CN1678136B - 幻象电源供电传声器的电源 - Google Patents
幻象电源供电传声器的电源 Download PDFInfo
- Publication number
- CN1678136B CN1678136B CN2005100637063A CN200510063706A CN1678136B CN 1678136 B CN1678136 B CN 1678136B CN 2005100637063 A CN2005100637063 A CN 2005100637063A CN 200510063706 A CN200510063706 A CN 200510063706A CN 1678136 B CN1678136 B CN 1678136B
- Authority
- CN
- China
- Prior art keywords
- microphone
- power
- voltage
- power supply
- phantom
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R1/00—Details of transducers, loudspeakers or microphones
- H04R1/02—Casings; Cabinets ; Supports therefor; Mountings therein
- H04R1/04—Structural association of microphone with electric circuitry therefor
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Acoustics & Sound (AREA)
- Signal Processing (AREA)
- Circuit For Audible Band Transducer (AREA)
- Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)
Abstract
本发明涉及传声器,该传声器包括从处理器,控制电子元件,A/D与D/A转换器,LED显示器等组中选择的至少一个传声器碳精盒,至少一个声频放大器,和至少一个另外功率接收机,它们的供电是来自通过声频电缆的电缆导线的幻象供电单元,即所谓幻象电源,其中传声器包括用于单独功率接收机的电源电路,电源电路包括一个把通过声频电缆的电缆导线传输的直流电转变为交流电的控制单元,一个连接到控制单元的变压器,以及用于单独功率接收机的供电环路,其中供电环路是通过变压器上分离线圈电感耦合到控制单元产生的交流电,并彼此耦合。本发明特征为,供电电路提供在具有一个高欧姆恒流发生器的输入侧上,从而与有关所述幻象供电单元的电路形成一个恒流源。
Description
技术领域
本发明涉及一个传声器。
背景技术
该传声器包括从处理器,控制电子元件,A/D与D/A转换器,LED显示器等组中选择的至少一个传声器炭精盒,至少一个声频放大器,和至少一个另外的功率接收机,它们的供电是来自通过声频电缆的电缆导线的一个幻象供电单元,即所谓“幻象电源”,其中传声器包括用于单独的功率接收机的电源电路,电源电路包括一个把通过声频电缆的电缆导线传输的直流电转变为交流电的控制单元,一个连接到控制单元的变压器,以及用于单独的功率接收机的供电环路,其中供电环路是通过变压器上的分离线圈电感耦合到控制单元产生的交流电,并彼此耦合。
传声器的供电传统上是由一个电源提供,例如,利用混频器。在幻象电源供电过程中,馈电电压的正极是通过声频电缆的两个电缆导线的两个恒等的馈电线电阻来施加。电流的返回是通过连接到XLR插头的插脚1的第三个导线。为能够有效地利用为电容式传声器的电源而由幻象电源提供的电压,传声器的电流消耗应该尽可能地小,以防止在馈电线电阻上的过大的电压降。48-V电容式传声器的最大电流消耗是10mA。根据DIN EN61938(原来的IEC268),幻象电源在这里是标准化的。
为在传声器膜上产生值通常是在20-100直流电压范围内的极化电压,可以主要利用组合电路部件或电压转换器。其余的传声器电子元件一般是由线性稳压提供电源,这可维持电源馈电电压或电源电流在一个预定值。对于具有小功率消耗的传声器来说,该类型的电源是适当的。当在传声器中的功率消耗增加时,例如通过使用处理器,A/D转换器,LED显示器等等,该线性稳压会成为问题。在这种情况下,由幻象电源可实现的能量的一大部分在线性稳压元件中被破坏。然而,根据标准,由于幻象电源是由馈电线电阻在其电流中限制,用于声频放大器的最大供电电压因为在传声器中的线性稳压而立即降低,这导致传声器的最大音频输出电压的降低。
另外的问题包括极化电压的产生。通常是通过一个高欧姆电阻对传声器膜施加该电压。这里,所需的功率非常低。用于产生该实际上是无功率极化电压的高效稳压器也是难以构造的。
另一个问题是关于传声器的远程控制。利用传声器,存在着一种增长的需要,即能通过远程控制来调节或改变重要的传声器参数。这些参数包括在膜上的极化电压和电容式传声器的相关灵敏性,传声器的指向性,幻象电源(12V,24V或48V)的类型,序列号,来自制造商的校准数据,以及信号的一个弱化和用于声频信号的一个可连接滤波器。
DE 3 933 870 A1公开了远程控制传声器参数的一种方法,这些参数如指向性,步进式声音滤波器或初步衰减。在该方法中,传送到电缆导线的供电电压是通过一个远程控制单元来调节,例如,在一个混频表中,方式是其数量代表传声器的控制信息。在传声器这边,供电电压是不耦合的,并应用到一个评价电路,评价电路产生一个控制信号作为供电电压的量的函数。通过数据传输的这一方法,只有少量的控制信息可以被传输到传声器,因此,也只有一些参数是可以在传声器中被远程控制。
一个另外的迄今未最好地解决的问题是关于在电容式传声器的膜上极化电压的产生。极化电压的电平是直接包含在传声器碳精盒的灵敏性的电平中。结果,在极化电压的帮助下,也可能来调节电容式碳精盒的灵敏性。在结合使用双膜碳精盒时,这是特别有利的,因为这些碳精盒不仅允许调节灵敏性,而且允许调节指向性,这是在对具有极化电压的单个膜进行单独供电的情形下。
如何在固定电阻或微调电阻的帮助下调节极化电压是已知的。在该过程中,在传声器的组装中,发生极化电压的一次性调节。这里,指向性一度可利用固定的电阻比率被预定。利用该方法,由传声器炭精盒的组装引起,以及由老化过程引起的灵敏性的容许量补偿是仅可能有困难。为了这个目的,在传声器的组装状态中的灵敏性的音频测量过程中,将需要极化电压的一个补偿。也不太可能的是,在不同的指向性情况下进行灵敏性的容许补偿。
美国4,541,112号文件公开了一个具有可调节脉冲发生器的电-声换能器,把电流DC转换成AC。连接到脉冲发生器的一个变压器允许电感去耦单个的功率接收机。供电环路是通过变压器上的分离线圈电感耦合到脉冲发生器产生的交流电。该文件被包括在本文的描述中,作为参考。
关于传声器的电源,需要一种解决办法,其中由幻象电源可实现的功率被最优使用,并被转换成单独的输出接收机所需的操作电压,如声频放大器,传声器碳精盒,处理器,控制器,A/D转换器,LED显示器等等。这里,目标将是能尽可能大地利用通过幻象电源实现的电源的一部分,给声频放大器供电。关于这些要求的最新技术中的严重缺点是在原电流吸收中的不规则性和波动,由此,这些不规则性是可被传递的,能干扰整个传声器的正确和有效操作。
发明内容
根据本发明,利用上述传声器可达到这些目标,其特征表现为,供电电路是提供在具有高欧姆恒流发生器的输入侧,由此,有关幻象电源单元的电路形成一个恒流源。
在DC/DC转换器的输入处的恒流发生器的使用保证了恒定源电流吸收。有关幻象电源单元的恒流发生器像一个恒流源,它代表用于供电电路的一个恒流发生器。具有尽可能高的欧姆级的一个恒流发生器在其它效果中简化了DC/AC转换过程中产生的切换涟波的滤波,因而同时防止了对音频信号上干扰的覆盖。
在本发明的一个实施例中,传声器被描述的特征是,恒流发生器是一个晶体管LED电流发生器。利用该电流发生器,LED是在流向上操作。结果,对LED施加一个恒压,同时这样的电压也施加到具有射极电阻的晶体管的串行连接的基极射极二极管。该实施例描述了一种极好的方法,以不昂贵的方式来克服最新技术水平中的缺点。
在本发明的一个实施例中,传声器被描述的特征是,恒流发生器包括具有另外一个集成恒流发生器的两个逆向耦合的退化晶体管。
该电路是优选的,因为根据一个恒流和一个较高的起动电阻,它具有更好的特征。
在这过程中,上述功率接收机所要求的所有电压是由一个供电电路产生,例如由一个DC/DC转换器产生,它具有以下特点。该供电电路是以这样的方式来被调节或操作,即有一个对幻象电源单元的功率适配。因此,幻象电源单元可实现的最大可能功率可总是由传声器的供电电路来消耗。供电电路的源电流消耗是恒定的。因此,相对于幻象电源单元,供电电路像是一个恒流源。单个功率接收机的单独的供电环路在供电电路中通过变压器被分开,以满足单个的功率接收机的不同要求:用于声频放大器的极化电压,适度电压和适度电流消耗的高电压和小电流,以及用于数字电子元件的低电压与大电流,具有尽可能小的功率损耗。
根据本发明,电容式传声器的有利效果是明显的:利用提出的电源概念,由幻象电源单元实现的电功率最优地被应用。结果,传声器可被提供新的功能(例如,远程控制,新的操作概念,自动补偿的可能性,等等),而传声器的最大声频输出电压保持不变。基本上是任意功率的极化电压的产生实际上是作为由在变压器上的简单的另外的线圈产生的副产品而发生。
一个另外的优势是,作为尽可能高的一个欧姆级的使用结果,在供电电路的输入处利用一个恒定的电源,供电电路的切换涟波或DC/DC转换器的切换涟波可非常容易地被过滤掉。
利用在传声器中增加的适应可能性,如改变极化电压及其灵敏性,双膜碳精盒的指向性的持续变化和存储校准数据的微处理器的控制信号的改变,以及频率范围的修改,最大声频输出电压的修改,或声频放大器的THD的修改,存在着一种需要,即通过一个远程控制,基本上是更高速率的数据传输到传声器。
根据本发明,这些目标可以通过远程控制传声器的方法达到,被描述的特征是,一个调频电压是作为控制信号被施加到两个电缆导线中的至少一个,通过电缆导线,还可发生幻象供电,以及在传声器一侧的调频电压被施加到一个控制电子元件,例如一个微控制器或一个CPLD(复合可编程逻辑设备),微控制器或一个CPLD根据调频控制信号可发送命令给单个的功率接收机。
在该方法中,一个调频电压覆盖在幻象电源的供电电压上。数据传输是从一个发送器通过声频线路到传声器,例如,发送器是配置在一个混合表或在混合表之前的一个设备中。FSK调制的载频在这里是高于由传声器传输的声频范围。
通过利用调频信号传输,与利用直流电的传输相比,可以获得一个基本上更高的数据传输速率。结果,利用一个特定的协议,大量的参数可被传输。用于调制的载频最好是大约100kHz,它们可以利用滤波器从声频信号中分离。
为满足电容式传声器的极化电压中的低容许量的这一要求,例如,考虑到灵敏性,要到达±0.5dB的容许量,这需要一种解决办法,允许即使在传声器的组装状态下也可进行极化电压的灵活调节。
根据本发明,这可通过电容式传声器来得到,描述的特征是,电容式传声器包括用于调节极化电压的至少一个电路,其中调节极化电压的电路包括提供有一个非调节电压的模拟调节环路,以及一个数字调节环路,其中,数字调节环路包括一个控制电子元件,例如一个微处理器或一个CPLD,提供给模拟调节环路的用于极化电压的一个希望值,它是利用校正因子计算的,以及为了反馈的目的,模拟调节环路的输出是与控制电子元件连接。
在该过程中,极化电压是通过集成在传声器中的一个电压调节环路来调节。极化电压的希望值是由控制电子元件通过D/A转换器预先建立在该电路中。结果,可执行极化电压的分级微调。极化电压的希望值也可通过远程控制被传输到控制电子元件。获得的极化电压的容许量现在取决于参考电压源的容许量和热反应。
在传声器中通过数字控制调节环路的极化电压的调节允许非常精确的、抗干扰的和远程可控的电容式传声器的极化电压的调节。结果,在电容式传声器的制造和测量技术验证的过程中,获得关于灵敏性和指向性的十分狭窄的容许量要求成为可能。极化电压的远程可控调节具有的优势是,通过固定电阻或微调电阻的重新调节不再是必须的;这一事实在成本方面具有一个好的效果。与利用固定不变的极化电压的现有解决办法相比,与根据本发明的电容式传声器有关的下面的另外的可能性也产生了。
作为双膜碳精盒的单独特征的函数,在不同地调节指向性的情形下,不同的传声器灵敏性可被补偿,并且可以存储补偿极化电压所需要的要求校正因子。
例如,与如上所述的远程控制一起,极化电压可以在关闭的传声器的声频测量过程中被校准,校正因子可再次被存储。
在操作过程中具有改变远程控制传声器的极化电压及其指向效果的可能性是有特别的优势。例如,传声器在音频上可跟随如在剧场的演出中的移动演员。
根据本发明的电容式传声器允许传声器灵敏性的老化引起的重新校准,而没有必要拆卸传声器,这又意味着消费者费用的节省。在代替传声器碳精盒的过程中,传声器的原来的灵敏性因此在以后还可重新调节,也就是说,在合并之后,通过远程控制。
附图说明
下面,参考附图进一步解释本发明。在图中:
图1表示根据本发明的、具有供电电路的一个电容式传声器的框图;
图2表示根据本发明的、具有供电电路的一个电容式传声器的实施例的框图;
图3表示根据最新技术水平的一个晶体管-LED恒定-电源的电路图;
图4表示根据最新技术水平的具有逆向耦合晶体管的恒定电源的电路图;
图5表示连接到远程控制单元的电容式传声器的一个框图;
图6表示具有用于调节极化电压的集成电路的一个电容式传声器的框图;和
图7表示调节极化电压的电路,包括一个模拟和一个数字调节环路。
具体实施方式
图1是表示根据本发明的一个传声器的主要部件的一个框图。在图5中所示的传声器的幻象电源是由幻象供电单元31通过馈电线电阻32、33来执行,馈电线电阻32、33的量值相同,是配置在可以在混合表中或混合表之前的三极插座4例如一个XLR插座的后面。这样的幻象电源是表示在图5中。根据标准,三个幻象电源是可能的:用于12V、24V或48V电源的馈电线电阻的相关值分别是680Ω,1.2KΩ,或6.8KΩ。这里的线路1和2代表由幻象供电单元提供的电缆导线;线路3代表地线,通常连接到接地的电缆屏蔽。通过声频电缆,即通过线路1、2与电阻5、6,幻象供电单元31连接到根据本发明的供电电路11的输入处。电容7平滑供电电压,与接地相抵。电阻5与6是传声器中的馈电线电阻。使用它们以使传声器的电源从声频放大器10的输出处去耦。传声器的馈电线电阻5与6被分配作为幻象电源31的另外的内电阻。当幻象供电单元的内电阻等于传声器中供电电路11的内电阻时,存在功率适配。这样,在功率调节的情况下,一半的幻象电源的电压是用于供电电路11的供电电压。可由幻象供电单元31产生的最大的该功率现在是通过供电电路11以DC/DC转换器的形式分配给传声器中所有能耗的部件。剩余功率在这里是由声频放大器10使用,以获得传声器的尽可能高的最大声频输出电压。关于不同的电源电压(根据标准的12V,24V或48V),可以这样的方式来设计电路,即自动地产生对不同幻象电源的功率适配。该任务然后是由下文描述的控制单元12承担。
供电电路11包括一个电源13,一个控制单元12和一个连接到控制单元12的变压器14。具有变压器14的控制单元12形成一个电路单元,其中DC电压转换成AC电压。在该情况下,变压器是振荡产生电路的一部分。一般来说,交流电也可由独立于变压器的控制单元12产生。控制单元12则包括独立于变压器的一个振荡周期,来产生交流电。变压器只服务于转换交流电为单独的输出电压的功能。
在一个优选实施例中,AC信号具有范围为100-130kHz的一个频率。AC信号也可自由振荡;这表示用于这样的电路的最简单实施例的可能性。唯一重要的因素是AC信号的频率范围必须在声频范围之外,以不产生对声频信号的任何干扰,该干扰不能由简单的滤波来消除。另一方面,频率也不应太高,因为否则的话,电路的效率降低,并可以有传输干扰。
利用100-130kHz的频率的另一个优势是,该频率也可被用作在传声器中提供的控制电子元件39的周期脉冲。结果,数字技术产生的干扰信号被最小化,因为没有另外混合的产物是在数字周期时间与DC/DC转换器的振荡频率之间产生。
产生的AC信号被施加到变压器14。作为在变压器上单独的分离线圈的结果,分离的电流环路15、16、17被产生,以提供单独的能量消耗部件。该去耦允许,与尽可能小的功率损耗一起,同时提供给要求高电压和低电流的消耗部件,以及具有高电流消耗和低电压的消耗部件。在单独的供电环路15、16、17中的二极管18、19、20和电容器21、22、23表示把AC电压转换成DC电压的一个整流器电路。当然,来自最新技术水平的更复杂和更高效率的整流器可以在单独的供电环路中提供。供电环路16服务于提供给传声器碳精盒9以极化电压,这是通过电阻8施加到传声器碳精盒9。
当然本发明不限于电容式传声器,因为任何种类的传声器,尤其是动态传声器可被连接到幻象电源。单独的功率接收机是由幻象供电单元以图1和2中所示的同样方式来供电。但在动态传声器的情况下,极化电压不是必需的,因此不需要供电环路16。
在DC/DC转换器的输入处的恒流发生器13的使用保证了恒定的源电流的吸收。与幻象供电单元31相比,恒流发生器13像是一个恒流源,它表示供电电路11的一个恒流发生器。具有尽可能高欧姆级的恒流发生器13,在其它效果中,简化了DC/AC转换过程中产生的切换涟波的滤波,因而它同时防止了在声频信号上的干扰的覆盖。该类型的电子组件对于熟悉现有技术的专业人士是熟知的。来自当前技术水平的恒流发生器的电路示例示意在图3和4中。图3表示具有双极晶体管的一个“晶体管LED”恒流发生器。关于该电流发生器,LED是操作在流向上。结果,一个恒定电压施加给LED,这样的电压也被施加到具有射极电阻的晶体管的基极射极二极管的串行连接上。因此,由该电流发生器带来的电流是I=(ULED-Ubc)/Re,其中ULED是在LED的电压降,Ubc是基极射极电压,Re是射极电阻。
图4中的电路包括一个恒流发生器,它具有两个逆向耦合的退化晶体管28、29,以及另外一个集成的恒流发生器30。该电路是优选的,因为考虑到恒流与较高的起动电阻它具有更好的特性。电流发生器30在初步电阻RC时产生一个电压降,它等于在晶体管28的射极电阻Re的电压降URC。这里恒流发生器的电流是I=URC/Re。晶体管29与晶体管28一起形成一个逆向耦合退化系统,以保证在电阻Rc和Re的相同的电压降。结果,电流发生器的电流I也保持恒定。电流发生器30的电流因此以相差一个因子100而小于最终流入到DC/DC转换器11的恒流。
当然,其它类型的恒流发生器也可提供,例如,具有反相操作放大器的一个电流发生器,Howland电流发生器等等。
由供电电路11产生的用于声频放大器10的供电电压在优选实施例中没有被调节。在传声器碳精盒9的供电环路16中,在二极管18与电阻8之间提供一个调节电路47、48,包括一个数字调节环路47与一个模拟调节环路48,被提供用于施加到传声器碳精盒9的极化电压。图6与图7一起表示这样的一个优选远程可控的调节电路47、48。极化电压的调节所需的控制信号可以通过两个电缆导线1与2中的至少一个来传输。这样的调节电路47、48的详细结构与操作方法在下文中描述。在其余的供电环路中,也可以提供调节电路,提供的电流与电压限制不是在数字电路部分已经提供。在图1与2的优选实施例中,在声频放大器10的供电环路15中没有提供调节电路。结果,全部的功率——不是使用在其它电路部分,如处理器,控制电子元件39,传声器碳精盒9的极化电压,A/D或D/A转换器44、46,LED显示器25——可用于声频放大器10。结果,高的最大声频输出电压可以在声频放大器10的电流节省设计中获得,以得到一个高的最大声频输出电压。原则上,声频放大器10的供电电压作为结果也可超过幻象电源实现的电压。由于供电电路11的行动的方法,也可能为声频放大器10产生非常简单的正和负的供电电压。结果,声频放大器10也能利用接地作为静止电势。声频放大器(10)的馈电电压因此可以是关于接地对称的。
在一个更有利的实施例中,上述类型的DC/DC转换器11以大约82%的效率工作。因为,即使在最有利的情况下,在DC/DC转换器也有功率损耗,如果可能的话,串行连接消耗元件到DC/DC转换器是有利的。作为利用恒流发生器13的结果,可能容易地连接具有恒流消耗的消耗元件,例如逻辑电源24,以实现一个固定直流,如为控制电子元件39,或LED显示器25,A/D或D/A转换器44、46等串行地连接到DC/DC转换器11。
供电电路11的相应实施例表示在图2中。与图1相比,不同之处是只有极化电压与用于声频放大器10的电压是通过DC/DC转换器产生。其它消耗元件,像用于实现固定的预定直流的逻辑电源24,例如用于控制电子元件39或LED显示器25,是串行连接到DC/DC转换器。数字电源的串行连接的DC/DC转换器11充当活动的负载电阻,其中在该电阻中使用的能量不转换成热能,而是以相当大的比例转换成声频放大器10与传声器碳精盒9上的极化电压所能使用的电源。
如图2所示,与实现参考电压的逻辑电源24或另外的数字电子元件一起,提供一个齐纳二极管27,它特别好地适用于稳定该电压。通过该二极管27,不被消耗的而是由恒流发生器13传递的任何电流被释放到接地。原则上,可以使用任何其它恒流发生器或分路调节器,而替代齐纳二极管27。
释放功率是恒流发生器13的电流与施加到供电电路11的电压的产物。在图1的框图中,整个电压施加给DC/DC转换器11,所有电压是通过DC/DC转换器产生。在图2的框图中,电压被分成施加到DC/DC转换器11的一部分和施加到LED25与数字电源的第二个部分。DC/DC转换器代表LED25或数字电源的一个活动的初步电阻。由于数字电源的电流消耗不是恒定的,但电流I通过电流发生器13保持恒定,取决于数字电子元件的操作状态而存在的过载电流必须通过齐纳二极管27被放出。对于声频放大器10的电源来说,功率P=I×DC/DC转换器的电压×DC/DC转换器的功率级是可用的。对于LED与数字电子元件来说,功率P=I×数字电子元件与LED具有的电压是可用的。
为了进行说明,给出一个例子:在不控制的状态下,声频放大器10的电流消耗大约是0.8mA,数字电子元件的电流消耗大约是4.2mA。电流发生器13传送大约是4.7mA的一个恒流。这样在该特殊条件下,使数字电子元件的电压不通过DC/DC转换器,而是利用到DC/DC转换器的一个串行连接将是更有利的。甚至,在另外的研究中,可以发现,关于能量更有利的是,如在图1的框图所示的,引导所有需要的电压通过DC/DC转换器。
在该情况下声频放大器10的电源电压的转换可以导致放大器的最大可用功率:P=4.7mA×18V×0.82=69mW。这样在声频放大器10的电压是U=P/I=69mW/0.8mA=55V。该电压是大大高于幻象供电单元31在功率适配过程中传递的24V电压。但是由于在碳精盒9的膜上也产生极化电压,声频放大器10的供电电压值在实际达到时是略低于该值,但仍大大高于没有DC/DC转换器时可用的24V电压。
图5表示连接到一个发送器或一个远程控制单元55的传声器54。重要传声器参数的远程控制在这里是直接通过声频电缆,即通过线路1、2而发生。控制单元55最好是在混频器上,或配置在其前面。具有参数控制输入34的微控制器35控制频率调制器36,它馈送具有相同电平的调频信号到声频电缆的两个电缆导线1、2。调频信号然后作为通用模式信号在输入差分放大器42中被抑制。同时,幻象电源单元31的供电电压通过馈电线电阻32、33被提供到两个电缆导线1、2。在一个优选实施例中,调频信号提供给声频电缆的唯一一个导线,即导线2,它不用于声频信号。
在一个优选实施例中,调频信号是由FSK(移频键控)或CPFSK(连续相位FSK)来产生。两种调制是数字数据传输技术中已知的方法。原则上,也可能利用ASK(移幅键控)或PSK(移相键控)调制。但是,ASK更可能受到干扰,PSK调制从电路技术的观点看是难以执行。与已知的上述方法的应用相比,在传声器中使用的情况下,关键因素是调制信号必须从一个模拟信号,声频信号中分离。即使只有调频信号馈入不打算用于声频信号的导线2,声频电缆的两个导线1、2之间的电容耦合引起声频信号的干扰。电容耦合取决于声频电缆的构造与长度。因此,尽管控制信号是已知的,但过滤干扰是困难的。
在传声器中,调频电压是通过滤波器37,如一个带通滤波器从声频信号中分离,包含在其中的控制信息是通过控制电子元件39,如一个微控制器或一个CPLD(复合可编程逻辑设备)来评价。电缆导线2是通过电容43从接地脱开。控制电子元件39连接到功能是作为电压比较器的一个比较器38的前面。例如,通过控制电子元件39的输出的命令到达供电电路11,如图1与2中可看见的,声频放大器10,处理器,控制电子元件39,A/D或D/A转换器44、46等等。
在两个声频线路1、2的调频是在远程控制单元55中执行,远程控制单元55最好是位于混合表的附近。在远程控制单元55中,一方面,载率必须是在向传声器54的方向上施加,另一方面,在混合表的方向上,所有调频必须被抑制。只有来自传声器54的声频信号必须被传输。为使调频的抑制更简单,调制是在具有相同电平的声频线路1、2两者上执行。在远程控制单元55中,结果,调频信号表现为输入差分放大器42的一个通用模式信号,因而作为常用的模式信号,它可以适当地被抑制。在远程控制的第二个变体中,调频只发生在不传输声频信号的线路中,即线路2。在朝向混合表的方向上,在该变体中,调频信号可以通过在低通滤波器41中滤波被消除。包括馈电线电阻32、33以及差分放大器42和低通滤波器的幻象供电单元31没有必要集成在远程控制单元中,如图5所示。例如,它们也可在混合表中提供。
在控制信号从远程控制单元55到传声器54的传输过程中,为保证控制信号实际已到达控制电子元件39,后者响应控制信号,给远程控制单元55发送一个数据确认消息。数据确认消息也可以是一个调频信号。用于远程控制功能的数据确认消息不是绝对必要的;但这以另外电子元件为代价增加了系统的可靠性。
上述远程控制方法当然不限于电容式传声器,因为任何种类的传声器的单个的功率接收机,尤其是在动态传声器中,可以通过幻象电源来操作。
图6表示根据本发明的电容式传声器,其中极化电压的调节是通过两极控制调节环路进行。这里,第二个数字调节环路47是覆盖在内部模拟调节回路48之上。结果,在传声器碳精盒9上产生一个适于调节的、免于干扰的极化电压变得可能。
一个优选的具有控制信息的调频信号,是通过电缆导线传输,还连接到幻象供电单元31,经过滤波器37和比较器38到达控制电子元件39。根据本发明的有关传声器的远程控制的详细表述在上面已经提供。特别是还参见图5。控制电子元件39的控制也可通过在传声器自身的调节设备或操作元件而进行。也可能的是,控制电子元件连接到一个用于无线传输的无线电或红外线接口,或连接到一个电缆接口。极化电压的控制信号中获得的希望值是由控制电子元件39通过D/A转换器46传送到模拟调节48。替代D/A转换器,也可以使用一个脉冲宽度调制电路(PWM)。尽管PWM电路具有较低的转换速率,但它们廉价,因此十分适于调节这些转换器中的恒定电平。图7是一个实施例示例,表示控制电子元件39,例如是一个微调制器或一个CPLD,如何与D/A转换器或PWM46一起作用于模拟调节环路48。许多模拟调节环路在最新技术水平中是已知的,了解本发明的专业人士容易选择这样的调节环路的尺寸。如图6中所示意的,模拟调节环路48包括一个调节电路56和一个电压除法器49、50。调节电路56或全部模拟调节环路48的细节是表示在图7中。
模拟调节环路48最好是由具有一个约为100-120V的非调节电压的一个供电电路11来提供。DC/DC转换器可以是与上述相同的类型,或与图1与2中所示的相同。电阻5和6是传声器中的馈电线电阻。它们用于从声频放大器10的输出脱开传声器的电源。电阻5和6在尺寸上是相同的,以保持线路1与2的对称。
当然本发明不限于电容式传声器供电的幻象电源。例如,电容式传声器的单个功率接收机的电源也可由位于传声器中的电池提供。
由D/A转换器或PWM46提供的希望值,或更准确地说,极化电压的校正值是通过操作放大器52与实际值相比较。希望值是根据在传声器的制造过程中测量的校准数据来计算,并编程进入控制电子元件。作为这种计算的一个参考值,可以利用导线上的一个准确参考电压45或在打印测量过程中被编程进入控制电子元件的一个参考电压。例如,参考电压45可以由逻辑电源24实现。这样的逻辑电源24,最好是由DC/DC转换器11来馈送,这没表示在图7中,而是表示在图1与2中。
为抑制高频干扰对模拟调节环路48的干扰影响,一个优选实施例提供了在D/A转换器或PWM46与模拟调节环路48的输入之间的一个低通滤波器51,如在图7中所示。模拟调节环路48产生的实际值通过电压除法器49、50被吸收,并通过一个阻抗转换器53施加到操作放大器52的反相输入。反馈电路加上阻抗转换器不包含在图6的示意图中。同时,该电压也被加到数字调节环路47的A/C转换器44的输入上。结果数字信号是作为反馈作用于控制电子元件39的。结果,外部数字调节环路47被关闭。在图7中,电压除法器由电阻49、50表示,通过电压除法器可以吸收实际值。如在图7中所示,A/D转换器44,控制电子元件39,以及D/A转换器46也可集成在一个单个部件中。
作为模拟调节48的输出,可以得到调节的极化电压,它通过高欧姆电阻8被加到传声器炭精盒9。校正电压或相应的校正因子是计算一个调节的和免于干扰的极化电压所需要的,可对应于不同设定,这反映出特定的灵敏性,导向特性,和老化参数;它们也可存储在控制电子元件39提供的存储器中,并随时可以访问。
这些校正因子可以由具有关闭传声器的远程控制在以后改变(例如,在服务部门或通过销售商,以及也可能是由消费者)。除了可由老化或由传声器炭精盒的替代而形成的传声器特征的可能校正之外,现场的消费者特殊的传声器调谐也因而是可能的。
本发明不限于单独的这些实施例示例。当然,也可以想到的是,可利用其中合并了上述电路的全部或至少一些上述电路的传声器。例如,所有远程可控的组件的远程控制可以在传声器中提供;同样,供电电路11可提供所有传声器中想象到的功率接收机的电源。
Claims (8)
1.传声器,包括至少一个传声器炭精盒(9),至少一个音频放大器(10),和从处理器,控制电子元件(39),A/D与D/A转换器(44,46),LED显示器(25)的组中选择的至少一个功率接收机,并且通过声频电缆的电缆导线(1,2)的一个幻象供电单元(31)对传声器进行供电,并且其中传声器包括一个用于单独的功率接收机的供电电路(11),并且所述供电电路(11)包括一个把通过所述声频电缆的电缆导线(1,2)传输的直流电转变为交流电的控制单元(12),一个连接到所述控制单元(12)的变压器(14),以及用于单独的功率接收机的供电环路(15,16,17),其中供电环路(15,16,17)是通过所述变压器(14)上的分离线圈电感耦合到所述控制单元(12)产生的交流电,并且供电环路(15,16,17)彼此耦合,其特征为,所述供电电路(11)在输入侧上具有一个恒流发生器(13)。
2.如权利要求1所述的传声器,其特征在于所述恒流发生器(13)是一个晶体管-LED电流发生器。
3.如权利要求1所述的传声器,其特征在于所述恒流发生器(13)包括两个逆向耦合退化晶体管(28,29),所述恒流发生器(13)具有一个集成恒流发生器(30)。
4.如权利要求1至3的一个所述的传声器,其特征在于所述供电电路(11)的内电阻等同于所述幻象供电单元(31)的内电阻。
5.如权利要求1至3的一个所述的传声器,其特征在于具有恒流消耗的至少一个功率接收机与所述供电电路(11)串行连接,所述至少一个功率接收机是处理器,控制电子元件(39),A/D或D/A转换器(44,46),LED显示器(25)。
6.如权利要求1至3的一个所述的传声器,其特征在于,在用于所述传声器炭精盒(9)的所述供电环路(16)中,一个适宜的远程可控 调节电路(47,48)被提供用于设置极化电压。
7.如权利要求1至3的一个所述的传声器,其特征在于所述音频放大器(10)的供电电压超过由所述幻象供电单元(31)提供的电压。
8.如权利要求1至3的一个所述的传声器,其特征在于所述音频放大器(10)的供电电压关于接地对称。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP04450075.9 | 2004-03-30 | ||
EP04450075.9A EP1585360B1 (en) | 2004-03-30 | 2004-03-30 | Power supply of phantom power supplied microphones |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1678136A CN1678136A (zh) | 2005-10-05 |
CN1678136B true CN1678136B (zh) | 2012-01-25 |
Family
ID=34896203
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2005100637063A Active CN1678136B (zh) | 2004-03-30 | 2005-03-30 | 幻象电源供电传声器的电源 |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP1585360B1 (zh) |
JP (1) | JP4711713B2 (zh) |
CN (1) | CN1678136B (zh) |
TW (1) | TWI354499B (zh) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2437135B (en) * | 2006-02-28 | 2010-01-27 | Stuart William Arundell Hunt | Direct inject box |
CN101621728B (zh) * | 2009-06-25 | 2013-03-06 | 北京卓锐微技术有限公司 | 一种麦克风灵敏度的校准方法和装置 |
FR2949178B1 (fr) * | 2009-08-13 | 2011-08-26 | Alcatel Lucent | Procede de telealimentation d'un terminal dans un reseau informatique local |
GB2479526A (en) * | 2010-04-07 | 2011-10-19 | John Robert Emmett | A remotely controlled motorised microphone mount |
CN101867854A (zh) * | 2010-06-08 | 2010-10-20 | 吟飞科技(江苏)有限公司 | 一种静音控制电路 |
CN101893477B (zh) * | 2010-07-01 | 2012-07-04 | 北京航空航天大学 | 一种测量传声器 |
US20130070940A1 (en) * | 2011-09-20 | 2013-03-21 | Analog Devices, Inc. | Circuit and apparatus for connecting a mems microphone with a single line |
CN102613968B (zh) * | 2011-12-31 | 2013-09-11 | 深圳邦健生物医疗设备股份有限公司 | 一种极化电压检测方法和设备 |
NL2014677B1 (en) * | 2015-04-20 | 2017-01-20 | Phantom Sound B V | Phantom power supply for microphone. |
CN105357610A (zh) * | 2015-11-16 | 2016-02-24 | 宁波音王电声股份有限公司 | 一种麦克风 |
CN111081002A (zh) * | 2020-01-16 | 2020-04-28 | 惠州高盛达智联科技有限公司 | 一种遥控器电路 |
CN111696690A (zh) * | 2020-06-22 | 2020-09-22 | 中国核动力研究设计院 | 一种探测反应堆声发射信号的宽温耐辐照适调器 |
RU210116U1 (ru) * | 2021-05-20 | 2022-03-29 | Общество с ограниченной ответственностью «Байкал майкрофонс» | Трансформатор для микрофонов с фантомным питанием |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4541112A (en) * | 1982-06-14 | 1985-09-10 | Georg Neumann Gmbh | Electroacoustic transducer system |
CN2449404Y (zh) * | 2000-06-22 | 2001-09-19 | 张树仁 | 直流/直流幻象供电电源 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0771357B2 (ja) * | 1986-07-16 | 1995-07-31 | 株式会社オ−デイオテクニカ | コンデンサマイクロホン出力回路 |
DE3933870C2 (de) * | 1989-10-11 | 1999-07-22 | Neumann Gmbh Georg | Verfahren und Schaltungsanordnung zum Steuern von Mikrofonen |
JP3222994B2 (ja) * | 1993-06-29 | 2001-10-29 | 株式会社オーディオテクニカ | ファントム給電方式マイクロホンにおける遠隔制御装置 |
JP2002218584A (ja) * | 2001-01-22 | 2002-08-02 | Victor Aakusu Kk | デジタル/アナログ変換マイクロホンコンセントプレート |
JP2004048822A (ja) * | 2002-07-08 | 2004-02-12 | Sankyo Seiki Mfg Co Ltd | 電磁アクチュエータの駆動回路 |
-
2004
- 2004-03-30 EP EP04450075.9A patent/EP1585360B1/en not_active Expired - Lifetime
-
2005
- 2005-03-25 TW TW094109350A patent/TWI354499B/zh not_active IP Right Cessation
- 2005-03-29 JP JP2005096498A patent/JP4711713B2/ja not_active Expired - Fee Related
- 2005-03-30 CN CN2005100637063A patent/CN1678136B/zh active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4541112A (en) * | 1982-06-14 | 1985-09-10 | Georg Neumann Gmbh | Electroacoustic transducer system |
CN2449404Y (zh) * | 2000-06-22 | 2001-09-19 | 张树仁 | 直流/直流幻象供电电源 |
Non-Patent Citations (4)
Title |
---|
.自制电容话筒直流幻象供电电源.《中国有线电视》.2002,(第Z1期),89. |
周福录 |
闫月琴 |
闫月琴;周福录;.自制电容话筒直流幻象供电电源.《中国有线电视》.2002,(第Z1期),89. * |
Also Published As
Publication number | Publication date |
---|---|
EP1585360A1 (en) | 2005-10-12 |
JP4711713B2 (ja) | 2011-06-29 |
TW200614844A (en) | 2006-05-01 |
TWI354499B (en) | 2011-12-11 |
EP1585360B1 (en) | 2017-05-10 |
CN1678136A (zh) | 2005-10-05 |
JP2005287051A (ja) | 2005-10-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1678136B (zh) | 幻象电源供电传声器的电源 | |
US7356151B2 (en) | Microphone system | |
CN1678135B (zh) | 幻象电源供电麦克风的远程控制方法 | |
JP4662782B2 (ja) | マイクロホンの成極電圧設定 | |
WO2011102007A1 (ja) | 通信システムおよび電子チョーク回路 | |
US5481450A (en) | Switching power supply system for primary and secondary loads with less switching loss | |
US8380142B2 (en) | Electronic device including a dual-function DC-to-DC converter | |
US20090278519A1 (en) | Bus loop power interface and method | |
JP4136141B2 (ja) | 有線放送システムの分岐装置 | |
CN106410886A (zh) | 一种电源提供电路、被供电设备和电源管理系统 | |
US9986612B2 (en) | Lighting control device, lighting system, lighting control method | |
EP1330942B1 (en) | Control device of gas-discharge light source | |
US8331584B2 (en) | Capacitor microphone and impedance converter therefor | |
JPH0833052A (ja) | シリアル通信回路 | |
CA2994098C (en) | Power supply system and dummy load device | |
US8829806B2 (en) | Variable output module and method for electrical signal output | |
CN115224958A (zh) | 恒流恒压电路及显示装置 | |
JP4160706B2 (ja) | 加入者回路給電方式 | |
JPH10285924A (ja) | 多出力スイッチング電源装置 | |
KR20110137176A (ko) | 안정성을 향상한 led 구동 장치 | |
US20030185084A1 (en) | Integrated circuit capable of easily applying address selection voltage | |
JP2002237761A (ja) | 電源供給システム | |
JPS5963826A (ja) | アンテナ切換回路 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |