CN1745528B - 组合信道表、启动访问点、切换信道、指定信道的方法 - Google Patents

组合信道表、启动访问点、切换信道、指定信道的方法 Download PDF

Info

Publication number
CN1745528B
CN1745528B CN200480003253.9A CN200480003253A CN1745528B CN 1745528 B CN1745528 B CN 1745528B CN 200480003253 A CN200480003253 A CN 200480003253A CN 1745528 B CN1745528 B CN 1745528B
Authority
CN
China
Prior art keywords
channel
radar
sub
band
free
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200480003253.9A
Other languages
English (en)
Other versions
CN1745528A (zh
Inventor
W·J·麦克法兰德
M·R·格林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/730,883 external-priority patent/US6870815B2/en
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of CN1745528A publication Critical patent/CN1745528A/zh
Application granted granted Critical
Publication of CN1745528B publication Critical patent/CN1745528B/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/22Arrangements for detecting or preventing errors in the information received using redundant apparatus to increase reliability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/02Channels characterised by the type of signal
    • H04L5/06Channels characterised by the type of signal the signals being represented by different frequencies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/16Implementing security features at a particular protocol layer
    • H04L63/162Implementing security features at a particular protocol layer at the data link layer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/021Auxiliary means for detecting or identifying radar signals or the like, e.g. radar jamming signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/06Reselecting a communication resource in the serving access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

为了避免干扰5GHz内的雷达系统,无线设备检测雷达并空出由所述雷达系统当前使用的任何信道。在一种信道切换技术中,如果所述新信道是雷达免除的,那么在所述新信道开始正常运行。如果所述新信道是非雷达免除的,那么在一条临时雷达空闲信道上开始正常运行,并能在所述新信道上执行综合后台扫描。如果用所述综合后台扫描未检测到雷达,那么运行就从所述临时信道切换到所述新信道。

Description

组合信道表、启动访问点、切换信道、指定信道的方法
相关申请
本申请是Atheror通信公司于2003年4月2日提交的、美国专利申请号10/406049,标题为“为WLAN设备实现动态频率选择(DFS)功能的方法”的延续部分(CIP),并通过引用合并与此。
技术领域
本发明涉及无线局域网(WLAN)设备,尤其涉及在无线局域网中为雷达实现启动扫描,为信道切换识别备用信道,并在运行信道内的雷达检测事件中有效改变信道的技术。
相关技术描述
运行在5GHz频谱内的无线局域网(WLAN)设备与雷达系统共存。各种调整标准(例如,草拟的欧洲通信标准协会(ETSI)的EN 301,893,版本V1.2.1,200年7月出版)都要求:5GHz WLAN设备具备动态频率选择(DFS)功能。存在伴同信道雷达时,该DFS功能切换运行信道,并可在某一宽频带范围内均衡地扩展运行。
调整标准一般为雷达检测和/或避免伴同信道雷达提供简单的规则(guideline)。例如,当前欧洲调整标准要求:在运行开始前完成每个允许信道的60秒扫描。而且,一旦在当前运行信道上检测到雷达信号,WLAN设备(即,访问点或基站)必须在短时间帧(例如,0.2–1.0秒)内中止通信。注意,欧洲调整标准的待审修正版本要求:一个访问点或基站的综合传送时间要限制在从检测到雷达的瞬间起开始计时的总共260毫秒内。其它调整区域也已经建议了类似规则。例如,草拟IEEE 802.11h说明书(这使802.11a标准适合于欧洲规则)建议:基站通过停止数据传送响应来自访问点的信道切换广播帧,由此,避免对伴同信道雷达系统的有害干扰。
然而,这些调整标准都没有提供特别的实施细节。因此,已经提议了各种专用解决方案。例如,由Atheror公司于2001年12月6日提交的、美国专利申请10/XXX,XXX(下文中McFarland),标题为“无线局域网的雷达检测和动态频率选择”,申请日期为2001年12月6日,由Atheros通信公司著,并通过引用合并与此,该专利教导了怎样有效地检测伴同信道雷达。在McFarland,信号脉冲可作为检测事件来接收。能够消除任何对应于网络通信业务(traffic)的检测事件。在这点,能检查任何不能消除的事件,以确定它们是否对应于雷达信号。这种检查包括识别脉冲重复频率,脉冲周期,或在某一预定时间周期内的脉冲数。
McFarland也指出一种依据雷达的检测来停止访问点和它相关基站之间传送的技术。在这种技术中,节点协调功能(PCF)能用于控制哪些基站发送及它们何时发送,所述节点协调功能是在IEEE 802.11标准内提供的。特别地,由访问点发送的一个PCF信标(beacon)宣布轮询周期的开始,此时所有基站在发送前必须等待直到被那个访问点轮询到为止。在PCF信标和下一基站的轮询之间的间隙期间,访问点可以执行雷达检测循环。在雷达检测循环的结束点,访问点能进行正常的PCF轮询。
目前正在研制涉及DFS的其它实施技术。这些技术应当包括:定义用于执行启动雷达扫描的特殊运算法则,确定用于可能的信道切换的可接受的备用信道,并在运行信道的雷达检测的情况中有效地切换信道。较佳地,这些技术应当进一步包括一种机制,使得遗留基站,即,那些未实现DFS功能性的基站,在信道切换运行期间可由访问点轻易地控制,并时常能在新信道上运行。
发明内容
各种修订和标准的主要部分公布定义无线设备怎样在某些频带内运行的标准。5GHz频带对修订权限具有特别的重要性,因为雷达系统运行在一部分该频带内。雷达系统可由军事,航空,气象,及其他政府部门使用。因此,因为这些雷达系统的重要性,运行在5GHz频带内的无线设备必须能检测雷达并避开由雷达系统所使用的任何频率。雷达的检测和避开是定期动态频率选择(DFS)能力的主要特征。依据本发明的一个方面,提供下列技术,用于:执行雷达启动扫描,为可能的信道切换确定可接受的备用信道,及能在运行信道的雷达检测事件内有效地切换信道。这些技术有利于满足当前管理DFS的调整标准,同时使雷达检测事件期间的网络启动延迟以及对用户的中断减少到最小。
一般来说,无线设备的启动程序时间上是很关键的。特别地,基站(及基站的人类用户)应当考虑到,冗长的启动程序是一个产品缺陷。访问点可重新启动,以响应一次可用信道的无效启动扫描,由此,明显地降低了无线网络的可用性和利用率。某些调整区域要求相对较长的时间周期,以检验雷达不用的一个信道。例如,欧洲规则要求:每个信道要扫描60秒钟,以确定它是否是雷达空闲用的信道。因此,必须满足这种需求,同时还使启动程序所化的时间减少到最小。
依据本发明一个方面,访问点在初始启动期间组装了备用信道的一张短列表(例如一个或两个),并在正常运行期间存储这张短列表。在当前信道上检测到雷达的情况中,备用信道有利于执行快速和无中断的信道切换。使用这张短信道表可消除一个另外冗长启动程序(例如,达到19信道×60秒=19分),因为该短信道表又经对雷达预先扫描了所需周期(例如,60秒)。
在启动期间,访问点能迅速地扫描雷达的多个信道。在一个实施例中,能在未发现雷达的第一信道开始正常运行。在正常运行期间,访问点或在的一个或多个被访问点所请求的基站可以进行简短的后台扫描,以识别其它雷达空闲信道。该扫描过程可以一直继续着到发现一个或两个备用的雷达空闲信道为止。这时,可以将雷达空闲信道可储存在访问点,以便将来的信道切换事件期间使用。
幸运地,这些扫描的定时可方便地改变,由此避免在访问点和基站所有进行信道扫描的短时间的周期中,备用信道上的雷达用与该短周期精确一致的定时来发送雷达脉冲串的可能性。重要的是,在选择的备用信道上的正常运行期间可进行多次短后台扫描,以便于实现雷达的有效全程扫描(例如,60秒),正如同部分调整标准所要求的。
注意,雷达可在多个与WLAN设备的当前信道所相邻(即,在低于和高于的两侧)的信道内发送有效能量。因此,依据本发明的一个特征,能够进行备用信道的选择,以减少新信道在频率上相邻于当前信道的可能性。这选择处理也有利于地满足欧洲对运行信道均匀扩展的需求。而且,因为许多遗留基站还不能在5GHz频谱中的某些部分内运行,例如,5470MHz-5725MHz的子频带,所以要对该选择处理进行加权,以使当前大多数或所有与访问点相关的基站都能在新信道上运行。
例如,在本发明的一个实施例中,访问点通过从5GHz的各个子频带(例如,5150–5250MHz,5250–5350MHz及5470–5725MHz)中选择一个信道建立一张备用信道表。重要是的,分布在各个子频带内的信道的随机选择(与用信道的全部范围的信道随机选择相反),可产生一张备用信道的伪随机表,并对趋用于向该频谱的低端部分(即,5150–5350MHz)的信息进行加权。因为许多遗留基站不能在5470–5725MHz的子频带内运行,使在这较大子频带内的信道选择减少到最小的访问点能增加与这样的遗留设备相兼容的可能性。
有利地,在5150–5250MHz子频带内,很少发现雷达能够运行在某些目标区域内(例如,欧洲)。于是,美国和欧洲的所修订的技术要求这些设备对这个子频带内的雷达的检测。而且,也希望在5250-5350MHz子频带内与发现相当少数的雷达。相反,在许多国家内,希望较宽的5470–5725MHz子频带可由普遍配置的气象雷达所使用。因此,这种加权也降低了候选备用信道上遭遇雷达的可能性。
依据本发明的另一方面,访问点也要考虑到已在某些频带运行的其他WLAN设备的存在。在一个实施例中,从当前区域内的允许信道表中组合出BSS空闲信道表。访问点可较佳地从该BSS空闲信道表中选择它的备用信道。然而,如果备用信道数太少,那么,访问点能还可以从允许信道表中选择它的备用信道,以维持服从信道扩展规则。
当在运行的当前信道上检测到雷达时,访问点能从雷达不用的信道表中选择它的备用信道,即,一般频率上(即,高于或低于))离检测到雷达的当前信道最远的信道。在一个实施例中,信道切换处理有利于优先于在5150-5350MHz子频带内备用信道的选择,如上面所注意到的,信道很少有可能含有雷达能量或更有可能允许遗留基站的运行。例如,如果当前信道是在5250-5350MHz的子频带内,并至少一个备用信道是在5150-5250MH的子信道内,那么,访问点可将该新信道设置到雷达空闲信道表内的最低信道。反之,如果当前信道是在5250-5350MHz子信道内,而在5150-5250MHz子频带内没有备用信道,那么,访问点能将新信道设置到雷达空闲信道列表内的最高信道。最后,如果当前信道是在5470-5725MHz子频带内,那么,访问点能将新信道设置到雷达空闲信道表内最低信道。这种与备用信道选择相结合的信道切换操作(即,组合雷达空闲信道表)有利地使对遗留和非遗留基站设备的网络中断减少到最小,并与完全随机信道切换相比,可显著地改善无线网络的运行。
一旦在运行的当前信道上检测到雷达,访问点就向所有基站广播信道切换帧,从而保证:能解释这条信息的所有基站将立即停止数据传送。这时,访问点一条附加控制帧,即,撤消认证帧就向所有基站广播帧可使所有基站理解它们立即中止给访问点发送数据,并回复到启动状态。
重要地,撤消认证帧是在指定信道切换时间之后发送的。没有这定时,大多数,如果不是所有802.11h所适合的基站,可通过立即停止与访问点的通信,以响应于该撤消认证帧,因此,失去了执行由信道切换处理启动的所需无中断的信道切换的能力。通过在信道切换帧后的某一指定时间发送撤消认证帧,在由访问点发送该撤消认证帧之前,任何接收,理解,接受该信道切换帧的802.11h适合基站都可从运行的当前信道中移去。而且,任何非803.11h适合(即,遗留的)基站将迅速地停止它们的运行,从而减少对伴同信道雷达的有害干扰,并减少检测访问点已经离开该信道并启动恢复处理过程所需的时间。
也为调整区域内的访问点提供了一种执行启动操作的方法。注意,该调整区域具有频率扩展指标,并且访问点可以仅仅使用频谱内允许的信道来进行通信。在这种方法中,一张允许信道表能与允许信道一起组合。BSS空闲信道表能与含有当前WLAN发送的可接受电平的任何允许信道一起组合。那么,用BSS空闲信道表和允许信道表能一起组合雷达空闲的信道表。
能从雷达空闲的信道表中随机地选择第一信道。如果第一信道是在第一子频带内并且调整区域免除在第一子频带内的扫描,那么,第一信道能被指定为当前信道,备用信道就能从第一子频带内的雷达空闲信道表中选择,并访问点的操作可以用第一信道开始。
另一方面,如果第一信道不是在第一子频带内,并调整区域免除在第一子频带内的扫描,那么,除了第一子频带内的任何信道外,雷达扫描能在雷达空闲信道表内的各个信道上进行。类似地,如果第一信道是在第一子频带内,并调整区域需要在第一子频带内扫描,那么,雷达扫描能在雷达空闲信道表内的每个信道上进行。在这两种情况中,在雷达空闲信道表内都能检测到含有雷达的任何信道。可以重复上面的步骤,直到在雷达空闲信道表内含有某一预定数量的信道为止。这时,能在雷达空闲信道表内选择第一信道,并用该第一信道开始访问点的正常运行。
在某些调整的区域,在检测到雷达时,访问点可利于在不需另外的雷达扫描的条件下从雷达空闲信道表中选择一个新信道,用于运行。在其他调整区域,例如,美国调整区域,一个访问点应该在非雷达空闲信道(即,需要雷达检测的信道)上的操作之前立即执行60秒雷达扫描。因此,在启动和刷新期间所执行的雷达扫描可口不满足这一指标。从对当前信道雷达检测开始的连续60秒雷达扫描不期望导致访问点中断与它的当前相关基站的运行。换句话说,快速信道改变(没有失去与基站的关联)将是不可能,因为需要访问点和基站在10秒内空出信道,并因此,如果在这时,如果在候选信道上还在尝试任何类型的60秒扫描,访问点就不能向基站广播该快速信道改变的信息。
因此,依据本发明的一个方面,一旦由于在当前信道上检测到雷达启动信道改变操作,如果选择的新信道是在雷达免除子频带内,那么,访问点能立即在这新信道上重新开始运行。换句话说,不管信道可用性检测的调整区域的解释,在雷达免除子频带内不需要60秒扫描来开始运行。注意,该新信道可使用伪随机信道运算法则来选择。并因此也满足均匀扩展规则。
另一方面,如果选择的新信道是在非雷达免除子频带内,那么,访问点能在雷达免除子频带内选择一个临时新信道。在一个实施例中,该临时新信道是可以随机选择的。在另一个实施例中,在启动时,访问点能储存有关信道话务量的信息,并且访问点可以选择具有最小话备量的雷达空闲信道。在这临时新信道内能继续正常运行,直到访问点已完成先前选择新信道的综合后台雷达扫描的这时刻为止。如果在先前新信道内检测到雷达,那么,访问点能从雷达空闲信道表中选择另一信道,并执行另一次综合后台扫描。如果在综合后台雷达扫描期间未检测到雷达,那么,访问点能迅速地从该临时新信道切换到先前新信道。用这种信道切换技术,有利于网络用户能不经受服务的中断,因为仅快速信道改变和后台扫描就可满足所适用的修订指标。
附图说明
图1描述适用于在访问点的启动/开始期间信道选择的一种示范性处理过程;
图2A,2B,和2C描述适用于依据允许信道表和BSS空闲信道表来组合雷均有使用的雷达空闲信道表的一种示范性处理过程;
图3A描述在正常运行期间由访问点执行的一种示范性雷达扫描处理过程;
图3B描述适用于在当前信道内检测到雷达后选择新信道的一个实施例;
图4A和4B描述可由访问点执行的一种示范性信道选择技术。在这种信道切换技术中,如果新选择的信道不是在雷达免除子频带内,那么,该访问点能临时对雷达免除子频带内的信道执行该访问点及相关基站的快速信道改变操作,并立即在选择新信道上开始综合后台雷达扫描。在确认该新选择信道是雷达没有使用的信道后,该访问点就执行第二快速信道改变操作,以切换到新选择信道。
图5描述在基站内的信道改变处理过程的一个实施例。这信道改变处理过程允许基站维持与IEEE 802.11h标准的兼容,维持与非-802.11h访问点的兼容,并符合强制欧洲指标。
图6A和6B描述,访问点能请求相关基站协助雷达检测功能的另一个示范性启动操作。
图7描述适用于在访问点的启动/开始期间信道选择的另一种示范性处理过程。
具体实施方式
现在依据本发明的各个方面详细描述适用于执行启动雷达扫描;为信道切换确定一个可接受的备用信道;并有利于在运行信道内的雷达检测的情况下有效地改变信道来满足当前管理DFS所调整标准,同时使雷达事件期间的网络启动延迟及对用户的中断都减少到最小。
在访问点的启动/重新开始期间的信道选择
图1描述访在问点启动/重新开始期间备用信道选择的一个示范性处理过程。
在步骤101,访问点能查寻由调整的区域所允许的,访问点将运行的信道。在一个实施例中,访问点可以访问对照表(LUT),该对照表包括已知调整区域和相关的允许运行信道。如果调整区域是欧洲,那么,允许信道是在下列频率范围内(本文也称之为子频带):5150-5250MHz(4个信道),5250-5350MHz(4个信道),和5470-5725MHz(11个信道)。这些允许的信道能添加到允许信道表上。本文将这一处理过程称之为“组合”一张列表。
在步骤102,访问点在该允许信道表上为基本服务设置(BBS)执行启动扫描。BBS是一组IEEE 802.11h相兼容设备,能作为全连接无线网络运行。在一个实施例中,这启动扫描每信道需化200ms。因此,假定允许所有的子频带,这启动扫描将持续不超过200ms X 19信道=4秒。这时,该访问点能组合允许信道的BSS空闲信道表,这些允许信道是当前没有不传送的或具有当前WLAN传送的可接受电平的信道。
在步骤103,访问点可用参考图2描述的处理过程来组合雷达空闲信道表.。在图2A和2B所描述的实施例中,在雷达空闲信道表内含有两个或三个候选信道。注意,这时,这些候选信道还未为雷达测试过。
在步骤104,访问点能对雷达空闲信道表内的每个候选信道进行雷达扫描。在一个实施例中,该雷达扫描遵守每个信道60秒的当前欧洲标准。在雷达扫描操作后,访问点能从雷达空闲信道表中删除检测到雷达信号的任何信道。典型的是,这时,雷达空闲信道表含有0,1,2,或3个信道。
在步骤105,如果雷达空闲信道表含有两个或更多个信道,那么在步骤106,访问点能随机地从雷达空闲信道表中选择一个信道,并将那个信道设置成当前运行的信道。这时,访问点就可从雷达空闲信道表中删除当前信道,由此,在这表内留下一个或两个备用信道。访问点能保留该雷达空闲信道表,以万一在当前信道内检测到雷达时作备用。在步骤107,访问点能开始指向并在当前信道上执行正常的操作。在一个实施例中,BSS空闲信道表在步骤106后能丢弃,以保存可用的存储区。
另一方面,返回参考步骤105,如果雷达空闲信道表含有小于两个信道(即,0或1),那么,访问点可发送一条控制信息,表示没有发现无雷达的足够数量的信道。那么,处理过程返回到步骤101,以重复启动操作。
对于迫使修订技术要求的调整区域,这里WLAN设备必须不能再占有检测到雷达的信道(例如,通常在检测到雷达后至少为30分钟),从而实现一种附加保护。在这种情况下,WLAN设备能够储存检测到雷达的信道数连同与该信道相关的雷达事件的时间标志。在一个实施例中,这信息能储存在非易失性存储器内。在正常操作期间,这时间标志可定期地刷新,以递减计数所需的周期(例如,30分),在该周期时间内,能去除非再占有的标记。一旦重新启动了WLAN设备,候选者雷达空闲信道表(图1,步骤103)能与存储在非易失性存储器内的信道数进行比较,并除去适当的信道。一旦随后的第2次WLAN设备再启动,可用单独的使用期标记(该使用期标记也可储存在非易失性存储器内并递减)来刷新这个非再占有信道表,所述使用期标记对自储存非再占有信道数据后的再启动次数进行计数。
该非再占有表的一种替代实施可以下列方式实现,不需要实时时钟或该列表内的各个信道的时间标记。非占有信道表可按上面描述的进行汇编,并且在检测到雷达后立即将新信道保存到非易失性存储器内。非再占有信道的整张表只能在从任何信道添加到该表起30分后才可重新设置。如果由于检测到雷达或其他情况重新设置或重新启动该设备,那么,在启动核对现有的非再占有信道表并开始新30分钟定时。只能在消逝了连续30分钟周期后(在这段时间,没有新信道添加到该表),将清除储存在非易失性存储器内的列表。采用这种方式就不能使用各个信道的时间标记或实时时钟。注意,在该列表中除去某些合宜信道之前可能流逝比30分钟更长的周期。因为那些不经受雷达检测技术要求的总信道以及子频带的有效数目(并因此通常可用于操作,不管在该区域内的雷达活动性),这一除去技术可能对无线网络的操作和/或可用性的影响最小。为了完全实现短备用信道表的益处(例如,快速启动和备用信道的无中断刷新),考虑在步骤103应组合该雷达空闲信道表。特别是,备用信道的选择应减少信道切换操作导致访问点转移到雷达仍在运行的信道的风险。修订的指标当前还未表示:5GHz WLAN设备可采取特别措施来避免在当前信道检测到雷达后转移到一个仍由雷达占有的一个新信道,除了该技术要求:在初始启动扫描期间,先前检测该新信道的雷达。
重要的是,雷达比WLAN设备可工作在更宽的传输带宽中。而且,某些雷达,称作为频率捷变雷达,可在频谱波内的多个相邻频率上随意进行切换操作。此外,其它雷达,例如便携式,机载式,或甚至固定雷达可间歇地或用冗长和无规则定向扫描序列运行(例如,气象雷达)。另外,因为雷达附近的大量的带外寄生发射进入具有有限带外抑制的WLAN接收机,使得位于雷达附近的WLAN设备将接收到相邻于当前运行信道的信道内的有效能量。这样,不幸地,在现实世界中是完全可能转移到雷达能量仍然存在的信道上。
因此,传统的备用信道表,即使每次定期需求进行刷新(参考图3A描述的),不能保护访问点执行到备用信道的信道切换,这备用信息即不含有雷达,也不是频率上接近于雷达的不适宜信道。这样的信道切换还应当需要与它的网络操作相关中断能的其它信道切换。由该修订的技术要求对WLAN设备在可用频谱的整个范围内进行扩展操作使这个问题更复杂化。
依据本发明的一个特性,备用信道的选择能进行加权以在5GHz频谱内提供宽范围的信道频率,同时保持对实现WLAN设备的扩展操作所需的随机性。另外,该加权增加访问点执行信道切换时遗留基站还能运行的可能性。
图2A,2B,和2C描述用于组合雷达空闲信道表的一个示范性加权处理过程。在一个实施例中,访问点能用允许信道表和BSS空闲信道表组合雷达空闲信道表。较佳地,可以选择向频谱低端加权的两个或三个信道,从而明显改善遗留设备的支持。
在步骤201中,如果允许信道表含有在5150-5250MHz,5250-5350MHz以及5470-5725MHz之间频率的信道,那么,在步骤204,访问点确定是否BSS空闲信道表只含有不到两个信道。换句话说,如果两个或多个信道当前未含有来自其它基本服务设置的传输(或可接受的电平),那么,在当前信道上检测到雷达的情况下,这些信道较佳地可用作备用信道。如果BSS空闲信道表含有不小于两个信道,即,在BSS空闲信道表内发现两个或更多个信道,则在步骤206,处理过程能确定:BSS空闲信道表是否在各个5150-5250MHz,5250-5350MHz,和5470-5725MHz子频带内含有至少一个信道。如果BSS空闲信道表在各每个5150-5250MHz,5250-5350MHz和5470-5725MHz子频带内含有至少一个信道,则在步骤207,访问点就从BSS空闲信道表内伪随机地选择三个信道。在一个实施例中,一个信道可从各个5150-5250MHz,5250-5350MHz和5470-5725MHz中选择(因此,选择被认为是“伪随机”)。
另一方面,在各个5150-5250MHz,5250-5250MHz,和5470-5725MHz的子频带内,如果BSS则空闲信道表含有不到两个信道或如果BSS空闲信道表不含有至少一个信道,那么在步骤207,访问点就在从允许信道表中伪随机地选择三个信道。在一个实施例中,一个信道可从各个子频带,即,5150-5250MHz,5250-5350MHz和5470-5725MHz中选择。
在步骤202,如果允许信道表含有频率仅在5150-5250MHz和5250-5350MHz之间的信道,则在步骤208,访问点确定BSS空闲信道表含有不到两个信道。如果不是,那么在步骤210,访问点就确定BSS空闲信道表是否含有5150-5250MHz子频带内的至少两个信道,和5250-5350MHz子频带内的至少一个信道。如果BSS空闲信道表含有5150-5250MHz子频带内的至少两个信道和5250-5350MHz子频带内的至少一个信道,那么在步骤211,访问点就从BSS空闲信道表中伪随机地选择三个信道。在一个实施例中,可从5150-5250MHz子频带中选择两个信道,和从5250-5350MHz子频带中选择一个信道。
另一方面,如果BSS空闲信道表含有不到两个信道或BSS空闲信道表未含有5150-5250MHz子频带内的至少两个信道以及5250-5350MHz子频带内的一个信道,那么在步骤209,访问点就从允许信道表内伪随机选择三个信道。在一个实施例中,两个信道可从频率范围5150-5250中选择,而一个信道可从频率范围5250-5350MHz中的选择。
在步骤203,如果允许信道表含有频率仅在5150-5250MHz的信道,那么在步骤212,访问点就确定BSS空闲信道表是否含有不到两个信道。如果不是,那么在步骤214,访问点就从BSS空闲信道表中随机地选择两个信道。另一方面,如果BSS空闲信道表含有不到两个信道,那么在步骤213,访问点就从允许信道表中随机选择两个信道。在允许的信道表含有仅在5150-5250MHz内的频率的情况下,由于在该子频带内存在雷达信号的可能性较少,仅两个信道的选择(步骤211/212)是适当的和理想的。而且,将雷达空闲信道表内信道数从三个减少到二个即有利于减少启动时间又有利于维持所需信道的扩展。
在一个实施例中,在由于BSS空闲信道表内的信道短缺而必须从允许信道表中选择信道的情况下,可修改上面的步骤,以考虑在占用信道上的BSS活动的相对电平。在这个实施例中,访问点能建立接收到的信号强度(RSSI)水平和来自各个允许信道内所接收到的BSS信号的活务量水平的历史。具有构成最低值的组合RSSI和活务量水平的那些信道能组合BSS空闲信道表。采用这种方式,BSS空闲信道表还能被用于组合雷达空闲信道表,即使在大多数或所有允许信道上存在某些BSS活务量的情况中。这处理过程可有利地减少访问点在具有严重伴同信道BSS话务量的信道上运行的可能性。在另一例实施例中,能使用单个绝对RSSI阈值,来取代数值的历史。这样,发现含有BSS活务量的最小和/或可接受电平的允许信道能组合该BSS空闲信道表。换句话说,低于最小RSSI数值的BSS话务量对访问点的运行将不会产生实际影响,并由此可安全地被忽视。
由正常运行下的访问点执行的雷达扫描
图3A和3B描述能由访问点在正常运行期间执行的雷达扫描的一个实施例。依据本发明的一个方面,需要当前信道正在进行的雷达扫描。每个步骤301,在正常运行期间对当前信道执行这扫描,以保证服从于所修订的技术要求。如果在当前信道检测到雷达,正如在步骤302所确定的,那么,处理过程输入到步骤311,这可参考图3B解释。
如果在当前信道中未检测到雷达,那么在步骤303,访问点确定是否已经达到刷新时间。该刷新时间称作某一时间周期,在该时间周期内应当重新检测雷达空闲信道表内的备用信道中的雷达。特别是,某些修订的技术规范需要WLAN设备重新扫描雷达空闲信道表内任何信道,否则在信道切换操作期间访问点不能改变到备用信道。对于这刷新周期通常为24小时周期。各种欧洲技术要求,访问点在刷新周期期间,必须对每个备用信道上的雷达执行另一次60秒扫描。如果在步骤303未达到刷新时间,那么,访问点返回到步骤301,并继续在当前信道上执行周期的雷达扫描。如果达到刷新时间,那么,访问点中止正常运行,并在步骤304,重新扫描雷达空闲信道表内的备用信道。
较佳的是,可以指定时间来进行刷新扫描,而不是因当前信道上雷达检测,试图以信道切换所难以预定时间来刷新。特别地,可以在此执行各个备用信道扫描所需的60秒短得多的时间帧内能执行发送信道切换广播和中止信道的操作。因此,为了节省信道切换期间的时间并减少网络的中断,应在正常操作期间进行刷新扫描。然而,中断无线网络运行持续60秒,即使对备用信道中的一个信道进行刷新操作都将导致所有基站失去与较高层协议和应用的通信,以及有可能失去数据或其它难以接受的中断。
因此,一个示范性刷新操作包括:访问点使用各个备用信道的短(例如,2-5秒)周期性后台扫描,来满足60秒综合扫描时间,由此,从而满足修订的技术要求,同时使对用户和网络的影响减少到最小。在另一个实施例中,一个或更多个相关基站可用于执行各个备用信道的短周期性后台扫描(例如,见图6B)。依据本发明的一个特性,识别具有用1或2个信道的短备用表可有利地保证比刷新一张较大列表明显更快地执行备用信道的刷新。此外,使用短周期刷新能动态地减少或甚至消除网络运行的中断。
如果在每个步骤305的刷新扫描期间,在一个或更多个备用信道上检测到雷达,则在步骤306,从雷达空闲信道表中删除带有雷达的信道,并且一旦检测到雷达,立即放弃完成全部综合扫描。在另一个实施例中,访问点企图在某一预定间隔内(例如,30分)使删除信道重新生效。如果在重新生效期间未发现雷达,那么,该信道可添加至雷达空闲信道表内。如果至少一个备用信道保留在雷达空闲信道表(如步骤307中确定的),或如果在步骤305未检测到雷达,那么在步骤308,访问点能在当前信道重新开始它的正常操作,并在步骤309,复位该刷新时间。这时,访问点就返回到步骤301,以在当前信道扫描雷达。
如果没有信道保留在雷达空闲信道表内(步骤307),那么在步骤310,访问点就与所有基站分离。这时,为一次启动(或重启动)扫描,访问点就返回到步骤101。在另一个实施例中,在步骤320,访问点就执行任何允许信道的后台扫描(例如,按200ms增量的周期性扫描),直到识别到一个雷达空闲信道并添加到雷达空闲信道表为止。那么,处理过程可转到步骤308。在一个实施例中,如果未发现雷达空闲信道,那么,该处理过程就转到步骤310,即,所有基站的分离。
图3B描述在当前信道检测到雷达后对新信道的示范性选择处理过程。在这处理过程的步骤311,访问点停止在该信道上的当前传输,并拒绝新的并联请求。这时,访问点能依据子频带(例如,5150-5250MHz,5250-5350MHz和5470-5725MHz)不表征当前信道时特性并依据这一特性作出响应。
特别是,如先前注释的,某些调整区域或许在即使有雷达也只有少许几个的预定子频带内不需要雷达扫描。例如,美国和欧洲的调整区域在5150-5250MHz子频带通常地不需要雷达扫描。美国在5725-5850MHz子频带不需要雷达扫描。本文,将不需要雷达扫描的子频带称之为雷达免除子频带。因此,在步骤302,如果在信道上检测到雷达,那么,当前的传输能在525-5350MHz子频带或在5470-5725MHz子频带内进行。
因为近距范围的雷达能使WLAN在相邻于当前信道的多个信道上接收到有效能量,使新信道设置在频率尽可地远离当前信道的频率能有利于减少新信道含有雷达的可能性。例如,如果当前信道是在5250-5350MHz的子频带,并且雷达空闲信道表内至少一个信道是在5150-5250MHz的子频带,如在步骤314所确定的,那么在步骤315,访问点能有利地将它的新信道设置到雷达空闲信道表内的最低信道。相反,如果当前信道是在5250-5350MHz的子频带,并且雷达空闲信道表内没有信道是在5150-5250MHz子频带,如在步骤316确定的,那么在步骤317,访问点能将它的新信道设置到雷达信道表内最高信道。最后,如果当前信道是在5470-5725MHz子频带,如在步骤318确定的,那么在步骤319,访问点可将它的新信道设置到雷达空闲信道表内的最低信道。在设置新信道后,访问点可转入参考图4A和4B所描述的信道切换技术。
临时信道选择保证传输的连续性
在某些调整的区域,当检测到雷达时,访问点能有利地从雷达空闲信道表中选择一个信道用于运行而不需附加雷达扫描。美国专利申请号10/406049更详细地讨论了这类信道切换技术。在其它调整的区域,例如,美国调整的区域,访问点应当执行60秒雷达扫描,且在非雷达空闲信道上的(即,需要雷达检测的信道)操作之前的瞬间。因此,在启动(步骤104)和刷新(步骤304)期间所执行的雷达扫描或许不能满足这一技术要求。正如先前注释的,不希望连续60秒雷达扫描会导致访问点中断与它当前相关基站的运行。
因此,参考图4A,如果选择的新信道是在雷达免除子频带,例如5150-5250MHz或5725-5850MHz,如在步骤401确定的,则访问点在这新信道上即刻重新开始运行。换句话说,不管调整区域的信道可用性检测的解释,该60秒扫描不需要在雷达免除子频带内开始运行。注意,新信道是用伪随机信道运算法则选择的,并因此也满足均匀扩展规则。
如果选择的新信道是在非雷达免除子频带,那么步骤402可在雷达免除子频带(例如,5150-5250MHz或5725-5850MHz)内选择一个临时新信道。在一个实施例中,临时新信道可随机地选择。在另一个实施例中,在启动时,访问点能储存有关信道话务量的信息,并且步骤402能包括:用最小的话务量来选择雷达空闲信道。在这临时新信道上可继续正常运行,直到访问点已经完成先前所选择的新信道(即,由步骤315,316,和317中的一个步骤所选择的新信道)的雷达扫描的为止,正如下面参考图4B所描述的。
注意,在一个实施例中,如果调整区域不需要频率扩展,那么,可将该临时新信道用作为新信道,并且不需要执行在图4B中描述的该切换步骤。
访问点在信道改变期间的运行
在检测到雷达后,访问点可发送控制和/或管理帧并达到如当前修订所提供的最大移动时间(MaxMoveTime)(例如,10.24秒)。然而,为了减少对潜在潜在敏感应用的影响,访问点应当执行尽可能快的信道改变(即,在短于3秒的数量级)。
在一个实施例中,访问点能与非802.11h相兼容的基站快速地分离,因为它们不能对由访问点所广播的信道改变帧起作用。访问点经参考步骤403-410所描述的信道切换技术,能有利地维持与新信道上大多数802.11h兼容基站的并联。特别是,在步骤403,访问点能向它所相关的基站广播一个信道改变帧。重要的是,802.11h兼容基站,一旦接收到信道改变帧,便在信道改变帧内所指定的信道切换时间,应当能够通过停止正常数据传输及将它们传输信道改变到新信道作出响应。然而,某些802.11h兼容基站可能休眠着或者丢失了信道改变帧(例如,由于来自正在进行的伴同信道雷达脉冲的干扰或系统故障)。
在步骤404,访问点确定信道改变时间是否期满。如果信道改变时间未期满,那么在步骤405,访问点能重复广播该信道改变帧以达到MaxMoveTime(最大移动时间),但通常为小于3秒的持续时间。如果信道改变时间区期满,那么在步骤406,访问点就向旧信道上的任何其它基站广播一条撤消认证帧。仅仅只在信道改变时间期满后才发送该广播撤消认证帧,该撤消认证帧禁止所有基站,并导致与访问点相分离。这定时防止802.11h兼容基站接收到撤消认证帧(否则,这将导致这些基站即刻与访问点断开,而不是执行较小分裂信道改变程序)。注意,任何导致的分离都不会与IEEE 802.11h标准或修订的技术要求相抵触。有利的是,一旦与访问点失去接触,可对一个基站进行编程,以在1秒内停止数据传输,由此,即便有,也可限制对任何雷达系统的任何影响。注意,这些分离的基站能快速地与新信道上的访问点重新关联(参考步骤409讨论的)或与又一个信道上的新访问点相关联。
在步骤407,访问点转移新信道,并开始在这新信道上发送信标。在步骤408,访问点能与成功转移到新信道的802.11h兼容基站重新开始通信。在步骤409,访问点能与在信道切换期间变成分离的任何基站和/或与请求关联的任何新基站相关联。在步骤410,该访问点继续进行它的正常运行。
步骤420确定所运行的新信道是否是临时的。如果不是,那么,处理过程就返回到步骤301,执行该信道上的雷达扫描(如需要)。如果新信道是临时的,那么步骤421能在由伪随机,加权运算法则所选择的先前信道上执行后台信道检测(例如,步骤317或319)。很显然,这后台信道检测能使用扫描时间的综合总计,来满足60秒扫描技术要求。这后台信道检测可单独地由访问点或用来自任何可用基站的帮助来执行,所述任何可用基站肯定地响应于一个请求来执行这个60秒扫描的一部分。
如果综合60秒的后台扫描显示出不存在雷达,如在步骤422所确定的,那么步骤425可去除该临时新信道的指定,并返回到步骤403,以用先前的新信道启动第二快速信道改变。采用这种方式,在执行了步骤402-408后,将在这最新扫描信道上重新开始运行。有利的是,因为只有使用快速信道改变和后台扫描才能满足适用的修订技术要求,所以网络用户将经历无中断的服务。
因为这信道在访问点启动期间已经经历连续60秒雷达扫描,及在刷新循环期间的或许甚至综合60秒的后台扫描(见步骤304),所以就存在着一种高的可能性:在步骤422执行的后台扫描将发现没有雷达。然而,如果检测到雷达,那么步骤423就标记该信道的非占有信道,并从雷达空闲信道表中选择另一个信道。这时,步骤424就在这新信道上执行综合60秒的雷达扫描。然后,处理过程返回到步骤422。注意,直到该信道通过这后台扫描,访问点才能方便地在该临时信道上继续正常运行。
适用于WLAN基站的DFS实现
图5描述一个能在WLAN基站内执行的示范性信道改变处理过程。这个信道改变处理过程有利地允许该基站保持与IEEE 802.11h标准的兼容,保持与非802.11h访问点的兼容,并还遵守强制欧洲的技术要求。
在步骤501,基站确定它是否已从一个访问点是否接收到信道改变或撤消认证帧。如果已接收到了信道改变帧,那么在步骤502,该基站停止所有传输,并以确认来响应。如果该基站支持新信道,正如在步骤503所确定的,那么在步骤504,该基站为该新信道设置它的运行。在一个实施例中,不需要在步骤504所进行的该基站的重新认证。
这时,该基站准备好倾听来自新信道上的访问点的信号(即,信标)。在一个实施例中,在步骤505中等待倾听访问点的适合时间包括:访问点改变信道所需的时间加上由该访问点所发送预定数信标(例如,7个信标)所需时间。注意,在用这种定时或不同定时的这个信道改变期间,可冻结基站内的各种定时器。
如果在步骤505,基站听到新信道上的访问点,那么在步骤507,基站能在该新信道上重新开始运行。另一方面,如果基站在新信道未听到访问点,那么在步骤506,基站在所有允许信道上开始正常无源扫描序列。如果基站从一个访问点接收到了撤消认证帧,那么在步骤509,基站立即停止所有传输。这中断一般不会在基站对访问点的确认之前。注意,非802.11h的访问点(即,遗留访问点)响应雷达检测或当基站丢失了来自802.11h访问的信道改变帧时,可发送撤消认证帧(重新调用访问点在离开该信道之前所发送的撤消认证帧)。一旦接收到了撤消认证帧,在步骤506,基站就在允许信道上开始扫描序列。
基站也可配置具有相当短的所丢失的信标定时器(即,1秒信标间隔×2丢失的信标),以进一步保护在基站既未接收到撤消认证帧,也未收到信道改变帧的情况中的雷达。在这种情况下,在访问点由于雷达事件而空出当前信道后2秒钟内,基站将停止所有传输。对于丢失信标的更短数值可导致到访问点的边缘链路的基站性能的下降。
注意,如果基站未能检测到雷达,基站可配置成,禁止用任何5GHz信道进行特别通信,并在步骤506,迫使无源扫描。这配置保证了基站将不在任何5GHz信道上进行发送,直到在访问点已经检查了雷达并开始发送信标后为止。特别是,修订的技术要求允许基站不具有检测雷达的功能,以保留在‘主站’设备的控制下,即在使用任何信道以前和期间负责核查雷达的访问点。图5描述的实施例允许不具备雷达检测功能的基站设备遵守修订的技术要求,同时当运行在需要DFS的区域时,维持提供有效启动和正在进行的操作。另一方面,如果基站具备检测雷达的功能,那么在步骤506,基站可能配置成允许进行特别通信并执行有效扫描,虽然这样的基站并不要求这样做。于是,即使具备检测雷达功能的基站这可配置成能在步骤506执行无源扫描。
雷达检测功能的基站辅助
在一个实施例中,通过获得具备执行雷达检测功能的一个或多个相关基站的帮助,访问点就能进一步减少启动时间。图6A和6B描述一种示范性启动操作,在该启动操作中,基站能在雷达检测功能方面辅助访问点。在一个实施例中,访问点能使用步骤101-103,如参考图1所描述的,用于组合雷达空闲信道表。
随后,在步骤601,访问点能在雷达空闲信道表内所随机选择的信道上执行60秒雷达扫描。这扫描能继续直到访问点发现无雷达的第一信道为止。任何含有雷达的扫描信道将从雷达空闲信道表中删除。在步骤602,访问点能将第一雷达空闲信道选择作为当前信道,将这信道从雷达空闲信道表内删去,并在步骤603,在该信道上开始发送信标。注意,因为还未选择备用信道,与参考图1所描述的处理过程相比,能明显地减少启动时间。
接着,在步骤604,访问点允许基站认证和关联。如果至少一个新基站已与访问点相关联,正如在步骤605所确定的,那么在发送或接收数据帧之前,在步骤606,访问点立即给关联的基站发送一条基本测量请求帧。在一个实施例中,访问点能将该帧发送给首次请求关联的基站。这信号要求基站扫描雷达空闲信道表内一个候选信道上的雷达。该访问点可以请求将该扫描限制到短持续时间(例如,2-5秒)。在一个实施例中,访问点能识别出基站所要扫描的信道。例如,信道识别处理过程可包括基本上类似于步骤312-319的步骤(即,替代将备用信道设置成当前信道,应扫描候选信道的雷达)。
然而,基站或许不能或不愿意接受和执行指定信道上的测量要求,如步骤607中所确定的。如果基站响应它不进行雷达测量(例如,拒绝,不接受,或根本不响应请求),那么在步骤605,访问点就确定是否存在另一个新近相关的基站。如果存在,那么处理过程就在步骤606继续。如果不存在另一个将进行测量的新近相关的基站,那么在步骤609,访问点将向任何相关的基站表明:通信将延迟某一预定时间周期,同时访问点自己切换到替代信道,并执行短期雷达扫描。
在步骤609的正常运行期间,为了使数据处理过程的等待时间和中断减少到最少,特别当许多基站需要访问网络时,访问点扫描周期应足够短,以保证继续网络运行,例如100到200ms。在一个实施例中,用适当的免竞争周期值相结合的访问点的点协调函数(PCF),能通知基站中断这周期内的传送(加上访问点断开和返回到运行的当前信道的短缓冲时间),从而导致基站内一个长NAV值。注意,PCF,是由IEEE 802.11h标准提供的,允许访问点控制来自它相关基站的传送定时。特别是,通过使用PCF,访问点将轮询各个基站进行广播:并基站仅在被轮询后作出响应。NAV值表示了:基站必须等待直到试图又与访问点进行通信为止的最短时间。在扫描后,访问点返回到运行的当前信道,复位NAV和PCF,并继续倾听当前信道上的雷达。在用于扫描的大约相同时间周期,例如,100到200ms后,访问点可在那备用信道上重复它的扫描。假定200ms的扫描/复位时间,访问点将重复处理300次,以满足备用信道的60秒扫描的修订技术要求。
如果候选备用信道是雷达空闲的,那么访问点能设置备用信道的刷新时间。另一方面,如果候选备用信道含有雷达,那么访问点能从雷达空闲信道表中删除该信道。注意,如果在已经从候选备用信道中识别出雷达空闲信道表内的任何备用信道之前,访问点检测到当前信道上的雷达,那么访问点通常重新开始(即,返回到在图1或图6A中的步骤101)。
在步骤610,访问点能从雷达空闲信道表中确定是否应当扫描另一个候选备用信道(即,如果雷达不用备用信道数小于某一预定数,例如2)。如果不是,那么在步骤612能开始正常的WLAN操作。如果是,那么在步骤611,访问点能返回到当前信道,发送信标,并倾听任何其它基站请求关联。那么处理过程返回到步骤605。
注意,即使没有基站试图在启动后相关联,这个处理过程也应跟着。在这种情况下,在步骤605中确定没有可用的相关联信道后,访问点应直接转入步骤609,以替代为不同信道上的雷达进行短期检测,并发送运行在当前信道上的信标,直到已经执行了全扫描为止。
返回参考步骤607,如果新近相关联基站响应:它将进行雷达,那么在步骤613,该基站转入到执行雷达测量。注意,如果基站检测到雷达,访问点能从雷达空闲信道表删除该信道,并且在下次扫描可使用来自雷达空闲信道表的另一个未扫描候选备用信道。在步骤614,访问点能确定是否需要另一备用信道。如果不需要,那么在步骤612开始正常运行。如果需要,那么在步骤605,访问点就确定另一新近相关联的信道是否可用。参考图6B所描述的步骤可重复执行,直到为各个备用信道已进行了全扫描为止。
假定多个相关联的基站可用,并能进行雷达测量,就在雷达空闲信道表内快速执行期望信道数的扫描。例如,访问点可请求一个相关联基站扫描一个信道,并也可请求另一个基站扫描另一信道。这样,假定全扫描需要60秒钟,如果能进行测量的两个基站一旦在初始信道上开始访问点运行时就立即与访问点相关联,那么在60-120秒钟内,就可发现期望的两个备用信道并添加到雷达空闲信道表。注意,如果两次扫描能同时地并行进行,并仅需要一个附加备用信道,那么就将发现没有雷达的第一信道指定为备用信道(其后在那里,访问点可立即中断第二信道的扫描)。
有利的是,通过请求基站进行雷达扫描,与访问点在启动期间自己扫描3个或更多个信道相比,WLAN网络的启动可快数分钟。注意,如可用,在仅发现一个信道是雷达的空闲信道后,允许基站相关联,由此,保证访问点和该基站之间的通信在完成它扫描周期时立即开始。而且,因不允许相关联基站开始发送或接收数据,直到基站指明下列情况为止:它不能进行测量,已经执行雷达空闲信道表内一个信道的全扫描,或提供期望数的备用信道,相关联的基站不会开始可能中断的任何应用。
在步骤613的一个实施例中,访问点可重复请求一个基站在一个备用信道上执行短扫描(例如,2-5秒)(用基本测量请求),直到这些短扫描累积满足雷达扫描的修订技术要求(例如,每个备用信道上的60秒)。这样,在正常运行期间并假定还未扫描预定的期望备用信道数,该访问点可继续请求:每个新近相关联的基站在雷达空闲信道表内还未扫描的候选信道的一个信道上执行短扫描。重要地,通过获得任何新近相关联基站的帮助来执行雷达扫描功能,可以将任何新基站的启动延迟限制为请求的累积扫描时间(例如,60秒)。在一个实施例中,如果基站重新与访问点相关联,访问点就不再提出这个请求,从而避免中断排队的数据接收或者中断正在基站上运行的任何等待时间敏感应用。
其他实施例
虽然本文已经参考附图详细描述了说明性实施例,但应当明白:本发明并不限制这些精确的实施例。它们不倾向于详尽的或将本发明限制在所披露的精确格式。正是如此,许多修改和改变对该技术熟练的专业人员却是显而易见的。
例如,与访问点和基站相关的扫描时间仅是示范性的,不是限制性的。本发明的其他实施例包括取决于器件系统和/或政策考虑的不同(例如,较长或较短)扫描时间。特别是,虽然已经参考欧洲修订要求详细描述了DFS,但其它国家也会很快公布有关DFS的规则。例如,某些组织,例如,国际电信联盟(目前包括全世界144成员国)正在全球各地工作,以协调5GHz频谱。作为该协调工作的一部分,世界上许多地区性区域都会采用使DFS技术要求化的规则。虽然不是所有地区性区域会指明相同的实施细节。
在本发明一个实施例中,不是限制于与一个信道的雷达扫描相关(见图6B),可定期地请求基站设备扫描多信道上的雷达。例如,访问点可实现某些其它定义的扫描周期和序列。在这些定义的扫描周期期间,一系列具备该功能的基站可在多信道并行搜索雷达,从而可显著地改变访问点的性能。
本发明另一个实施例中,不是为所有备用信道提供刷新时间,而是各个备用信道可具有它自己的刷新时间。
在图7所示的又一个实施例中,启动处理过程700能考虑到:调整的区域是否可免除WLAN设备检测5150-5250MHz子频带内的雷达。如果是免除了,WLAN设备可采用快速启动程序,该快速启动程序还满足委托管理扩展技术要求。在一个实施例中,处理过程700,在被主程序调用后,能执行步骤101-103(参考图1描述的)。
在步骤701,能从雷达空闲信道表中随机地选择一个信道。注意,这随机选择需要能维持与扩展规则的兼容(即,对于每次启动时间,防止WLAN设备在5150-5250MHz内选择信道)。如果选择的信道是在5150-5250MHz子频带,并且调整区域免除扫描该子频带内的信道,那么在步骤703,就可执行一个迅速启动程序。在这迅速启动程序中,处理过程700能方便地绕过所有启动雷达扫描(一般会持续60秒或更长时间)。重要的是,因为能免除在5150-5250MHz子频带内扫描的调整区域不允许雷达在这子频带内,这种绕过是可接受的。因此,如果所选择的信道是在5150-5250MHz子频带,那么该选择信道具有不带雷达的相当高的可能性,能将该选择信道指定为当前运行信道。
在一个实施例中,在步骤703,备用信道也可从5150-5250MHz子频带中随机地选择。有利的是,因为该备用信道居留在5150-5250MHz子频带内,也可消除对用于选择备用信道的雷达扫描(一般会持续60秒或更长的时间)的需求。注意,从5150-5250MHz子频带内选择备用信道(不选自所有可用信道中随机地选择)不会与扩展规则相抵触,因为这备用信道的使用实际上不可能发生。
换句话说,假定正常运行,备用信道是不会被调用的,因为在当前信道中通常不会被检测到雷达。这样,在步骤703能执行备用信道的选择,是考虑到了在当前信道由检测到雷达的罕见事件,虽然在这子频带禁止。在选择备用信道后,在步骤107可开始在当前信道上的正常运行。
如果当前信道不是5150-5250MHz子频带,或如果调整的区域不能免除在这子频带内的扫描,那么在步骤704,能在雷达空闲信道表内的每个信道上执行启动雷达扫描。注意,如果调整的区域免除扫描,那么可跳过5150-5250MHz子频带上的雷达空闲信道表内任何信道的扫描。随后,可按参考图1所描述的,执行步骤105-108。因此,能在由下面权利要求及其等效来定义本发明的范畴。

Claims (33)

1.一种为在5GHz频谱运行的无线局域网(WLAN)设备组合雷达空闲信道表的方法,其中所述频谱被划分成为第一子频带5150-5250MHz、第二子频带5250-5350MHz以及第三子频带5470-5725MHz,其特征在于,所述方法包括:
用调整区域所允许的信道,为所述频谱组合允许信道表;
用具有当前WLAN传送的可接受电平的所述允许信道,组合BSS空闲信道表;
如果所述允许信道表包括来自所述第一,第二,和第三子频带的信道,那么确定所述BSS空闲信道表是否含有不到两个信道;
如果是,那么从所述允许信道表中选择三个信道,其中第一信道选自所述第一子频带,第二信道选自所述第二子频带,而第三信道选自所述第三子频带;
如果不是,那么从所述BSS空闲信道中选择三个信道,其中第一信道选自所述第一子频带,第二信道选自所述第二子频带,而第三信道选自所述第三子频带;
如果所述允许信道表包括来自所述第一和第二子频带的信道,那么确定所述BSS空闲信道表是否含有不到两个信道;
如果是,那么从所述允许信道表中选择三个信道,其中第一信道选自所述第一子频带,第二信道选自所述第一子频带,而第三信道选自所述第二子频带;
如果不是,那么从所述BSS空闲信道中选择三个信道,其中第一信道选自所述第一子频带,第二信道选自所述第一子频带,而第三信道选自所述第二子频带;
如果所述允许信道表含有仅来自所述第一子频带的信道,那么确定所述BSS空闲信道表是否含有不到两个信道;
如果是,那么在所述第一子频带内,从所述允许信道表中选择两个信道;
如果不是,那么在所述第一子频带内,从所述BSS空闲信道表中选择两个信道。
2.一种为在5GHz频谱运行的无线局域网(WLAN)设备组合雷达空闲信道表的方法,其中所述频谱被划分成第一子频带5150-5250MHz、第二子频带5250-5350MHz以及第三子频带5470-5725MHz,其特征在于,所述方法包括:
用调整区域所允许的信道,为所述频谱组合允许信道表;
用具有当前WLAN传送的可接受电平的所述允许信道,组合BSS空闲信道表;
如果所述允许信道表含有来自所有所述子频带的信道,那么确定所述BSS空闲信道表是否含有不到两个信道,
如果是,那么从所述允许信道表中选择三个信道;
如果不是,那么从所述BSS空闲信道表中选择三个信道;
如果所述允许信道表含有来自仅两个子频带的信道,那么确定所述BSS空闲信道表是否含有不到两个信道;
如果是,那么从所述允许信道表中选择三个信道;
如果不是,那么从所述BSS空闲信道表中选择三个信道;及
如果所述允许信道表含有来自仅一个子频带的信道,那么确定所述BSS空闲信道表是否含有不到两个信道;
如果是,那么从所述允许信道表中选择两个信道;
如果不是,那么从所述BSS空闲信道中选择两个信道。
3.按照权利要求2所述方法,其特征在于,如果所述允许信道表含有来自所有子频带的信道,那么用于选择三个信道的所述步骤包括伪随机选择,所述伪随机选择增加了选择其它基本服务设置(BSS)未使用的并且无雷达信号的信道的可能性。
4.按照权利要求2所述方法,其特征在于,如果所述允许信道表含有来自所有子频带的信道,那么用于选择三个信道的所述步骤包括增加频率扩展的伪随机选择。
5.按照权利要求2所述方法,其特征在于,如果所述允许信道表包括来自所有子频带的信道,那么用于选择三个信道的所述步骤包括伪随机选择,所述伪随机选择增加了与所述访问点相关的大多数基站在所述三个信道内运行的可能性。
6.按照权利要求2所述方法,其特征在于,如果所述允许信道表仅含有来自仅两个子频带的信道,那么在所述三个信道中,两个信道选自所述第一子频带,而一个信道选自所述第二子频带。
7.按照权利要求2所述方法,其特征在于,如果所述允许信道表含有来自仅两个子频带的信道,那么利用权重函数,从所述第一子频带中选择比从所述第二子频带中选择的信道更多的信道。
8.按照权利要求2所述方法,其特征在于,如果所述允许信道表含有来自仅一个子频带的信道,那么在所述第一子频带中,随机选择两个信道。
9.一种对某一调整区域内的访问点执行启动操作的方法,所述调整区域具有频率扩展要求,所述访问点被允许用某一频谱内的允许信道进行通信,其特征在于,所述方法包括:
(i)用所述允许信道组合允许信道表;
(ii)用具有当前WLAN传送的可接受电平的允许信道,组合BSS空闲信道表;
(iii)用所述BSS空闲信道表和所述允许信道表,组合雷达空闲信道表;
(iv)在所述雷达空闲信道表内的每个信道上,执行雷达扫描;
(v)删除所述雷达空闲信道表内带有雷达的任何信道;
(vi)重复步骤(i)-(v),直到预定数目的信道保留在所述雷达空闲信道表内为止;
(vii)在所述雷达空闲信道表内,选择第一信道,以用于运行;及
(viii)用所述第一信道开始运行。
10.按照权利要求9所述方法,其特征在于,用于选择第一信道的所述步骤包括从所述雷达空闲信道中删除所述第一信道。
11.按照权利要求10所述方法,其特征在于,进一步包括:设置重新扫描所述雷达空闲信道表内任何信道的时间。
12.按照权利要求9所述方法,其特征在于,用于组合所述雷达空闲信道表的所述步骤包括:
依据对所述频谱内允许子频带的实际和潜在使用,加权所述信道;及
从每个允许子频带中选择至少一个信道。
13.一种对某一调整区域内的访问点执行启动操作的方法,其中所述调整区域具有频率扩展要求,所述访问点被允许用某频谱内的允许信道进行通信,其特征在于,所述方法包括:
(i)用所述允许信道,组合允许信道表;
(ii)用具有当前WLAN传送的可接受电平的允许信道,组合BSS空闲信道表;
(iii)在至少用预定数量的备用信道进行组合时,用所述BSS空闲信道表组合雷达空闲信道表,否则用所述允许信道表组合雷达空闲信道表;
(iv)在所述雷达空闲信道表内的每个信道上,进行雷达扫描;
(v)删除所述雷达空闲信道表内带有雷达的任何信道;
(vi)重复步骤(i)-(v),直到预定数目的信道保留在所述雷达空闲信道表内为止;
(vii)在所述雷达空闲信道表内,选择第一信道,以用于运行;及
(viii)用所述第一信道开始运行。
14.一种为在5GHz频谱内运行的访问点切换信道的方法,其中所述5GHz频谱被划分成为第一子频带5150-5250MHz、第二子频带5250-5350MHz和第三子频带5470-5725MHz,其特征在于,所述方法包括:
访问雷达空闲信道表;及
将新信道设置成所述雷达空闲信道表内的最远信道、最低信道和最高信道中的一个信道。
15.按照权利要求14所述方法,其特征在于,如果所述访问点运行在所述第一子频带,那么将所述新信道设置成所述最远信道。
16.按照权利要求14所述方法,其特征在于,如果所述访问点运行在所述第二子频带,并且所述雷达空闲信道表内至少一个信道是在所述第一子频带,那么将所述新信道设置成所述最低信道。
17.按照权利要求14所述方法,其特征在于,如果所述访问点运行在所述第二子频带,并且所述雷达空闲信道表内没有信道是在所述第一子频带,那么将所述新信道设置成所述最高信道。
18.按照权利要求14所述方法,其特征在于,如果所述访问点运行在所述第三子频带,那么将所述新信道设置成所述最低信道。
19.一种为在某一频谱内运行的访问点切换信道的方法,其特征在于,所述方法包括:
访问雷达空闲信道表;及
将新信道设置成所述雷达空闲信道表内的最远信道、最低信道和最高信道中的一个信道。
20.一种为在某一频谱内运行的访问点可使用的雷达空闲信道表指定备用信道的方法,其特征在于,所述方法包括:
为所述雷达空闲信道表确定候选备用信道;
在每一候选备用信道上执行雷达扫描,直到发现雷达空闲信道为止,并在所述执行步骤期间,从所述雷达空闲信道表中删除被发现带有雷达的任何候选备用信道;
将所述雷达空闲信道选作当前信道,并从所述雷达空闲信道表中删除所述雷达空闲信道;
用所述当前信道,发送信标;
允许基站认证所述访问点并与所述访问点相关联;
用任何愿意进行扫描的相关基站,扫描所述雷达空闲信道内的其他候选备用信道,否则用所述访问点进行扫描;
将候选备用信道指定为备用信道,并在所述扫描步骤期间,从所述雷达空闲信道表中删除带有雷达的候选备用信道。
21.按照权利要求20所述方法,其特征在于,每个愿意扫描的相关基站仅在一个候选备用信道上执行扫描。
22.一种对某一调整区域内的访问点执行启动操作的方法,其中所述调整区域具有频率扩展要求,所述访问点被允许用某一频谱内的允许信道进行通信,其特征在于,所述方法包括:
(i)用所述允许信道,组合允许信道表;
(ii)用具有当前WLAN传送的可接受电平的允许信道,组合BSS空闲信道表;
(iii)用所述BSS空闲信道表和所述允许信道表,组合雷达空闲信道表;
(iv)从所述雷达空闲信道表中,随机选择第一信道;
(v)如果所述第一信道在第一子频带内并且所述调整区域免除所述第一子频带内的扫描,那么将所述第一信道指定为当前信道,不用扫描而在所述第一子频带内从所述雷达空闲信道表中选择备用信道;并处理转到步骤(xi);
(vi)如果所述第一信道不在所述第一子频带内,并且所述调整区域免除所述第一子频带内的扫描,那么在所述雷达空闲信道表内的每个信道上执行雷达扫描,除了在所述第一子频带内的任何信道;
(vii)如果所述第一信道在所述第一子频带内并且所述调整区域要求在所述第一子频带内进行扫描,那么在所述雷达空闲信道表内的每个信道上进行雷达扫描;
(viii)对于步骤(vi)和(vii),删除所述雷达空闲信道表内带有雷达的任何信道;
(ix)重复步骤(i)-(viii),直到预定数目的信道保留在所述雷达空闲信道表内为止;
(x)在步骤(ix)后,在所述雷达空闲信道内选择第一信道,以用于运行;及
(xi)用所述第一信道开始运行。
23.一种对某一调整区域内的访问点执行信道切换操作的方法,其中所述调整区域具有频率扩展要求,所述访问点被允许用某一频谱内的允许信道进行通信,其特征在于,所述方法包括:
依据某一特定子频带内的雷达检测,设置新信道,其中所述新信道选自先前扫描过的信道表;
确定所述新信道是否免除所述调整区域内的雷达扫描;
如果所述新信道是免除的,那么用所述新信道重新开始正常运行;
如果所述新信道不是免除的,那么,
选择临时信道,其中所述临时信道免除雷达扫描,并使用所述临时信道重新开始正常运行;
在所述新信道上,执行综合后台扫描;及
如果所述新信道通过所述综合后台扫描,那么使用所述新信道重新开始正常运行。
24.按照权利要求23所述方法,其特征在于,如果所述新信道不是免除的,并如果所述新信道的所述综合后台扫描失败,那么设置来自所述先前扫描过的信道表的另一个新信道。
25.按照权利要求23所述方法,其特征在于,用于设置另一个新信道的所述步骤包括制造非占有表。
26.按照权利要求23所述方法,其特征在于,所述先前扫描过的信道表是用伪随机的加权运算法则建立的。
27.一种为在5GHz频谱内运行的访问点切换信道的方法,其中所述5GHz频谱包括第一子频带5150-5250MHz、第二子频带5250-5350MHz及第三子频带5470-5725MHz,其特征在于,所述方法包括:
访问雷达空闲信道表;
设置从所述雷达空闲信道表选择的新信道;
如果所述新信道在所述第一子频带内,那么使用所述新信道开始正常运行,无需附加雷达扫描;及
如果所述新信道不在所述第一子频带内,那么使用所述第一子频带内的临时信道开始正常运行,在所述新信道上执行综合后台扫描,并且如果所述综合后台雷达扫描未发现雷达,则从所述临时信道切换到所述新信道。
28.按照权利要求27所述方法,其特征在于,如果所述访问点最初在所述第二子频带内运行,并且所述雷达空闲信道表内至少一个信道在所述第一子频带内,那么将所述新信道设置成所述雷达空闲信道表内的最低信道。
29.按照权利要求27所述方法,其特征在于,如果所述访问点最初在所述第二子频带内运行,并且所述雷达空闲信道表内没有信道是在所述第一子频带内,那么将所述新信道设置成所述雷达空闲信道表内的最高信道。
30.按照权利要求27所述方法,其特征在于,如果所述访问点最初在所述第三子频带内运行,那么将所述新信道设置成所述雷达空闲信道表内的最低信道。
31.一种为在某一频谱内运行的访问点切换信道的方法,其中所述频谱包括第一雷达免除子频带和第二非雷达免除子频带,其特征在于,所述方法包括:
访问雷达空闲信道表;
设置从所述雷达空闲信道表中选择的新信道;
如果所述新信道在所述第一雷达免除子频带内,那么用所述新信道开始正常运行,无需附加雷达扫描;及
如果所述新信道在所述第二非雷达免除子频带内,那么用所述第一雷达免除子频带内的临时信道开始正常运行,在所述新信道上执行综合后台雷达扫描,并且如果所述综合后台雷达扫描未发现雷达,那么从所述临时信道切换到所述新信道。
32.按照权利要求31所述方法,其特征在于,如果所述访问点最初运行在所述第二非雷达免除子频带,并且所述雷达空闲信道表内至少一个信道在所述第一雷达免除子频带内,那么将所述新信道设置成所述雷达空闲信道表内的最低信道。
33.按照权利要求31所述方法,其特征在于,如果所述访问点最初运行在所述第二非雷达免除子频带,并且所述雷达空闲信道表内没有信道是在所述第一雷达免除子频带,那么将所述新信道设置成所述雷达空闲信道表内的最高信道和最低信道中的一个信道。
CN200480003253.9A 2003-01-30 2004-01-23 组合信道表、启动访问点、切换信道、指定信道的方法 Expired - Fee Related CN1745528B (zh)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US44406603P 2003-01-30 2003-01-30
US60/444,066 2003-01-30
US10/406,049 US7606193B2 (en) 2003-01-30 2003-04-02 Methods for implementing a dynamic frequency selection (DFS) feature for WLAN devices
US10/406,049 2003-04-02
US10/730,883 US6870815B2 (en) 2003-01-30 2003-12-08 Methods for implementing a dynamic frequency selection (DFS) and a temporary channel selection feature for WLAN devices
US10/730,883 2003-12-08
PCT/US2004/001860 WO2004070988A2 (en) 2003-01-30 2004-01-23 Dynamic frequency selection and temporary channel selection

Publications (2)

Publication Number Publication Date
CN1745528A CN1745528A (zh) 2006-03-08
CN1745528B true CN1745528B (zh) 2015-07-29

Family

ID=36140056

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200480003253.9A Expired - Fee Related CN1745528B (zh) 2003-01-30 2004-01-23 组合信道表、启动访问点、切换信道、指定信道的方法

Country Status (2)

Country Link
US (1) US7606193B2 (zh)
CN (1) CN1745528B (zh)

Families Citing this family (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7307972B2 (en) * 2003-02-24 2007-12-11 Autocell Laboratories, Inc. Apparatus for selecting an optimum access point in a wireless network on a common channel
US7869822B2 (en) 2003-02-24 2011-01-11 Autocell Laboratories, Inc. Wireless network apparatus and system field of the invention
ATE441300T1 (de) * 2003-07-17 2009-09-15 Interdigital Tech Corp Verfahren und system zur ablieferung von hilfsdaten
US8190162B2 (en) * 2003-09-15 2012-05-29 Broadcom Corporation Radar detection circuit for a WLAN transceiver
US7486616B2 (en) * 2003-12-16 2009-02-03 Intel Corporation Preemptive dynamic frequency selection
JP3828546B2 (ja) * 2004-01-26 2006-10-04 株式会社東芝 無線通信装置、無線通信方法及び無線通信プログラム
US20050215266A1 (en) * 2004-03-26 2005-09-29 Intel Corporation Wireless network dynamic frequency selection
US7835701B2 (en) * 2004-03-29 2010-11-16 Edgewater Computer Systems, Inc. Detecting and eliminating spurious energy in communications systems via multi-channel processing
US7280067B2 (en) * 2004-06-01 2007-10-09 Newlogic Technologies Gmbh Radar detector and radar detecting method for WLAN systems according to 802.11 wireless communication standards
EP1774710A1 (en) * 2004-07-09 2007-04-18 Koninklijke Philips Electronics N.V. Enhanced site report in a ieee 802.11 wireless network
US7230566B2 (en) 2004-08-03 2007-06-12 Cisco Technology, Inc. Radar protection device for wireless networks
US7394797B2 (en) * 2004-09-02 2008-07-01 Sharp Laboratories Of America, Inc. Medium sensing histogram for WLAN resource reporting
US7548750B2 (en) * 2005-09-13 2009-06-16 Cisco Technology, Inc. System and method for detection of primary spectrum users
US20070093208A1 (en) * 2005-09-30 2007-04-26 Arati Manjeshwar Method and system for providing interference avoidance and network coexistence in wireless systems
US7426190B2 (en) * 2005-09-30 2008-09-16 Robert Bosch Gmbh System and method for a communication protocol for wireless sensor systems including systems with high priority asynchronous message and low priority synchronous message
EP1988403A3 (en) 2005-10-24 2011-03-23 Mitsubishi Electric Information Technology Centre Europe B.V. Analysis of trains of pulses
US8411616B2 (en) 2005-11-03 2013-04-02 Piccata Fund Limited Liability Company Pre-scan for wireless channel selection
EP1804424A1 (en) * 2005-12-27 2007-07-04 THOMSON Licensing Method for dynamically selecting a channel in a wireless local area network
KR101258588B1 (ko) * 2006-03-17 2013-05-02 삼성전자주식회사 동일 채널 내 존재하는 bss 간의능동주파수선택(dfs) 방법 및 장치
SG172598A1 (en) * 2006-05-25 2011-07-28 Agency Science Tech & Res Methods of determining whether a frequency channel is available for data transmission for a communication device
US20080075035A1 (en) * 2006-09-22 2008-03-27 Intermec Ip Corp. System and method for providing fast roaming
BRPI0717814A8 (pt) * 2006-09-26 2019-10-15 Nokia Corp aparelho, método e produto de programa de computador que fornece modulação de sequencia para sinalização de controle de enlace ascendente
KR100772417B1 (ko) * 2006-09-26 2007-11-01 삼성전자주식회사 다이렉트 링크를 이용한 무선네트워크 통신 방법 및 그장치
GB0619530D0 (en) * 2006-10-03 2006-11-15 Nokia Corp Signalling
US8433312B2 (en) * 2006-10-23 2013-04-30 Research In Motion Limited Methods and apparatus for scanning radio frequency bands in wireless local area networks
CA2633152C (en) * 2007-06-12 2016-08-16 Sennet Communications Tone based cognitive radio for opportunistic communications
US7596461B2 (en) * 2007-07-06 2009-09-29 Cisco Technology, Inc. Measurement of air quality in wireless networks
US8116687B2 (en) * 2007-07-25 2012-02-14 Freescale Semiconductor, Inc. Dynamic frequency selection in wireless devices
US7885220B2 (en) * 2007-08-17 2011-02-08 Intel Corporation Method and apparatus for improved dual channel operation and access point discovery in wireless communication networks
US8179862B2 (en) * 2007-10-02 2012-05-15 Motorola Mobility, Inc. Method for preventing co-channel operation with radar systems
FR2923106B1 (fr) * 2007-10-24 2010-01-01 Commissariat Energie Atomique Methode de recherche de bande libre pour terminal de telecommunication opportuniste.
KR100937875B1 (ko) * 2007-12-17 2010-01-21 한국전자통신연구원 인지무선 시스템에서의 기지국의 채널전환장치 및 방법,단말의 채널전환장치 및 방법
US8666420B2 (en) * 2008-04-02 2014-03-04 Cisco Technology, Inc. Building wireless routing structures using out of band signaling
US8478282B2 (en) * 2008-10-20 2013-07-02 Centurylink Intellectual Property Llc Method and apparatus for managing frequencies used by devices
US8270304B2 (en) * 2008-10-31 2012-09-18 Symbol Technologies, Inc. Methods and apparatus for access point scanning in VOIP systems
EP2345273A1 (en) * 2008-11-14 2011-07-20 Telefonaktiebolaget L M Ericsson (PUBL) A method and apparatus for controlling access to a radio resource
US8305971B2 (en) * 2009-01-13 2012-11-06 Cisco Technology, Inc. Utilizing persistent interference information for radio channel selection
US8391904B2 (en) * 2009-05-10 2013-03-05 Qualcomm Incorporated Method and apparatus for maintaining quality of service during regulatory domain change
JP4856736B2 (ja) * 2009-05-18 2012-01-18 株式会社バッファロー 無線通信装置、無線通信システムおよび無線通信方法
WO2011030956A1 (en) 2009-09-09 2011-03-17 Lg Electronics Inc. Method of channel scanning in wireless local area network system
WO2011049314A2 (en) * 2009-10-21 2011-04-28 Lg Electronics Inc. Method and apparatus for scanning existing networks in tvws
FR2952499A1 (fr) * 2009-11-12 2011-05-13 France Telecom Procede d'allocation de ressources de transmission de donnees, procede de basculement, point d'acces, terminal, programme d'ordinateur et signal correspondants
US9220102B2 (en) * 2010-02-15 2015-12-22 Kyocera Corporation Low power base station and communication control method
JP5657031B2 (ja) 2010-03-12 2015-01-21 エルジー エレクトロニクス インコーポレイティド 無線通信システムで主なサービスを保護するための方法及び装置
US8583129B2 (en) 2010-03-19 2013-11-12 Lg Electronics Inc. Method and apparatus for acquiring available channel information in a wireless local area network system
US8988272B2 (en) 2010-03-30 2015-03-24 Escort Inc. Digital receiver techniques in radar detectors
KR101430500B1 (ko) 2010-04-07 2014-08-14 엘지전자 주식회사 무선 랜 시스템에서 화이트 스페이스 맵 정보를 전송 및 수신하기 위한 방법 및 장치
WO2011145796A1 (en) 2010-05-18 2011-11-24 Lg Electronics Inc. Method and apparatus for dynamic station enablement procedure in a wireless local area network system
CA2801881C (en) 2010-06-07 2016-01-26 Lg Electronics Inc. Method and apparatus for a station to operate within wlan system
US8565107B2 (en) 2010-09-24 2013-10-22 Hand Held Products, Inc. Terminal configurable for use within an unknown regulatory domain
EP2795954A4 (en) * 2011-12-20 2015-12-30 Hewlett Packard Development Co ALTERNATIVE ADJUSTMENTS FOR WIRELESS ACCESS POINT
US9119079B2 (en) * 2012-01-27 2015-08-25 Airties Kablosuz Iletisim San. Ve Dis Tic. A.S. System and method to avoid interference with radar systems
WO2013174672A1 (en) 2012-05-25 2013-11-28 Telefonica, S.A. A method and a system for a wireless link optimization and a use thereof for transmission power and interference reduction
JP5769882B2 (ja) * 2012-05-29 2015-08-26 三菱電機株式会社 無線通信装置
US9345047B2 (en) * 2013-10-04 2016-05-17 Qualcomm Incorporated Techniques for assessing clear channel in an unlicensed radio frequency spectrum band
US9167382B2 (en) * 2014-03-10 2015-10-20 Interlite Aktiebolag Method and system for wireless communication
US9451470B2 (en) * 2014-06-26 2016-09-20 Nokia Technologies Oy Method and apparatus for protecting radars from interference
JP2016019190A (ja) * 2014-07-09 2016-02-01 株式会社東芝 無線通信装置および無線通信方法
US9326294B2 (en) 2014-07-29 2016-04-26 Aruba Networks, Inc. System and method for grouping and assigning channels in a network system
JP6170031B2 (ja) * 2014-12-09 2017-07-26 Necプラットフォームズ株式会社 無線通信装置および方法、並びにコンピュータ・プログラム
CN105824013B (zh) * 2015-01-06 2019-03-01 中兴通讯股份有限公司 一种降低雷达干扰的方法和装置
US9924391B2 (en) * 2015-02-16 2018-03-20 Microsoft Technology Licensing, Llc Client-side dynamic frequency selection check
CN107432002B (zh) * 2015-04-08 2021-05-11 奥林巴斯株式会社 图像通信系统、图像接收装置、图像发送装置、图像接收方法、图像发送方法以及记录介质
US9277418B1 (en) 2015-07-21 2016-03-01 RadComm, Inc. Methods, devices and systems for separating overlappingly transmitted signals and enabling joint spectrum access
US9713012B2 (en) 2015-07-21 2017-07-18 RadComm, Inc. Methods, devices and systems for enabling simultaneous operation of different technology based devices over a shared frequency spectrum
US9832791B2 (en) * 2015-08-04 2017-11-28 Network Performance Research Group Llc Method and apparatus for use of simultaneous multiple channels in the dynamic frequency selection band in wireless networks
US10104665B2 (en) 2015-08-10 2018-10-16 Network Performance Research Group Llc Method and apparatus for providing dynamic frequency selection spectrum access in peer-to-peer wireless networks
US9699786B2 (en) 2015-09-07 2017-07-04 Network Performance Research Group Llc Method and apparatus for integrating radio agent data in network organization of dynamic channel selection in wireless networks
US9622089B1 (en) 2015-11-25 2017-04-11 Network Performance Research Group Cloud DFS super master systems and methods
US9807619B2 (en) * 2015-08-04 2017-10-31 Network Performance Research Group Llc Methods and apparatuses for use of simultaneous multiple channels in the dynamic frequency selection band in wireless networks
US9439197B1 (en) 2015-08-10 2016-09-06 Planetary Network Technologies, Inc. Method and apparatus for directed adaptive control of dynamic channel selection in wireless networks
US9924518B2 (en) 2015-08-10 2018-03-20 Network Performance Research Group Llc Method and apparatus for dynamic channel selection device
US9807625B2 (en) 2015-08-10 2017-10-31 Network Performance Research Group Llc Method and apparatus for using time shifted analysis based on gathering non-encrypted information from packets
CN111654888A (zh) * 2015-08-13 2020-09-11 华为技术有限公司 一种通信方法及通信设备
US9843494B2 (en) 2015-09-01 2017-12-12 Microsoft Technology Licensing, Llc Channel availability checks with device monitoring
US9622161B1 (en) * 2015-10-23 2017-04-11 Belden, Inc. Systems and methods for obtaining available channels for fast channel switching
US10368247B2 (en) 2015-11-25 2019-07-30 Network Performance Research Group Llc Cloud DFS super master detector location systems and methods
US9839038B2 (en) 2015-11-25 2017-12-05 Network Performance Research Group Llc System, method, and apparatus for setting a regulatory operating mode of a device
US9930670B2 (en) 2015-11-25 2018-03-27 Network Performance Research Group Llc System, method, and apparatus for setting device geolocation via location proxies
US10367761B2 (en) * 2016-04-25 2019-07-30 Intel IP Corporation Coordinated channel switch timing and transmissions in neighborhood awareness networks
US10200993B2 (en) 2016-04-29 2019-02-05 Qualcomm Incorporated Techniques for performing a distributed channel availability check in a shared radio frequency spectrum band
EP3267734B1 (en) 2016-07-05 2020-05-20 InterDigital CE Patent Holdings Wlan operating channel configuring method and corresponding communication network device, system, computer readable program product and computer readable storage medium
US20180035366A1 (en) * 2016-07-26 2018-02-01 Qualcomm Incorporated Signal detection verification
US9736845B1 (en) * 2017-01-03 2017-08-15 Network Performance Research Group Llc Over the air signaling of dynamic frequency selection (DFS) operating parameters to client devices
CN106842138B (zh) * 2017-01-05 2019-08-13 张焕颖 一种雷达系统的信道划分方法及装置
CN106899990B (zh) * 2017-01-24 2020-06-16 深圳市有方科技股份有限公司 一种组网自优化方法、装置及系统
CN110268735B (zh) * 2017-02-10 2020-06-23 英国电讯有限公司 对无线通信进行控制的方法和设备、无线接入点
US10271264B2 (en) * 2017-08-31 2019-04-23 Hewlett Packard Enterprise Development Lp Identifying as access point operating on a particular wireless communication channel that fails to detect a particular radar event
US10721752B2 (en) * 2017-09-10 2020-07-21 Hewlett Packard Enterprise Development Lp Channel plan determination
CN107612577B (zh) * 2017-09-27 2019-10-18 深圳市普威技术有限公司 一种信道选择系统、方法及电子设备
EP3868144B1 (en) * 2018-10-16 2023-11-22 British Telecommunications public limited company Measuring channel performance in wireless local area networks
US10750372B2 (en) 2018-12-20 2020-08-18 Cypress Semiconductor Corporation Operation of access points and autonomous group owners
US12028796B2 (en) 2019-03-12 2024-07-02 Cypress Semiconductor Corporation GPS-assisted collaborative and signaling-aided WLAN DFS operation
US11405793B2 (en) 2019-09-30 2022-08-02 Shure Acquisition Holdings, Inc. Concurrent usage and scanning of wireless channels for direct DFS to DFS channel switching
JP6954670B2 (ja) * 2019-11-13 2021-10-27 Necプラットフォームズ株式会社 基地局装置、制御方法及び制御プログラム
WO2022052046A1 (en) * 2020-09-11 2022-03-17 ARRIS Enterprises, LLC Automatically reverting back to original dfs channel after the non-occupancy period associated with a detected radar signal expires
WO2023050358A1 (zh) * 2021-09-30 2023-04-06 深圳市大疆创新科技有限公司 通信频道切换的方法、装置、控制设备、通信系统及存储介质
CN117896794B (zh) * 2024-03-18 2024-05-28 上海朗力半导体有限公司 信道自动选择方法、装置、ap设备及存储介质

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5355522A (en) * 1992-06-26 1994-10-11 Motorola, Inc. Frequency selection method and apparatus
US5708679A (en) * 1993-03-11 1998-01-13 Southern California Edison Company Hitless ultra small aperture terminal satellite communication network
US5329283A (en) * 1993-04-28 1994-07-12 Environmental Research Institute Of Michigan Synthetic aperture radar digital signal processor
US5598437A (en) * 1993-07-16 1997-01-28 Litton Systems, Inc. Multichannel frequency and phase variable radio frequency simulator
US6334219B1 (en) * 1994-09-26 2001-12-25 Adc Telecommunications Inc. Channel selection for a hybrid fiber coax network
JP3525518B2 (ja) * 1994-10-13 2004-05-10 ヤマハ株式会社 データ転送装置
JP3319242B2 (ja) * 1995-09-18 2002-08-26 三菱電機株式会社 レーダ装置
US5680142A (en) * 1995-11-07 1997-10-21 Smith; David Anthony Communication system and method utilizing an antenna having adaptive characteristics
US5933420A (en) * 1996-04-30 1999-08-03 3Com Corporation Method and apparatus for assigning spectrum of a wireless local area network
SE507796C2 (sv) * 1996-11-15 1998-07-13 Ericsson Telefon Ab L M Förfarande och system för datareducering av radarsignalers ankomsttider.
GB2339646A (en) * 1998-07-15 2000-02-02 Ericsson Telefon Ab L M Reduction of Interference between Radio Links
US6493666B2 (en) * 1998-09-29 2002-12-10 William M. Wiese, Jr. System and method for processing data from and for multiple channels
US6615074B2 (en) * 1998-12-22 2003-09-02 University Of Pittsburgh Of The Commonwealth System Of Higher Education Apparatus for energizing a remote station and related method
US6483828B1 (en) * 1999-02-10 2002-11-19 Ericsson, Inc. System and method for coding in a telecommunications environment using orthogonal and near-orthogonal codes
US6735178B1 (en) * 2000-05-10 2004-05-11 Ricochet Networks, Inc. Method for maximizing throughput for multiple links using directional elements
US6647053B1 (en) * 2000-08-31 2003-11-11 Ricochet Networks, Inc. Method and system for channel masking in a communication network
US6965942B1 (en) * 2001-01-12 2005-11-15 3Com Corporation Method and system for improving throughput over wireless local area networks with a dynamic contention window
US6675012B2 (en) * 2001-03-08 2004-01-06 Nokia Mobile Phones, Ltd. Apparatus, and associated method, for reporting a measurement summary in a radio communication system
US7206840B2 (en) * 2001-05-11 2007-04-17 Koninklike Philips Electronics N.V. Dynamic frequency selection scheme for IEEE 802.11 WLANs
US7120138B2 (en) * 2001-07-02 2006-10-10 Koninklijke Philips Electronics N.V. Dynamic frequency selection with recovery for a basic service set network
US6738599B2 (en) * 2001-09-07 2004-05-18 Nokia Corporation Assembly, and associated method, for facilitating channel frequency selection in a communication system utilizing a dynamic frequency selection scheme
US6697013B2 (en) 2001-12-06 2004-02-24 Atheros Communications, Inc. Radar detection and dynamic frequency selection for wireless local area networks
US7352728B2 (en) * 2002-03-07 2008-04-01 Koninklijke Philips Electronics N.V. Fast channel switching scheme for IEEE 802.11 WLANs
US7269151B2 (en) * 2002-04-22 2007-09-11 Cognio, Inc. System and method for spectrum management of a shared frequency band
US7140040B2 (en) * 2002-04-25 2006-11-21 International Business Machines Corporation Protecting wireless local area networks from intrusion by eavesdropping on the eavesdroppers and dynamically reconfiguring encryption upon detection of intrusion
US6891496B2 (en) * 2002-05-03 2005-05-10 Atheros Communications, Inc. Method and apparatus for physical layer radar pulse detection and estimation
US7155230B2 (en) * 2002-08-19 2006-12-26 Intel Corporation Dynamic frequency selection and radar detection with a wireless LAN
US7257086B2 (en) 2002-08-27 2007-08-14 Terabeam Corporation Method and system for effectuating network routing over primary and backup channels
US7133686B2 (en) * 2003-01-08 2006-11-07 Vtech Telecommunication Limited System and method for identifying interferes in a communication spectrum
US7107032B2 (en) * 2003-01-08 2006-09-12 Mediatek Inc. Radar detection method for radio local area networks
US6870815B2 (en) * 2003-01-30 2005-03-22 Atheros Communications, Inc. Methods for implementing a dynamic frequency selection (DFS) and a temporary channel selection feature for WLAN devices

Also Published As

Publication number Publication date
US7606193B2 (en) 2009-10-20
CN1745528A (zh) 2006-03-08
US20040151137A1 (en) 2004-08-05

Similar Documents

Publication Publication Date Title
CN1745528B (zh) 组合信道表、启动访问点、切换信道、指定信道的方法
KR101041677B1 (ko) 동적 주파수 선택 및 임시 채널 선택 방법
US11129089B2 (en) Signalling in mobile telecommunications
US8270304B2 (en) Methods and apparatus for access point scanning in VOIP systems
KR200366026Y1 (ko) 보조 데이터의 전송을 위한 액세스 포인트 장치
EP0765096B1 (en) Access method, mobile station and base station for CDMA mobile communication system
KR100297418B1 (ko) 비전용 개인 휴대 통신 시스템에서 대역 포트 채널들을할당하기 위한 방법
US7813329B2 (en) Base station, and a scrambling code setting method
KR100515449B1 (ko) 패킷 데이터 서비스의 효율적 자원 관리를 위한 무선 통신방법, 시스템 및 그의 타이머 설정 회로
JP3418502B2 (ja) 通信システム並びに基地局および移動局
CN101310477A (zh) 在动态频谱接入无线系统中恢复通信接入的方法
US8102824B2 (en) Method and arrangement for reducing the average time needed for a communication unit to connect to a communication network
US6137772A (en) Method of updating a list of digital control channels (DCCH) in a mobile station in a radio telecommunications network
CN110536369B (zh) 一种同时获取lte主邻小区tac、ci信息的装置及方法
JPH04373325A (ja) 発呼および位置登録規制方法
CN109392058B (zh) 基于无线网络的智能扫描的实现方法、装置、站点及接入点
US20230262822A1 (en) Multilink device for switching operation
HUE033433T2 (en) Procedures for Dynamic Frequency Selection (DFS) and Temporary Channel Selection Feature for WLAN Devices
CN111511021A (zh) 一种驻留子带的切换方法及装置
CN118250832A (zh) 一种非对称频谱的随机接入方法及装置
CN1243413A (zh) 使用多个话务信道及一个控制信道的小区现场广播方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C53 Correction of patent of invention or patent application
CB02 Change of applicant information

Address after: California, USA

Applicant after: Qualcomm Atheros Ltd.

Address before: California, USA

Applicant before: Atheros Communications, Inc.

COR Change of bibliographic data

Free format text: CORRECT: APPLICANT; FROM: ATHEROS COMM INC. TO: QUALCOMM ATHEROS CO., LTD

ASS Succession or assignment of patent right

Owner name: QUALCOMM INC.

Free format text: FORMER OWNER: QUALCOMM ATHEROS CO., LTD

Effective date: 20130514

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20130514

Address after: California, USA

Applicant after: QUALCOMM Inc.

Address before: California, USA

Applicant before: Qualcomm Atheros Ltd.

C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150729

CF01 Termination of patent right due to non-payment of annual fee