
- 2003-03-07 US US10/384,038 patent/US6889523B2/en not_active Expired - Fee Related
-
2004
- 2004-02-06 NZ NZ541904A patent/NZ541904A/en not_active IP Right Cessation
- 2004-02-06 CN CNB2004800062765A patent/CN100436987C/zh not_active Expired - Fee Related
- 2004-02-06 EP EP04708989A patent/EP1606371A2/en not_active Withdrawn
- 2004-02-06 JP JP2006508671A patent/JP2006523296A/ja active Pending
- 2004-02-06 BR BRPI0408137-4A patent/BRPI0408137A/pt not_active IP Right Cessation
- 2004-02-06 MX MXPA05009293A patent/MXPA05009293A/es active IP Right Grant
- 2004-02-06 CA CA2516785A patent/CA2516785C/en not_active Expired - Fee Related
- 2004-02-06 WO PCT/US2004/003330 patent/WO2004081151A2/en active Application Filing
- 2004-02-27 AR ARP040100617A patent/AR043417A1/es active IP Right Grant
- 2004-03-04 PE PE2004000241A patent/PE20041074A1/es not_active Application Discontinuation
- 2004-03-05 MY MYPI20040770A patent/MY136573A/en unknown
-
2005
- 2005-09-15 NO NO20054262A patent/NO20054262L/no not_active Application Discontinuation
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101711335A (zh) * | 2007-06-22 | 2010-05-19 | 坎法阿拉贡股份有限公司 | 用于生产lng的方法和系统 |
CN101711335B (zh) * | 2007-06-22 | 2014-10-15 | 坎法阿拉贡股份有限公司 | 用于生产lng的方法和系统 |
CN102027304A (zh) * | 2008-05-16 | 2011-04-20 | 奥特洛夫工程有限公司 | 液化天然气与烃气体处理 |
CN102027304B (zh) * | 2008-05-16 | 2014-03-12 | 奥特洛夫工程有限公司 | 液化天然气与烃气体处理 |
CN102112829A (zh) * | 2008-08-06 | 2011-06-29 | 奥特洛夫工程有限公司 | 液化天然气生产 |
CN102112829B (zh) * | 2008-08-06 | 2014-08-27 | 奥特洛夫工程有限公司 | 液化天然气生产 |
CN102428334A (zh) * | 2009-05-15 | 2012-04-25 | 奥特洛夫工程有限公司 | 液化天然气与烃气体处理 |
CN102428334B (zh) * | 2009-05-15 | 2014-06-25 | 奥特洛夫工程有限公司 | 液化天然气与烃气体处理 |
CN103180657A (zh) * | 2010-11-03 | 2013-06-26 | 巴特勒能源同盟有限公司 | 升华系统和相关方法 |
CN103180657B (zh) * | 2010-11-03 | 2015-11-25 | 巴特勒能源同盟有限公司 | 升华系统和相关方法 |
CN104263402A (zh) * | 2014-09-19 | 2015-01-07 | 华南理工大学 | 一种利用能量集成高效回收管输天然气中轻烃的方法 |
CN107208964A (zh) * | 2015-02-27 | 2017-09-26 | 埃克森美孚上游研究公司 | 减少进入低温蒸馏过程的进料物流的冷冻和脱水负荷 |
CN106883897A (zh) * | 2017-03-29 | 2017-06-23 | 四川华亿石油天然气工程有限公司 | Bog分离提纯设备及工艺 |
CN111684225A (zh) * | 2017-12-15 | 2020-09-18 | 沙特阿拉伯石油公司 | 天然气凝液回收的过程集成 |
US11226154B2 (en) | 2017-12-15 | 2022-01-18 | Saudi Arabian Oil Company | Process integration for natural gas liquid recovery |
US11231227B2 (en) | 2017-12-15 | 2022-01-25 | Saudi Arabian Oil Company | Process integration for natural gas liquid recovery |
US11231226B2 (en) | 2017-12-15 | 2022-01-25 | Saudi Arabian Oil Company | Process integration for natural gas liquid recovery |
US11248840B2 (en) | 2017-12-15 | 2022-02-15 | Saudi Arabian Oil Company | Process integration for natural gas liquid recovery |
US11248839B2 (en) | 2017-12-15 | 2022-02-15 | Saudi Arabian Oil Company | Process integration for natural gas liquid recovery |
US11320196B2 (en) | 2017-12-15 | 2022-05-03 | Saudi Arabian Oil Company | Process integration for natural gas liquid recovery |
US11428464B2 (en) | 2017-12-15 | 2022-08-30 | Saudi Arabian Oil Company | Process integration for natural gas liquid recovery |
US11644235B2 (en) | 2017-12-15 | 2023-05-09 | Saudi Arabian Oil Company | Process integration for natural gas liquid recovery |
CN108759305A (zh) * | 2018-06-11 | 2018-11-06 | 西南石油大学 | 一种多回流的天然气乙烷回收方法 |
CN108759305B (zh) * | 2018-06-11 | 2019-08-23 | 西南石油大学 | 一种多回流的天然气乙烷回收方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2006523296A (ja) | 2006-10-12 |
MXPA05009293A (es) | 2006-03-21 |
MY136573A (en) | 2008-10-31 |
PE20041074A1 (es) | 2005-01-22 |
NO20054262L (no) | 2005-10-07 |
EP1606371A2 (en) | 2005-12-21 |
US6889523B2 (en) | 2005-05-10 |
WO2004081151A2 (en) | 2004-09-23 |
AR043417A1 (es) | 2005-07-27 |
CA2516785C (en) | 2010-05-11 |
WO2004081151A3 (en) | 2005-06-02 |
US20040177646A1 (en) | 2004-09-16 |
CA2516785A1 (en) | 2004-09-23 |
NZ541904A (en) | 2007-09-28 |
NO20054262D0 (no) | 2005-09-15 |
BRPI0408137A (pt) | 2006-03-01 |
CN100436987C (zh) | 2008-11-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1759286A (zh) | 低温天然气加工厂的lng生产 | |
KR101687852B1 (ko) | 탄화수소 가스 처리 방법 | |
CN105531552B (zh) | 烃类气体处理 | |
JP4659334B2 (ja) | 天然ガスの低温処理におけるlng製造法 | |
CN102317725B (zh) | 烃气体加工 | |
CN102428333B (zh) | 液化天然气与烃气体处理 | |
CN101517340B (zh) | 烃类气体处理 | |
JP4452239B2 (ja) | 炭化水素の分離方法および分離装置 | |
RU2407966C2 (ru) | Способ обработки жидкого природного газа | |
CN1019105B (zh) | 烃类气体分离过程 | |
CN1039409A (zh) | 气态烃的分离过程 | |
US8584488B2 (en) | Liquefied natural gas production | |
CN1018022B (zh) | 烃类气体的加工处理 | |
CN1969160A (zh) | 烃气处理 | |
KR102508735B1 (ko) | 탄화수소 가스 처리 | |
KR20070022714A (ko) | 천연 가스 액화 | |
CN100473927C (zh) | 天然气液化的方法及其设备 | |
CN1254411A (zh) | 用于分离烃气体组份的方法 | |
CN1743436A (zh) | 一种用于燃气调峰和轻烃回收的天然气液化方法 | |
CN101652619A (zh) | 液化天然气加工 | |
RU2688533C1 (ru) | Установка нтдр для комплексной подготовки газа и получения спг и способ ее работы | |
RU2688151C1 (ru) | Установка низкотемпературной дефлегмации с сепарацией нтдс для подготовки природного газа с получением сжиженного природного газа и способ ее работы (варианты) | |
CN102460049A (zh) | 烃气体处理 | |
KR102508738B1 (ko) | 탄화수소 가스 처리 | |
RU2382302C1 (ru) | Способ низкотемпературного разделения углеводородного газа |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20081126 Termination date: 20140206 |