CN1729404A - 线圈排列 - Google Patents

线圈排列 Download PDF

Info

Publication number
CN1729404A
CN1729404A CN03813147.1A CN03813147A CN1729404A CN 1729404 A CN1729404 A CN 1729404A CN 03813147 A CN03813147 A CN 03813147A CN 1729404 A CN1729404 A CN 1729404A
Authority
CN
China
Prior art keywords
coil
drive
drive coil
coils
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN03813147.1A
Other languages
English (en)
Other versions
CN1729404B (zh
Inventor
F·T·D·戈尔迪
M·C·贝格
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tesla Engineering Ltd
Original Assignee
Tesla Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tesla Engineering Ltd filed Critical Tesla Engineering Ltd
Publication of CN1729404A publication Critical patent/CN1729404A/zh
Application granted granted Critical
Publication of CN1729404B publication Critical patent/CN1729404B/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/385Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using gradient magnetic field coils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/42Screening
    • G01R33/421Screening of main or gradient magnetic field
    • G01R33/4215Screening of main or gradient magnetic field of the gradient magnetic field, e.g. using passive or active shielding of the gradient magnetic field

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

用于MRIS的装置(10)包括具有驱动线圈(20)、屏蔽线圈(30)和电源单元(40)的线圈排列。驱动线圈(20)和屏蔽线圈(30)以串联的形式连接于PSU(40)以形成电路。屏蔽线圈(30)连接于驱动线圈(20)的第一段和第二段之间,从而跨接电路的虚地。这在将屏蔽线圈(30)装配内的电位差最小化上是有利的,并因此将其内的局部放电最小化。驱动线圈(20)相邻部分之间的局部放电,通过空间排列这些线圈(20)使其在高电位的部分在空间上与其同时处于任意极性低电位的相同极性电位的部分相邻,来达到最小。

Description

线圈排列
本发明涉及线圈排列,特别是用于核磁共振成像和光谱学(MRIS)的线圈排列。
MRIS系统通常包括设置在某一区域周围的大量线圈,该区域中可放置一名病人或其他的一些实体。该线圈组包括一个最外面的直流线圈排列、一个内部的同轴排列在其中的RF线圈排列和中间的梯度线圈装配。该直流线圈排列用于提供一个强的永磁场。设置梯度线圈装配以产生一个随时间变化的磁场,从而引起根据实体在场里的位置的核的响应频率。
梯度线圈装配通常由三个初级场-发生线圈以最小的结构组成,这三个初级场-发生线圈此处被称为X、Y和Z驱动线圈。它们可以通过在圆柱体表面缠绕导体的图案来形成。通常,每个线圈由另一个导体图案屏蔽,称为“屏蔽线圈”,它缠绕于围绕驱动线圈的另一个圆柱体。屏蔽该驱动线圈以避免在环绕的金属结构中引起涡电流和随之在实体里产生随时间变化的磁场。
通常的X和Y驱动线圈分别代表性地包含四个线圈,排列成两对,一对在径向上与另一对相反,且每对中的线圈轴向并置,并相对于圆柱体调准。每个线圈有角度地在圆柱体表面扩展略小于180°。线圈的外观被称作“鞍状绕组”。组成X驱动线圈的四个线圈串联连接,组成Y驱动线圈的四个线圈串联连接。图1显示了串联连接线圈的一个传统排列。图1所示的排列以展开的圆柱体表面显示。就每个X驱动线圈和Y驱动线圈而言,每个相对线圈对的线圈在其中中心互相连接,一个线圈对中一个线圈的外部连接于另一个线圈对中一个线圈的外部。一个线圈对中另一个线圈的外部和另一个线圈对中另一个线圈的外部各自连接电源单元(无图示)的终端。在设计上,X和Y驱动线圈大体相似,X驱动线圈相对于圆柱体,在径向上放置于Y驱动线圈的内部或外部,并在角度上与Y驱动线圈偏离90度。
驱动线圈通常注入环氧树脂以提供电绝缘和机械强度。然而,如果空间上相邻的树脂-填充驱动线圈之间存在高于某临界值的电位差,就会在微观空间内发生局部电荷再分配以及树脂中的不均匀性。这种现象称作“局部放电”并能产生宽带的电干扰,这对应用于MRIS的敏感的无线电频率探测系统是有害的。
本发明的目的就是解决这个问题。
根据本发明的一个方面,提供一个用于核磁共振成像和光谱仪装置的线圈排列,该线圈排列包括驱动线圈和至少部分电磁性地屏蔽驱动线圈的屏蔽线圈,其中驱动线圈和屏蔽线圈串联连接,屏蔽线圈在驱动线圈的第一段和驱动线圈的第二段之间。
较佳的是,在第一和第二段之间连接屏蔽线圈以使其电气相邻于电路的虚地,该电路在线圈排列在使用中被连接到对称交流电源单元时形成。更佳的排列是,屏蔽线圈跨接虚地。
放置屏蔽线圈以使其电气相邻于电路的虚地,有利于使屏蔽线圈装配内的电位差最小化,从而使在屏蔽线圈中局部放电的可能性达到最小。而且,在驱动线圈和屏蔽线圈间的互感有助于至少部分消除屏蔽线圈的自感。
驱动线圈可以包含包括至少两个串联连接在一起的驱动线圈的至少一组驱动线圈,其中,空间地排列该线圈,使得在使用中其邻近部分之间的电位差达到最小化,因而将其问的局部放电最小化。
根据本发明的另一个方面,提供一个用于核磁共振成像和光谱仪装置的驱动线圈排列,该驱动线圈排列包括至少一组包括至少两个串联连接在一起的驱动线圈的驱动线圈,其中,空间地排列该线圈,使得在使用中其相邻部分之间的电位差为最小化,从而将其间的局部放电最小化。
较好的是,驱动线圈如此排列,以使其在使用中,其处于某个极性的最高电位的部分,在空间上远离同时处于相反极性的最高电位的驱动线圈部分。
驱动线圈可以这样排列,以使其在使用中,其中线圈最高电位的部分在空间上与同时在相同极性的某个电位的驱动线圈的部分相邻,或与处于任意一个极性的低电位的驱动线圈部分相邻。
这里可以是两个或更好是三个驱动线圈组,每组包括至少两个串联连接在一起的驱动线圈。较佳的,每组包括四个串联连接的驱动线圈。每组可以包括连接于驱动线圈间的屏蔽线圈。
处于某个极性最高电位的驱动线圈部分可以与同时处于相反极性最高电位的部分在轴向隔开和/或在径向隔开,相对于放有驱动线圈的圆柱体。
驱动线圈可以这样排列:排列第一组线圈以形成驱动线圈的最里层,其高电位线圈与圆柱体的一端相邻,而低电位线圈与圆柱体的另一端相邻;排列第二组线圈以形成在外侧径向上并与径向上最里层并置的层,其高电位线圈与圆柱体的另一端相邻,而其低电位线圈则与圆柱体的一端相邻。可以排列第三组驱动线圈以形成与第二组并置的径向上的最外层,第三组的高电位线圈与圆柱体的一端相邻,而第三组的低电位线圈与圆柱体的另一端相邻。
可以如此排列驱动线圈以使第一组线圈的最高电位线圈和第二组线圈的最高电位线圈在圆柱体的表面形成径向上的最里层;如此排列驱动线圈以使第一组和第二组驱动线圈的的最低电位线圈形成第二层,在径向上的外侧并与最里层并置,从而允许第三组驱动线圈的线圈在径向上放置于第二层外侧,这样第三组线圈的高电位段与组成径向上最里层的第一和第二组高电位线圈经低电位线圈的径向中间第二层在径向上隔开。
更好的是,驱动线圈的第一和第二组相应于X和Y驱动线圈,驱动线圈的第三组相应于Z驱动线圈。
至少一些驱动线圈可以基本上螺旋地缠绕,并且在使用中,它们中连接电气相邻于电源或屏蔽线圈的驱动线圈更好地被排列成在其最中心端连接电源,即各螺旋缠绕线圈的“眼”。
同组电气相邻并螺旋缠绕的线圈较佳地在每个线圈的最外端连接在一起。
驱动线圈可放置在一个或更多平面表面上或围绕其放置,而不是在圆柱体的弯曲表面。可以理解的是,上述提到的圆柱体的半径对应于平面表面的垂直方向,所述圆柱体的轴对应于平面表面的长度。
现在仅参考附图举例说明本发明的具体实施例,其中:
图1是传统的X和Y驱动线圈的二维示意图;
图2是互相连接并连接于电源单元的Y驱动线圈和屏蔽线圈的示意图;
图2a是互相连接并连接于电源单元的Z驱动线圈和屏蔽线圈的示意图;
图3是图2中的Y驱动线圈以及X驱动线圈的二维示意图;以及
图4是图2和图3中的Y驱动线圈以及Z驱动线圈的二维示意图。
如图2示意性地所示,所采用的装置10是MRIS。该装置10包括驱动线圈20、屏蔽线圈30和电源单元(PSU)40。该驱动线圈是Y驱动线圈。需要注意的是,为参考图2说明,驱动线圈20可以是X、Y或Z驱动线圈,该原理参考针对所有驱动线圈的一般应用的图1来描述。图2所示的屏蔽线圈30是那些搜寻以屏蔽图2所示驱动线圈20的线圈。
驱动线圈20和屏蔽线圈30的一些特征是传统的。驱动线圈20包含4个放置于圆柱体(无图示)外表面的螺旋缠绕的线圈20。驱动线圈20排列成两对,例如顶对和底对,每对与另一对完全相反。屏蔽线圈30被排列在驱动线圈20的外侧和四周,也同样包含4个排列成完全相反的两对螺旋缠绕的线圈。
驱动线圈20不同于传统线圈的地方在于它们是电气连接的。驱动线圈20通过第一电子连接器42与PSU40连接。每个电子连接器42分别连接于每相反对的第一线圈20和PSU40的每个终端之间。形成每个相反对的两个线圈20通过各个第二电子连接器43连接在一起。每个相反对的第二线圈20连接于各个第三电子连接器44的一端。每个第三电子连接器44的另一端连接到屏蔽线圈30的相反对的第一屏蔽线圈30。该屏蔽线圈通过第四电子连接器45连接在一起。
总而言之,该排列是一对称排列,其中所有的驱动线圈20和屏蔽线圈30都是串联连接的。4个屏蔽线圈30在串联的中心,夹在两对驱动线圈20的中间,它们依次夹在PSU40的两个终端中间。
PSU40是一个对称的电源单元。这些PSU有两个带电终端,而不是一个带电终端和一个中性终端,设置每个终端以提供与另一个终端在相位上相差180度的交流电。在电子元件之间连接对称的PSU中,在由此形成的电路的电子中点上产生了虚地。
在装置10的使用中,操作PSU40以连接在驱动线圈20和屏蔽线圈30间的随时间变化的电位差,使得在由此所产生的电路中点产生虚地50。因为屏蔽线圈30连接在驱动线圈20的中间,所以虚地50基本上在沿屏蔽线圈30所组合串联的段的中间。这样,在一起考虑的时候,跨接于屏蔽线圈30的电位差被最小化。这样就能使在屏蔽线圈40部分之间的局部放电的可能性以及其所带来的上述有害的效应最小化。
可以理解的是,实际上,虚地50会在位置上有微小地变化,并且可能与上述描述中的屏蔽线圈40不一致。虽然这种虚地50的位置变化不是最佳的,但这并不重要,只要虚地50保留在至少基本相邻于屏蔽线圈30处使得跨接于屏蔽线圈30的电位差维持在要发生局部放电的水平以下即可。
在这个实施例中,采用在电气中点提供虚地的对称PSU40的特征可使跨接于屏蔽线圈30部分的局部放电的发生最小化。采用对称PSU40的另一优点是,它将驱动线圈20和屏蔽线圈30的部分所提高到的最大电位,是采用传统非对称交流电来产生同样电位差所得到的最大电位的一半。这样,相比传统非对称PSU的使用,对称PSU40的采用也可以减少驱动线圈20中局部放电的发生。
如上所述,参考图2所描述的实施例的驱动线圈20是Y驱动线圈,但也可以是X或Z驱动线圈。当它们是Z线圈时,可以理解,每个Z驱动线圈可以代替每对并置的Y驱动线圈。该排列如图2a所示。
参考图3和图4说明本实施例的另一个方面。最好该方面与参考图2所描述的方面相结合,虽然可以想到,这个方面,或参考图2所述的方面,可以相对各其他方面独立应用。下面参考图3和图4所描述的方面是单独使用的,任何对屏蔽线圈的引用都可以被忽略,并且可考虑用直接的电连接来代替这种线圈。
图3显示了图2中的X驱动线圈60和Y驱动线圈20,它们从圆柱体(无图示)的表面移开并摆开成二维表面。X驱动线圈60的排列与Y驱动线圈20的相似,包含两对完全相反的螺旋-缠绕线圈。每对X驱动线圈60与每对相邻的Y驱动线圈20在角度上偏移90°。由此,形成第一对X驱动线圈62,它由在圆柱体第一端的第一线圈62a和在圆柱体另一端的第二线圈62b组成。有第一对Y驱动线圈22与该第一对X驱动线圈62在角度上有偏离并与该第一对X驱动线圈交叠,而且该第一对Y驱动线圈由在圆柱体第一端的第一线圈22a和在另一端的第二线圈22b组成。有第二对X驱动线圈64与所述的第一对Y驱动线圈22在角度上有偏离并与该第一对Y驱动线圈交叠,而且该第二对X驱动线圈由在圆柱体第一端的第一线圈64a和在另一端的第二线圈64b组成。最后,有第二对Y驱动线圈24与该第二对X驱动线圈64(和第一对X驱动线圈62)在角度上有偏离并与该第二对X驱动线圈(和第一对X驱动线圈62)交叠,而且该第二对Y驱动线圈由在圆柱体第一端的第一线圈24a和在另一端的第二线圈24b组成。
更好的是,如参考图2在前文所述的,X驱动线圈60以基本相同于Y驱动线圈连接于对应其的屏蔽线圈的方式连接于其所对应的屏蔽线圈(图3中未示出)。
组成每对线圈22、62、22和64的两个线圈22a,22b;62a,62b;24a,24b;64a,64b在其各个最外端连接在一起。
第一对X驱动线圈62的第一个线圈62a在其最中心端连接对称PSU40(图3中未示)的一个终端。该对62的第二个线圈62b在其最里端连接所对应屏蔽线圈的一端。该屏蔽线圈的另一端连接到第二对X驱动线圈64的第二个线圈64b的最里端。该对64的第一线圈64a在其最里端连接于对称PSU40的另一个终端。
第一对Y驱动线圈22的第二个线圈22b在其最中心端连接另一个与PSU40基本相同的对称PSU(图3中未示)的一个终端。该对22的第一个线圈22a在其最里端连接所对应屏蔽线圈的一端。该屏蔽线圈的另一端连接到第二Y驱动线圈24的第一个线圈24a的最里端。该对线圈24的第一线圈24a连接于另一个PSU的另一个终端。
在使用中,最高电位的区域是连接于对称PSU40终端的线圈62a,22b,64a,24b的内部区域。最低电位的区域是连接于屏蔽线圈的线圈62b,22a,64b,24a的内部区域。图3中,用于描写形成驱动线圈20、60的导体段的线条的形式表示该段的电位。无论正负极,粗实线表示最高电位;细实线仅表示高电位;虚线表示低电位;点线表示最低电位,即最接近中性。
以上所述线圈22a、22b;62a,62b;24a,24b;64a,64b的空间排列确保了高电位区域在空间上互相远离并与低电位区域相邻。这在邻近导体间电位差的最小化上是有利的,从而使在这些高电位区域发生局部放电的可能性最小。
图4显示了仅在图3中的Y驱动线圈20,以及Z驱动线圈80。Z驱动线圈80包含四个线圈,每个线圈都以基本圆周的方向成螺旋形地缠绕于圆柱体的外表面。Z驱动线圈沿圆柱体的长度轴向分布。图4显示Y驱动线圈20和Z驱动线圈,它们以二维平面展开。
Z驱动线圈80的定位类似于传统的MRIS装置,其中,Z驱动线圈的第一个线圈80a与上述的圆柱体的第一端相邻,设置第二个线圈80b、第三个线圈80c和第四个线圈80dZ逐步远离第一端,从而使第四个Z驱动线圈80d与圆柱体的另一端相邻。
Z驱动线圈80安装在Y驱动线圈20径向上的外侧,后者依次安装在X驱动线圈60径向上的外侧。由此,Z驱动线圈80通过中间放置的Y驱动线圈20在径向上与X驱动线圈60隔离。
四个Z驱动线圈80互相连接以及连接到PSU的方式不同于传统的MRIS装置。第一Z驱动线圈80a的一端连接于与PSU40基本相同的另一个对称PSU(图4未示)的一个终端,第一Z驱动线圈80a的另一端连接于第三Z驱动线圈80c的第一端。第二Z驱动线圈的一端连接于所述另一个对称PSU的另一个终端,第二Z驱动线圈80c的另一端连接于第四驱动线圈80d的第一端。
第三Z驱动线圈80c和第四Z驱动线圈80d中每一个的另一端连接于相应的屏蔽线圈(无图示)的任意侧,以使这些屏蔽线圈在一侧串联连接在Z驱动线圈的第一线圈80a和第三线圈80c之间,在另一侧串联连接在Z驱动线圈的第四线圈80d和第二线圈80b之间。Z驱动线圈80依次串联连接在PSU40的终端之间。可以理解的是,它的排列基本类似于参考图2所描述的排列。在可替换的实施例中,第三Z驱动线圈80c与第四Z驱动线圈80d中每一个的另一端连接在一起。
在操作中,在最高电位的Z驱动线圈80的段是电气相邻于对称PSU40两个终端的部分。如图3所示,用于描写Z驱动线圈80的线条的表示这些导体的电位。这样,Z驱动线圈80的高电位段在空间上远离Y驱动线圈20的高电位区域而在空间上与它们的低电位区域相邻。如上所述,X驱动线圈60相对于圆柱体在径向上与Z驱动线圈80隔离,这是由Y驱动线圈20在径向上放置在它们之间所带来的结果。由此,Z驱动线圈在轴向上与Y驱动线圈20的高电位区域隔开,并在轴向上与X驱动线圈60的高电位区域隔开。
在这个实施例中,可以理解的是,第一Z驱动线圈80a可以连接于第四Z驱动线圈80d,而不是连接于第三Z驱动线圈;第二Z驱动线圈80b可以连接于第三Z驱动线圈80c,而不是连接于第四Z驱动线圈80d,基本不改变排列。
在该实施例中,采用了X、Y和Z驱动线圈60、20、80的排列,由此X驱动线圈60在径向上处于最里面,Z驱动线圈80在径向上处于最外面,而Y驱动线圈20在径向上处于中间。可以看出,可以把该排列方向设置,也能基本达到同样的效果。
在一个可替换的实施例中,图中未示,可以看出,Z驱动线圈没有被排列成使其高电位段与圆柱体的一端相邻。取而代之地,可以看出,包括高电位区域的X驱动线圈和Y驱动线圈中的任意一个被放置在径向上的最里面,从而产生与圆柱体外表面相邻的高电位层。这些高电位线圈的每一个都含有一个径向上位于其外侧的各个其它轴的低电位驱动线圈,以形成低电位层。可随后用任何简便的方式把Z驱动线圈放在低电位层的周围。
同样可以看出,在该可替换实施例中的驱动线圈的径向排列可以反向设置,从而Z驱动线圈在径向上处于最里面,高电位的X和Y驱动线圈组在径向上处于最外面,以及低电位的X和Y驱动线圈在径向上处于中间。可以理解的是,这种反向排列可以达到与所述可替换实施例中第一论述排列基本相同的结果。

Claims (16)

1.一种用于核磁共振成像和光谱装置的线圈排列,该线圈排列包括驱动线圈和至少部分电磁屏蔽该驱动线圈的屏蔽线圈,其中驱动线圈和屏蔽线圈串联连接,屏蔽线圈在驱动线圈的第一段和驱动线圈的第二段之间。
2.根据权利要求1的线圈排列,其特征在于,所述屏蔽线圈连接在所述第一段和第二段之间,以使该屏蔽线圈电气相邻于电路的虚地,该电路当线圈排列在使用中连接于对称交流电源单元的时候形成。
3.根据权利要求2的线圈排列,其特征在于,设置所述排列,以使所述屏蔽线圈跨接于虚地。
4.根据前述任一权项所述的线圈排列,其特征在于,所述驱动线圈包含至少一组驱动线圈,该组驱动线圈包括至少两个串联连接在一起的驱动线圈,其中,在空间上排列所述线圈,以使在使用中,其相邻部分之间的电位差达到最小,从而使其之间的局部放电达到最小化。
5.根据权利要求4的线圈排列,其特征在于,排列所述驱动线圈,以使在使用中,其在某个极性最高电位的部分在空间上远离同时处于相反极性最高电位的驱动线圈的部分。
6.根据权利要求4或权利要求5的线圈排列,其特征在于,排列所述驱动线圈,以使在使用中,其处于最高电位的部分在空间上与同时处于相同极性的电位的驱动线圈的部分相邻,或与处于任何极性低电位的驱动线圈的部分相邻。
7.根据权利要求4到6中任意一个权项的线圈排列,其特征在于,驱动线圈在使用中处于某个极性最高电位的部分,相对于放置驱动线圈的圆柱体,与同时处在相反极性最高电位的部分,在轴向上隔开和/或在径向上隔开。
8.根据权利要求7的线圈排列,其特征在于,至少有两组驱动线圈,每组包括至少两个串联连接在一起的驱动线圈,而且其中,排列驱动线圈使得:排列第一组线圈以形成驱动线圈的最里层,它的高电位线圈与圆柱体的一端相邻,它的低电位线圈与圆柱体的另一端相邻;排列第二组驱动线圈以形成径向上处于外侧并与径向上的最里层并置的层,其高电位线圈与圆柱体的另一端相邻,其低电位线圈与圆柱体的一端相邻。
9.根据权利要求8的线圈排列,其特征在于,排列第三组驱动线圈以形成与第二组并置的径向上的最外层,第三组的高电位线圈与圆柱体的一端相邻,而第三组的低电位线圈与圆柱体的另一端相邻。
10.根据权利要求7的线圈排列,其特征在于,有三组驱动线圈,每组包括至少两个串联连接在一起的驱动线圈,且其中排列所述驱动线使得,第一组线圈的最高电位线圈和第二组线圈的最高电位线圈在圆柱体的表面形成径向上的最里层;并且排列所述驱动线圈使得,第一组和第二组驱动线圈的最低电位线圈形成第二层,径向上处于外侧并与最里层并置,从而允许第三组驱动线圈的线圈在径向上放置在第二层的外侧,由此第三组线圈的高电位段在径向上与形成径向上最里层的第一和第二组高电位线圈,通过低电位线圈径向上的中间第二层隔开。
11.根据权利要求8到10中任意一个权项的线圈排列,其特征在于,所述第一和第二组驱动线圈对应于X和Y驱动线圈,而第三组驱动线圈对应于Z驱动线圈。
12.根据权利要求8到12中任意一个权项的线圈排列,其特征在于,每组包括连接在其驱动线圈之间的屏蔽线圈。
13.根据权利要求8到12中任意一个权项的线圈排列,其特征在于,同组的电气相邻且螺旋缠绕的线圈最好在每个线圈的最外端连接在一起。
14.根据前述任意一个权项的线圈排列,其特征在于,所述驱动线圈可以放置在一个或更多的平面表面上或该平面表面的周围,而不是放置在圆柱体的弯曲表面上,前述对圆柱体半径的引用理解为垂直于平面表面方向的引用,对圆柱体轴的引用理解为平而表面长度的引用。
15.根据前述任意一个权利要求的线圈排列,其特征在于,至少一些驱动线圈基本上螺旋缠绕,排列这些在使用中用于电气连接相邻于电源或屏蔽线圈的驱动线圈,用来连接在其最中心端的电源,即各螺旋缠绕的线圈的“眼”。
16.一种用于核磁共振成像和光谱装置的驱动线圈排列,该驱动线圈排列包括至少一组驱动线圈,该组驱动线圈包括至少两个串联连接在一起的驱动线圈,其中,在空间上排列线圈以使其在使用中,其相邻部分之间的电位差达到最小,从而将其之间的局部放电最小化。
CN03813147.1A 2002-06-07 2003-06-09 用于核磁共振成像和光谱装置的线圈排列及驱动线圈排列 Expired - Lifetime CN1729404B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB0213131.6 2002-06-07
GBGB0213131.6A GB0213131D0 (en) 2002-06-07 2002-06-07 Coil arrangements
PCT/GB2003/002448 WO2003104831A2 (en) 2002-06-07 2003-06-09 Coil arrangements

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN200910008399.7A Division CN101526594B (zh) 2002-06-07 2003-06-09 线圈排列

Publications (2)

Publication Number Publication Date
CN1729404A true CN1729404A (zh) 2006-02-01
CN1729404B CN1729404B (zh) 2010-05-26

Family

ID=9938175

Family Applications (2)

Application Number Title Priority Date Filing Date
CN03813147.1A Expired - Lifetime CN1729404B (zh) 2002-06-07 2003-06-09 用于核磁共振成像和光谱装置的线圈排列及驱动线圈排列
CN200910008399.7A Expired - Lifetime CN101526594B (zh) 2002-06-07 2003-06-09 线圈排列

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN200910008399.7A Expired - Lifetime CN101526594B (zh) 2002-06-07 2003-06-09 线圈排列

Country Status (7)

Country Link
US (1) US7145337B2 (zh)
EP (1) EP1576382B1 (zh)
CN (2) CN1729404B (zh)
AU (1) AU2003241034A1 (zh)
ES (1) ES2420913T3 (zh)
GB (1) GB0213131D0 (zh)
WO (1) WO2003104831A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101281240B (zh) * 2007-04-06 2012-07-04 株式会社东芝 磁共振成像装置及其驱动方法、屏蔽线圈及其制造方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10235056A1 (de) * 2002-07-31 2004-02-12 Siemens Ag Gradientenspulensystem und Verfahren zum Herstellen des Gradientenspulensystems
GB2483889A (en) 2010-09-22 2012-03-28 Tesla Engineering Ltd Gradient coil sub assemblies
GB2483890A (en) 2010-09-22 2012-03-28 Tesla Engineering Ltd MRIS gradient coil assembly with screening layers connected to respective coil layers
EP3404435B1 (de) * 2017-05-18 2022-08-31 Siemens Healthcare GmbH Gradientenspuleneinheit für ein magnetresonanzgerät
WO2019050933A1 (en) * 2017-09-05 2019-03-14 University Of Florida Research Foundation TRANSFER OF WIRELESS ENERGY TO BIOMEDICAL IMPLANTS

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0114889A1 (en) * 1982-08-04 1984-08-08 OLDENDORF, William H. Adjustable magnet suitable for in vivo nmr imaging and method of adjusting the same
US4694255A (en) * 1983-11-04 1987-09-15 General Electric Company Radio frequency field coil for NMR
JPS60222044A (ja) * 1984-04-20 1985-11-06 横河電機株式会社 核磁気共鳴による診断方法および装置
EP0236789A1 (de) * 1986-02-28 1987-09-16 Siemens Aktiengesellschaft Nichtorthogonales Shim-Spulensystem zur Korrektur von Magnetfeldinhomogenitäten in Kernspinresonanzgeräten
US4794338A (en) * 1987-11-25 1988-12-27 General Electric Company Balanced self-shielded gradient coils
US5296810A (en) * 1992-03-27 1994-03-22 Picker International, Inc. MRI self-shielded gradient coils
US5406205A (en) * 1989-11-08 1995-04-11 Bruker Analytische Messtechnik Gmbh Gradient-generation system, nuclear spin tomograph, and process for the generation of images with a nuclear-spin tomograph
US5057778A (en) * 1990-03-29 1991-10-15 Spectroscopy Imaging Systems Corporation Double tuned nmr coils
JP2928595B2 (ja) * 1990-06-27 1999-08-03 株式会社東芝 傾斜磁場発生装置
US5406204A (en) * 1992-03-27 1995-04-11 Picker International, Inc. Integrated MRI gradient coil and RF screen
US5365173A (en) * 1992-07-24 1994-11-15 Picker International, Inc. Technique for driving quadrature dual frequency RF resonators for magnetic resonance spectroscopy/imaging by four-inductive loop over coupling
US5289129A (en) * 1992-10-13 1994-02-22 The Trustees Of The University Of Pennsylvania Multiple winding MRI gradient coil
US5311135A (en) * 1992-12-11 1994-05-10 General Electric Company Multiple tap gradient field coil for magnetic resonance imaging
JPH0779942A (ja) * 1993-09-13 1995-03-28 Toshiba Corp 磁気共鳴イメージング装置
DE4422781C1 (de) * 1994-06-29 1996-02-01 Siemens Ag Aktiv geschirmte planare Gradientenspule für Polplattenmagnete
GB2295020B (en) * 1994-11-03 1999-05-19 Elscint Ltd Modular whole - body gradient coil
US6144204A (en) * 1997-11-28 2000-11-07 Picker Nordstar Oy Gradient coils for magnetic resonance meeting
US6311389B1 (en) 1998-07-01 2001-11-06 Kabushiki Kaisha Toshiba Gradient magnetic coil apparatus and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101281240B (zh) * 2007-04-06 2012-07-04 株式会社东芝 磁共振成像装置及其驱动方法、屏蔽线圈及其制造方法

Also Published As

Publication number Publication date
AU2003241034A8 (en) 2003-12-22
CN1729404B (zh) 2010-05-26
EP1576382A2 (en) 2005-09-21
EP1576382B1 (en) 2013-04-17
AU2003241034A1 (en) 2003-12-22
US20050179434A1 (en) 2005-08-18
WO2003104831A3 (en) 2005-07-28
CN101526594B (zh) 2013-01-02
CN101526594A (zh) 2009-09-09
WO2003104831A2 (en) 2003-12-18
US7145337B2 (en) 2006-12-05
ES2420913T3 (es) 2013-08-27
GB0213131D0 (en) 2002-07-17

Similar Documents

Publication Publication Date Title
EP1386175B1 (en) Multiple tuned birdcage coils
JP4490966B2 (ja) 高周波mri用コイル
CN1975455B (zh) 用于磁共振应用的谐振器
JP2572457B2 (ja) 平衡不平衡変成器なしに無線周波アンテナに多重同軸ケーブルを接続する方法と装置
CN1882845A (zh) 用于mri的混合tem/鸟笼型线圈
CN101088020A (zh) 具有传输线端环的射频线圈
CN1717590A (zh) 用于磁共振成像设备的rf线圈系统
CN1729404A (zh) 线圈排列
CN1940587A (zh) 磁共振设备的线圈装置
US20100219834A1 (en) Birdcage coil with improved homogeneity and reduced sar
JP2003302452A (ja) 核磁気共鳴装置の多重同調回路およびプローブ
CN1085767A (zh) 均匀磁场装置
CN104919329A (zh) 用于磁共振成像系统的tem谐振器型射频天线装置
CN208923027U (zh) 感应线圈组及反应腔室
CN1439890A (zh) 用于磁共振成像的梯度线圈结构
JP4156512B2 (ja) 電磁結合現象を抑制するための装置
JP2005503223A6 (ja) 電磁結合現象を抑制するための装置
CN2136011Y (zh) 均匀磁场装置
US7345482B2 (en) High-field mode-stable resonator for magnetic resonance imaging
EP0766832A1 (en) Rf coil arrangement for a magnetic resonance apparatus
CN1009140B (zh) 产生和/或接收交变磁场的射频线圈系统
CN1555493A (zh) 用于抑制电磁耦合现象的装置
CN100359611C (zh) 用于磁共振成像的线圈结构
JP3134325B2 (ja) Mri用rfコイル
JPS61231445A (ja) Nmrプロ−ブ用コイル装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20100526