CN1696054A - 一种大量制造均一长度碳纳米管的方法 - Google Patents

一种大量制造均一长度碳纳米管的方法 Download PDF

Info

Publication number
CN1696054A
CN1696054A CNA2004100272498A CN200410027249A CN1696054A CN 1696054 A CN1696054 A CN 1696054A CN A2004100272498 A CNA2004100272498 A CN A2004100272498A CN 200410027249 A CN200410027249 A CN 200410027249A CN 1696054 A CN1696054 A CN 1696054A
Authority
CN
China
Prior art keywords
large amount
pipe array
nano pipe
polymer
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2004100272498A
Other languages
English (en)
Other versions
CN1290764C (zh
Inventor
黄华
刘长洪
范守善
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Hongfujin Precision Industry Shenzhen Co Ltd
Original Assignee
Tsinghua University
Hongfujin Precision Industry Shenzhen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University, Hongfujin Precision Industry Shenzhen Co Ltd filed Critical Tsinghua University
Priority to CNB2004100272498A priority Critical patent/CN1290764C/zh
Priority to US11/025,160 priority patent/US7611651B2/en
Publication of CN1696054A publication Critical patent/CN1696054A/zh
Application granted granted Critical
Publication of CN1290764C publication Critical patent/CN1290764C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/08Aligned nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/34Length

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

一种大量制造均一长度碳纳米管的方法,其包括以下步骤:提供一碳纳米管阵列;将碳纳米管阵列浸润于液相高分子体系;使液相高分子体系转化为固相,生成分布有碳纳米管的高分子复合材料;在碳纳米管阵列预定高度,沿垂直于碳纳米管阵列轴向切割该高分子复合材料,去除碳纳米管阵列顶端的高分子材料并使得碳纳米管尖端开口;按照预定厚度切割上述高分子复合材料,形成厚度均匀的高分子复合材料薄膜;去除高分子复合材料薄膜中的高分子材料,得到大量长度均一的碳纳米管。

Description

一种大量制造均一长度碳纳米管的方法
【技术领域】
本发明涉及一种大量制造均一长度碳纳米管的方法。
【背景技术】
自1991年日本NEC公司的Iijima发现碳纳米管以来(Carbon Nanotube,CNT),由于碳纳米管具有很多优异而独特的光学、电学及机械性质,呈现出非常广泛的应用前景。碳纳米管具有与金刚石相同的热导和独特的力学性能,如抗张强度达100Gpa,模量高达1TGPa,且耐强酸、强碱,600℃以下基本不氧化等,利用碳纳米管作为填充物与工程材料复合成为碳纳米管研究的一个重要方向。
以碳纳米管作为填充材料的复合材料往往需要大量的碳纳米管,为使填充后的复合材料具有均匀的力学或其他物理性质,还要求碳纳米管具有单一的性质如均匀的长度和直径。目前大量制造碳纳米管的工艺方法有很多种,包括化学气相沉积法、电弧放电等,但大多得到的碳纳米管比较杂乱,且长度不均匀。随着工艺的发展,人们发现通过改善化学气相沉积法,控制其反应时间可以得到比较均匀单一长度的碳纳米管。但是,该方法由于通过控制反应时间来控制长度,其精确度不高,同时,生长一次只能控制一种尺寸,其研究和应用受到限制。
因此,提供一种能够大量制造均一长度的碳纳米管的方法十分必要。
【发明内容】
为解决现有技术的技术问题,本发明的目的是提供一种能够大量制造均一长度的碳纳米管的方法。
为实现本发明的目的,本发明提供一种大量制造均一长度碳纳米管的方法,其包括以下步骤:提供一碳纳米管阵列;将碳纳米管阵列浸润于液相高分子体系;使液相高分子体系转化为固相,生成分布有碳纳米管的高分子复合材料;在碳纳米管阵列预定高度,沿垂直于碳纳米管阵列轴向切割该高分子复合材料,去除碳纳米管阵列顶端的高分子材料并使得碳纳米管尖端开口;按照预定厚度切割上述高分子复合材料,形成厚度均匀的高分子复合材料薄膜;去除高分子复合材料薄膜中的高分子材料,得到大量长度均一的碳纳米管。
与现有技术相比较,本发明大量制造均一长度碳纳米管的方法通过切割可以在一定范围内得到任意长度的碳纳米管,方法简单,且碳纳米管来自于化学气相沉积法生长得到的阵列,切割后碳纳米管两端开口,具有基本相同的直径和长度。
【附图说明】
图1是本发明中形成有催化剂薄膜的基底的示意图。
图2是图1所示基底上生长有定向排列的碳纳米管阵列的示意图。
图3是图2所示的碳纳米管阵列连同基底在高分子溶液中浸泡的示意图。
图4是本发明中浸有高分子溶液的碳纳米管阵列的固化的示意图。
图5是本发明中含碳纳米管阵列的高分子复合材料薄膜的示意图。
图6是本发明得到的大量长度均一的碳纳米管的示意图。
【具体实施方式】
下面将结合附图及具体实施例对本发明进行详细说明。
请参阅图1和图2,首先在一基底11上均匀形成一层催化剂薄膜12,该催化剂薄膜12的形成可利用热沉积、电子束沉积或溅射法来完成。基底11的材料可用玻璃、石英、硅或氧化铝。本实施例采用多孔硅,其表面有一层多孔层,孔的直径极小,一般小于3纳米。催化剂薄膜12的材料选用铁,也可选用其它材料,如氮化镓、钴、镍及其合金材料等。
然后,氧化催化剂薄膜12,形成催化剂颗粒(图未示),再将分布有催化剂颗粒的基底11放入反应炉中(图未示),在700~1000摄氏度下,通入碳源气,生长出碳纳米管阵列22,其中碳源气可为乙炔、乙烯等气体,碳纳米管阵列22的高度可通过控制生长时间来控制。有关碳纳米管阵列22生长的方法已较为成熟,具体可参阅文献Science,1999,vol.283,p.512-414和文献J.Am.Chem.Soc,2001,vol.123,p.11502-11503,此外美国专利第6,350,488号也公开了一种生长大面积碳纳米管阵列的方法。
请参阅图3,将熔融态高分子32装进一容器30中,将已生长好的定向排列的碳纳米管阵列22连同基底11一起浸到该熔融态高分子32中,直至熔融态高分子32完全浸润碳纳米管阵列22,熔融态高分子32完全浸润的时间同碳纳米管阵列22的高度、密度以及整个碳纳米管阵列22的面积相关。为使熔融态高分子32能完全浸润碳纳米管阵列22,该熔融态高分子32的粘度在200cPs以下。本发明熔融态高分子32还可用高分子溶液或聚合物单体溶液替代,本实施例采用的熔融态高分子32为熔融态石蜡材料。
请参阅图4和图5,将被熔融态高分子32完全浸润的碳纳米管阵列22连同基底11一起从容器30中取出,冷却使该熔融态高分子32固化,形成高分子材料34。然后在碳纳米管阵列22预定高度,用切片机(图未示)将该高分子材料34沿垂直于碳纳米管阵列22的轴向方向进行切割,形成高分子复合材料薄膜40,其中,在切割前还可进一步将固化后的高分子材料34从基底11上揭下再进行切割,形成高分子复合材料薄膜40。
另外,也可以先冷却固化该熔融态高分子32,再将固化后形成的高分子材料34连同基底11一起从容器30中取出,然后直接用切片机在碳纳米管阵列22的轴向方向切割该高分子材料34形成高分子复合材料薄膜40。
本发明用切片机切割高分子材料34形成高分子复合材料薄膜40的具体方法为:首先根据碳纳米管阵列22的生长高度将分布有碳纳米管阵列22的高分子材料34沿垂直于碳纳米管阵列22的轴向方向进行切割,除去碳纳米管阵列22上方多余的高分子材料34,同时使碳纳米管的尖端开口;然后按照所需碳纳米管的长度沿同一方向进行切割,得到高分子复合材料薄膜40。该高分子复合材料薄膜40中的碳纳米管两端开口,且贯穿整个高分子复合材料薄膜40,具有分布均匀、垂直排列的特点。本发明高分子复合材料薄膜40的厚度可为1~1000微米,本实施例高分子复合材料薄膜40的厚度为20微米,由于使用切片机进行切割,高分子复合材料薄膜40的厚度可根据所需碳纳米管的长度由切片时直接控制,方法简单,且容易控制。
请参阅图6,去除高分子复合材料薄膜40中的高分子材料34,即可得到大量两端开口、长度均一的碳纳米管。本发明碳纳米管的长度可为1~1000微米。本发明去除高分子复合材料薄膜40中高分子材料34的方法与所使用的高分子材料有关,熔融态高分子材料可通过溶剂,或直接通过高温使其融化除去,高分子溶液与聚合物单体溶液可依据其材料的不同选用不同的溶剂除去,本实施例之石蜡材料可选用二甲苯溶剂除去,得到大量长度均一的碳纳米管。

Claims (8)

1.一种大量制造均一长度碳纳米管的方法,其包括以下步骤:
提供一碳纳米管阵列;
将碳纳米管阵列浸润于液相高分子体系;
使液相高分子体系转化为固相,生成分布有碳纳米管的高分子复合材料;
在碳纳米管阵列预定高度,沿垂直于碳纳米管阵列轴向切割该高分子复合材料,去除碳纳米管阵列顶端的高分子材料并使得碳纳米管尖端开口;
按照预定厚度切割上述高分子复合材料,形成厚度均匀的高分子复合材料薄膜;
去除高分子复合材料薄膜中的高分子材料,得到大量长度均一的碳纳米管。
2.如权利要求1所述的大量制造均一长度碳纳米管的方法,其特征在于液相高分子体系粘度在200cPs以下。
3.如权利要求1所述的大量制造均一长度碳纳米管的方法,其特征在于该液相高分子体系包括熔融态高分子、高分子溶液和聚合物单体溶液。
4.如权利要求3所述的大量制造均一长度碳纳米管的方法,其特征在于该熔融态高分子包括熔融态石蜡材料。
5.如权利要求4所述的大量制造均一长度碳纳米管的方法,其特征在于采用二甲苯溶剂溶解去除石蜡材料。
6.如权利要求1所述的大量制造均一长度碳纳米管的方法,其特征在于该碳纳米管阵列生长在一基底上。
7.如权利要求6所述的大量制造均一长度碳纳米管的方法,其特征在于切割该高分子复合材料之前进一步包括先将该分布有碳纳米管的高分子复合材料从基底上揭下。
8.如权利要求1所述的大量制造均一长度碳纳米管的方法,其特征在于该碳纳米管均两端开口,长度为1~1000微米。
CNB2004100272498A 2004-05-13 2004-05-13 一种大量制造均一长度碳纳米管的方法 Expired - Lifetime CN1290764C (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CNB2004100272498A CN1290764C (zh) 2004-05-13 2004-05-13 一种大量制造均一长度碳纳米管的方法
US11/025,160 US7611651B2 (en) 2004-05-13 2005-04-21 Method for manufacturing carbon nanotubes with uniform length

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2004100272498A CN1290764C (zh) 2004-05-13 2004-05-13 一种大量制造均一长度碳纳米管的方法

Publications (2)

Publication Number Publication Date
CN1696054A true CN1696054A (zh) 2005-11-16
CN1290764C CN1290764C (zh) 2006-12-20

Family

ID=35348970

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004100272498A Expired - Lifetime CN1290764C (zh) 2004-05-13 2004-05-13 一种大量制造均一长度碳纳米管的方法

Country Status (2)

Country Link
US (1) US7611651B2 (zh)
CN (1) CN1290764C (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101054467B (zh) * 2006-04-14 2010-05-26 清华大学 碳纳米管复合材料及其制备方法
CN102184820A (zh) * 2011-04-19 2011-09-14 清华大学 碳纳米管浆料的制备方法
US9048055B2 (en) 2011-04-19 2015-06-02 Tsinghua University Method for making carbon nanotube slurry
CN109911885A (zh) * 2017-12-13 2019-06-21 北京华碳元芯电子科技有限责任公司 制备碳纳米管溶液的方法
CN112848616A (zh) * 2019-11-28 2021-05-28 安世亚太科技股份有限公司 一种微纳米级工程立体结构材料及其制作方法

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100337981C (zh) * 2005-03-24 2007-09-19 清华大学 热界面材料及其制造方法
US8846143B2 (en) 2006-07-10 2014-09-30 California Institute Of Technology Method for selectively anchoring and exposing large numbers of nanoscale structures
WO2008097257A2 (en) * 2006-07-10 2008-08-14 California Institute Of Technology Method for selectively anchoring large numbers of nanoscale structures
CN100583470C (zh) * 2006-12-15 2010-01-20 富准精密工业(深圳)有限公司 发光二极管散热装置组合
JP5355423B2 (ja) * 2007-02-22 2013-11-27 ダウ コーニング コーポレーション 伝導性フィルムを調製するためのプロセスおよびそのプロセスを用いて調製した物品
US7959969B2 (en) 2007-07-10 2011-06-14 California Institute Of Technology Fabrication of anchored carbon nanotube array devices for integrated light collection and energy conversion
CN101409962B (zh) * 2007-10-10 2010-11-10 清华大学 面热光源及其制备方法
CN101409961B (zh) * 2007-10-10 2010-06-16 清华大学 面热光源,其制备方法及应用其加热物体的方法
CN101400198B (zh) * 2007-09-28 2010-09-29 北京富纳特创新科技有限公司 面热光源,其制备方法及应用其加热物体的方法
US20100122980A1 (en) * 2008-06-13 2010-05-20 Tsinghua University Carbon nanotube heater
US20100126985A1 (en) * 2008-06-13 2010-05-27 Tsinghua University Carbon nanotube heater
US20100000669A1 (en) * 2008-06-13 2010-01-07 Tsinghua University Carbon nanotube heater
JP5620408B2 (ja) 2009-01-27 2014-11-05 カリフォルニア インスティチュート オブテクノロジー デバイス表面から突出する配向カーボンナノチューブを有するナノ強化デバイスにより促進された、薬物送達及び物質移送
US8601965B2 (en) * 2009-11-23 2013-12-10 Applied Nanostructured Solutions, Llc CNT-tailored composite sea-based structures
CN102741465A (zh) 2010-02-02 2012-10-17 应用纳米结构方案公司 包含平行排列的碳纳米管的碳纳米管并入的纤维材料、其制造方法及从其衍生的复合材料
WO2011127207A2 (en) 2010-04-07 2011-10-13 California Institute Of Technology Simple method for producing superhydrophobic carbon nanotube array
US9017854B2 (en) 2010-08-30 2015-04-28 Applied Nanostructured Solutions, Llc Structural energy storage assemblies and methods for production thereof
WO2012079066A2 (en) 2010-12-10 2012-06-14 California Institute Of Technology Method for producing graphene oxide with tunable gap
WO2012135238A1 (en) 2011-03-29 2012-10-04 California Institute Of Technology Method to increase the capacitance of electrochemical carbon nanotube capacitors by conformal deposition of nanoparticles
WO2013090844A1 (en) 2011-12-14 2013-06-20 California Institute Of Technology Sharp tip carbon nanotube microneedle devices and their fabrication
US9349543B2 (en) 2012-07-30 2016-05-24 California Institute Of Technology Nano tri-carbon composite systems and manufacture

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3198865A (en) * 1960-09-28 1965-08-03 Millipore Filter Corp Method of applying a microporous plastic membrane filter on a support
US4003773A (en) * 1976-03-02 1977-01-18 Hercules Incorporated Method of preparing graphite fibers of ultra-short length and narrow size distribution
EP1059266A3 (en) * 1999-06-11 2000-12-20 Iljin Nanotech Co., Ltd. Mass synthesis method of high purity carbon nanotubes vertically aligned over large-size substrate using thermal chemical vapor deposition
US6312303B1 (en) * 1999-07-19 2001-11-06 Si Diamond Technology, Inc. Alignment of carbon nanotubes
US6965513B2 (en) * 2001-12-20 2005-11-15 Intel Corporation Carbon nanotube thermal interface structures
WO2004033370A1 (en) * 2002-10-11 2004-04-22 Massachusetts Institute Of Technology Nanopellets and method of making nanopellets
CN1296994C (zh) * 2002-11-14 2007-01-24 清华大学 一种热界面材料及其制造方法
CN100383213C (zh) * 2004-04-02 2008-04-23 清华大学 一种热界面材料及其制造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101054467B (zh) * 2006-04-14 2010-05-26 清华大学 碳纳米管复合材料及其制备方法
CN102184820A (zh) * 2011-04-19 2011-09-14 清华大学 碳纳米管浆料的制备方法
US9023251B2 (en) 2011-04-19 2015-05-05 Tsinghua University Method for making a carbon nanotube slurry
US9048055B2 (en) 2011-04-19 2015-06-02 Tsinghua University Method for making carbon nanotube slurry
CN109911885A (zh) * 2017-12-13 2019-06-21 北京华碳元芯电子科技有限责任公司 制备碳纳米管溶液的方法
CN112848616A (zh) * 2019-11-28 2021-05-28 安世亚太科技股份有限公司 一种微纳米级工程立体结构材料及其制作方法

Also Published As

Publication number Publication date
US20060055074A1 (en) 2006-03-16
US7611651B2 (en) 2009-11-03
CN1290764C (zh) 2006-12-20

Similar Documents

Publication Publication Date Title
CN1290764C (zh) 一种大量制造均一长度碳纳米管的方法
US5780101A (en) Method for producing encapsulated nanoparticles and carbon nanotubes using catalytic disproportionation of carbon monoxide
CN100433251C (zh) 形成碳纳米管的方法及其形成半导体金属线和电感的方法
Mandl et al. Au-free epitaxial growth of InAs nanowires
CN100345472C (zh) 一种热界面材料及其制造方法
Ohlsson et al. Size-, shape-, and position-controlled GaAs nano-whiskers
US20070020167A1 (en) Method of preparing catalyst for manufacturing carbon nanotubes
EP1613549B1 (en) Precisely positioned nanowhisker structures and method for preparing them
CN101010780B (zh) 纳米线生长和获取的体系和方法
US7354871B2 (en) Nanowires comprising metal nanodots and method for producing the same
Messing et al. The use of gold for fabrication of nanowire structures
WO2002095097A1 (en) Varied morphology carbon nanotubes and methods for their manufacture
US9181098B2 (en) Preparation of array of long carbon nanotubes and fibers therefrom
CN100577290C (zh) 制备合成碳纳米管的催化剂层和用其合成碳纳米管的方法
CN1504407A (zh) 一种生产碳纳米管的方法
WO2009119641A1 (ja) 単原子膜の製造方法
Li et al. Carbon-assisted growth of SiO x nanowires
WO2006060476A2 (en) Fibers comprised of epitaxially grown single-wall carbon nanotubes, and a method for added catalyst and continuous growth at the tip
CN1897205A (zh) 碳纳米管阵列发射元件及其制作方法
US20100065810A1 (en) Method Of Synthesizing Semiconductor Nanostructures And Nanostructures Synthesized By The Method
CN102774828A (zh) 一种尺寸可控的石墨烯纳米带的制备方法
CN1927705A (zh) 加工碳纳米管的方法
Bai et al. Nucleation and growth of boron nanowires on diamond particles
Yin et al. Template-growth of highly ordered carbon nanotube arrays on silicon
JP2006219358A (ja) ナノカーボン及び当該ナノカーボンの製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term

Granted publication date: 20061220

CX01 Expiry of patent term