CN1673258A - 一种金属配位聚合物纳米结构材料的制备方法 - Google Patents
一种金属配位聚合物纳米结构材料的制备方法 Download PDFInfo
- Publication number
- CN1673258A CN1673258A CN 200510024054 CN200510024054A CN1673258A CN 1673258 A CN1673258 A CN 1673258A CN 200510024054 CN200510024054 CN 200510024054 CN 200510024054 A CN200510024054 A CN 200510024054A CN 1673258 A CN1673258 A CN 1673258A
- Authority
- CN
- China
- Prior art keywords
- concentration
- metal
- adopts
- tpyp
- preparation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 15
- 239000002184 metal Substances 0.000 title claims abstract description 15
- 239000002861 polymer material Substances 0.000 title claims 2
- 238000000034 method Methods 0.000 title abstract description 12
- 239000000463 material Substances 0.000 claims abstract description 27
- 239000007864 aqueous solution Substances 0.000 claims abstract description 26
- 239000000243 solution Substances 0.000 claims abstract description 23
- 230000035484 reaction time Effects 0.000 claims abstract description 21
- 238000002360 preparation method Methods 0.000 claims abstract description 20
- 239000002243 precursor Substances 0.000 claims abstract description 17
- 239000003960 organic solvent Substances 0.000 claims abstract description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 10
- 238000006243 chemical reaction Methods 0.000 claims abstract description 6
- 239000007788 liquid Substances 0.000 claims abstract description 6
- 229910021645 metal ion Inorganic materials 0.000 claims abstract description 4
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical group ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 claims description 50
- 101710134784 Agnoprotein Proteins 0.000 claims description 8
- 238000001338 self-assembly Methods 0.000 claims description 7
- RCTYPNKXASFOBE-UHFFFAOYSA-M chloromercury Chemical compound [Hg]Cl RCTYPNKXASFOBE-UHFFFAOYSA-M 0.000 claims description 6
- 239000012074 organic phase Substances 0.000 claims description 4
- 239000007791 liquid phase Substances 0.000 claims description 3
- 150000001282 organosilanes Chemical class 0.000 claims 9
- 235000003140 Panax quinquefolius Nutrition 0.000 claims 1
- 240000005373 Panax quinquefolius Species 0.000 claims 1
- 239000002086 nanomaterial Substances 0.000 abstract description 34
- -1 metal complex ions Chemical class 0.000 abstract description 6
- 239000013256 coordination polymer Substances 0.000 abstract description 4
- 229920001795 coordination polymer Polymers 0.000 abstract description 4
- 239000013110 organic ligand Substances 0.000 abstract 2
- 230000007613 environmental effect Effects 0.000 abstract 1
- YKYOUMDCQGMQQO-UHFFFAOYSA-L cadmium dichloride Chemical compound Cl[Cd]Cl YKYOUMDCQGMQQO-UHFFFAOYSA-L 0.000 description 8
- FIMJSWFMQJGVAM-UHFFFAOYSA-N chloroform;hydrate Chemical compound O.ClC(Cl)Cl FIMJSWFMQJGVAM-UHFFFAOYSA-N 0.000 description 6
- 101150003085 Pdcl gene Proteins 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- JZRYQZJSTWVBBD-UHFFFAOYSA-N pentaporphyrin i Chemical compound N1C(C=C2NC(=CC3=NC(=C4)C=C3)C=C2)=CC=C1C=C1C=CC4=N1 JZRYQZJSTWVBBD-UHFFFAOYSA-N 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 230000003068 static effect Effects 0.000 description 3
- QPFMBZIOSGYJDE-UHFFFAOYSA-N 1,1,2,2-tetrachloroethane Chemical compound ClC(Cl)C(Cl)Cl QPFMBZIOSGYJDE-UHFFFAOYSA-N 0.000 description 2
- LWJROJCJINYWOX-UHFFFAOYSA-L mercury dichloride Chemical compound Cl[Hg]Cl LWJROJCJINYWOX-UHFFFAOYSA-L 0.000 description 2
- 239000002073 nanorod Substances 0.000 description 2
- 239000002070 nanowire Substances 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- 125000000339 4-pyridyl group Chemical group N1=C([H])C([H])=C([*])C([H])=C1[H] 0.000 description 1
- DWJFGGVNPNGBBN-UHFFFAOYSA-N N1C=2C=C(N=3)C=CC=3C=C(N3)C=CC3=CC(=N3)C=CC3=CC1=CC=2C1=CC=NC=C1 Chemical compound N1C=2C=C(N=3)C=CC=3C=C(N3)C=CC3=CC(=N3)C=CC3=CC1=CC=2C1=CC=NC=C1 DWJFGGVNPNGBBN-UHFFFAOYSA-N 0.000 description 1
- PTFCDOFLOPIGGS-UHFFFAOYSA-N Zinc dication Chemical compound [Zn+2] PTFCDOFLOPIGGS-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- FNNOEKVUXXVPAI-UHFFFAOYSA-N chembl207155 Chemical compound C1=CC(C(=C2C=CC(N2)=CC=2C=CC=3N=2)C=2C=CC=CC=2)=NC1=CC(N1)=CC=C1C=3C1=CC=CC=C1 FNNOEKVUXXVPAI-UHFFFAOYSA-N 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000010406 interfacial reaction Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000005232 molecular self-assembly Methods 0.000 description 1
- 239000002127 nanobelt Substances 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 239000002074 nanoribbon Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Images
Landscapes
- Nitrogen Condensed Heterocyclic Rings (AREA)
- Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
Abstract
本发明为一种新颖的金属配位聚合物纳米结构材料的制备方法。该方法在水和与水互不相溶的有机溶剂间所形成的界面处进行,由水溶液中的金属离子或金属配离子与有机溶剂中的有机配体在液-液界面处发生自组装界面反应,生成所需的纳米结构材料。这种纳米结构材料的构型可以通过改变两相溶液中前驱材料(金属离子、金属配离子及有机配体)的种类、浓度及反应的时间等条件来进行调控。该方法相对于其他纳米结构材料的制备方法具有设备简单、环境要求低、产物纯度高等优点。
Description
技术领域
本发明属纳米材料技术领域,具体涉及一种金属配位聚合物纳米结构材料的制备方法。该方法基于前驱材料在液-液界面处的自组装行为得到纳米结构产物,简单易行,对设备、生产环境要求较低,可以简单地实现对产物形貌的设计和调控。可在纳米结构材料的生产、制备方面得到应用。
技术背景
纳米科学技术是在20世纪80年代末期诞生并正在近年来得到科学界高度重视的新科技,而纳米材料技术是纳米科学技术领域中最富有活力、研究内容最丰富的科学分支,其中纳米结构材料则是现阶段纳米材料的研究热点和前沿,基于纳米结构的分子自组装体系、纳米结构形貌的控制合成则是当今纳米结构材料的发展趋势。
随着纳米科学技术的飞速发展,纳米结构材料的制备方法也层出不穷。一般来讲,依据纳米结构材料构筑过程的驱动力来分,有纳米结构自组装和人工纳米结构组装两种体系,依据这两种体系,产生了诸如利用模板法、气相沉积法、溶胶-凝胶法等多种制备方法,制得了一维、二维、三维的纳米结构材料。基于人工纳米结构组装体系的方法虽然比较容易地达到了对产物形貌的控制,但是往往对生产设备、反应条件都有较高的要求,制备的过程也比较复杂。而自组装体系通过分子间非共价键力自发地结合生成纳米结构材料,是一种平行的过程,但是对产物大小、形貌、分布的控制比较困难。所以,寻求对设备、环境要求较低,又可以对纳米结构材料形貌进行简单控制的自组装方法是当前纳米结构材料制备的发展趋势。
发明内容
本发明的目的在于提出一种简单易行、形貌可控的金属配位聚合物纳米结构材料的制备方法。
本发明提出的金属配位聚合物纳米结构材料制备方法,首先将金属盐或可溶于水的金属配离子溶解于水中制得含金属离子的水相,然后将有机前驱材料溶解于与水互不相溶的有机溶剂中制成有机相,一般选择比重比水大的有机溶剂如氯仿、四氯化碳、1,1,2,2-四氯乙烷等。将有机相先加入反应器中,然后再缓慢添加水相,金属和有机前驱材料即在两液相形成的液-液界面处发生自组装界面反应,界面处生成的目标产物即为所需的纳米结构材料。该纳米结构材料不溶于两液相。本发明的制备方法均在室温下进行。
通过控制界面反应的时间,可以实现对产物粒度、形貌的调控;改变前驱材料的浓度,可以控制液-液界面自组装反应的速率,也可以实现对产物形貌的调控。
上述方法中,适用的金属盐或金属配离子非常广泛,例如:CdCl2、AgNO3、HgCl2、K2PdCl4等。适用的有机前驱材料也很广泛,例如:TPyP(5,10,15,20-Tetra(4-pyridyl)-21H,23H-porphyrin)、PVP(Poly(4-vinylpyridyl))、ZnDPyDPP(Zn(II)5,15-di(4-pyridyl)10,20-diphenyl-porphyrin)等。
上述方法中,界面的反应时间一般控制在1分钟-2周,金属盐或金属配离子的水溶液浓度一般控制在1mM-1M,有机前驱物的有机溶剂浓度为0.1-1mM。
附图说明
图1.用本发明制得的Cd-TPyP金属-多卟啉阵列纳米结构。CdCl2水溶液浓度:0.04M,TPyP氯仿溶液浓度:0.3mM;反应时间:(a)5天;(b)2周。
图2.用本发明制得的Cd-PVP金属-聚吡啶阵列纳米结构。CdCl2水溶液浓度:0.04M,PVP氯仿溶液浓度:0.3mM;反应时间:(a)3小时;(b)5小时。
图3.用本发明制得的Ag-TPyP金属-多卟啉阵列纳米棒。AgNO3水溶液浓度:0.1M,TPyP氯仿溶液浓度:0.3mM;反应时间:(a)15分钟;(b)1小时。
图4.用本发明制得的Hg-TPyP金属-多卟啉阵列纳米线。HgCl2水溶液浓度:(a)1mM;(b)10mM,TPyP氯仿溶液浓度:0.3mM;反应时间:3分钟。
图5.用本发明制得的Pd-ZnDPyDPP金属-多卟啉阵列纳米带。K2PdCl4水溶液浓度:1mM,ZnDPyDPP氯仿溶液浓度:0.3 mM;反应时间:(a)6小时;(b)1天。
具体实施方式
下面通过实施例进一步描述本发明。
实施例1:
将15ml,0.3mM的5,10,15,20-Tetra(4-pyridyl)-21H,23H-porphyrin(TPyP)氯仿溶液加入到烧杯之中,再缓慢加入15ml,0.04M的CdCl2水溶液,静置,可在水-氯仿界面反应得到紫色薄膜状纳米结构。通过对TPyP氯仿溶液和CdCl2水溶液的浓度控制(TPyP浓度范围在0.1mM~1mM,CdCl2浓度范围在1mM~100mM),反应时间的改变(1小时~2周),可以得到不同大小的正方形或矩形的镉-多卟啉纳米阵列结构。
实施例2:
将15ml,0.3mM的Poly(4-vinylpyridyl)(PVP)氯仿溶液加入到烧杯之中,再缓慢加入15ml,0.04M的CdCl2水溶液,静置,可在水-氯仿界面得到白色薄膜状纳米结构。通过对PVP氯仿溶液和CdCl2水溶液的浓度控制(PVP浓度范围在0.1mM~1mM,CdCl2浓度范围在1mM~100mM),反应时间的改变(1小时~12小时),可以得到圆形的镉-聚吡啶纳米结构。
实施例3:
将15ml,0.3mM的5,10,15,20-Tetra(4-pyridyl)-21H,23H-porphyrin(TPyP)氯仿溶液加入到烧杯之中,再缓慢加入15ml,0.1M的AgNO3水溶液,静置若干小时后,可在水-氯仿界面得到紫色薄膜状纳米结构。通过对TPyP氯仿溶液和AgNO3水溶液的浓度控制(TPyP浓度范围在0.1mM~1mM,AgNO3浓度范围在0.01M~1M),反应时间的改变(1分钟~1小时),可以得到不同大小的长条形银-多卟啉纳米棒。
实施例4:
将15ml,0.3mM的5,10,15,20-Tetra(4-pyridyl)-21H,23H-porphyrin(TPyP)氯仿溶液加入到烧杯之中,再缓慢加入15ml,0.01M的HgCl2水溶液,静置,可在水-氯仿界面得到紫色薄膜状纳米结构。通过对TPyP氯仿溶液和HgCl2水溶液的浓度控制(TPyP浓度范围在0.1mM~1mM,HgCl2浓度范围在10mM~200mM),反应时间的改变(1分钟~1小时),反应时间的改变,可以得到网络状的汞-多卟啉纳米线。
实施例5:
将15ml,0.3mM的5,10,15,20-Tetra(4-pyridyl)-21H,23H-porphyrin(TPyP)氯仿溶液加入到烧杯之中,再缓慢加入15ml,1mM的K2PtCl4水溶液,静置,可在水-氯仿界面得到紫色薄膜状纳米结构。通过对TPyP氯仿溶液和K2PtCl4水溶液的浓度控制(TPyP浓度范围在0.1mM~1mM,K2PtCl4浓度范围在0.1mM~1mM),反应时间的改变(1小时~1周),反应时间的改变,可以得到网络状的不规则正方形或无定型铂-多卟啉纳米粒子。
实施例6:
将15ml,0.3mM的Zn(II)5,15-di(4-pyridyl)10,20-diphenyl-porphyrin(ZnDPyDPP)氯仿溶液加入到烧杯之中,再缓慢加入15ml,1mM的K2PdCl4水溶液,静置,可在水-氯仿界面得到紫色薄膜状纳米结构。通过对ZnDPyDPP氯仿溶液和K2PdCl4水溶液的浓度控制(ZnDPyDPP浓度范围在0.1mM~1mM,K2PdCl4浓度范围在0.1mM~1mM),反应时间的改变(1小时~1周),可以得到钯-多卟啉纳米带。
Claims (10)
1、一种金属配位聚合物纳米结构材料的制备方法,其特征在于首先将金属盐或可溶于水的金属配离子溶解于水中制得含金属离子的水相,然后将有机前驱材料溶解于与水互不相溶的有机溶剂中制成有机相;将有机相先加入反应器中,然后再添加水相,金属和有机前驱材料即在两液相形成的液-液界面处发生自组装界面反应,界面处生成的目标产物即为所需的纳米结构材料。
2、根据权利要求1所述的制备方法,其特征在于所说的有机溶剂为氯仿、四氯化碳或1,1,2,2-四氯乙烷。
3、根据权利要求1所述的制备方法,其特征在于所说的金属盐或金属配离子为CdCl2、AgNO3、HgCl23、K2PtCl4或K2PdCl4,所说的有机前驱材料为TPyP、PVP、ZnDPyDPP。
4、根据权利要求1所述的制备方法,其特征在于在液-液界面处的自组装反应时间为1分钟-2周,金属盐或金属配离子的水溶液浓度控制在1mM-1M,有机前驱物的有机溶剂浓度为0.1-1mM。
5、根据权利要求1所述的制备方法,其特征在于金属盐采用CdCl2,有机溶剂采用氯仿,有机前驱材料采用TPyP,CdCl2的水溶液浓度为1-100mM,TPyP的浓度为0.1-10mM,反应时间1分钟-2周。
6、根据权利要求4所述的制备方法,其特征在于金属盐采用CdCl2,有机溶剂采用氯仿,有机前驱材料采用PVP,CdCl2的水溶液浓度为1-100mM,PVP的氯仿溶液浓度为0.1-1mM,反应时间1小时-12小时。
7、根据权利要求4所述的制备方法,其特征在于金属盐采用AgNO3,有机溶剂采用氯仿,有机前驱材料采用TPyP,AgNO3的水溶液浓度为0.01-1M,TPyP的氯仿溶液的浓度为0.1-1mM,反应时间1分钟-1小时。
8、根据权利要求4所述的制备方法,其特征在于金属盐采用HgCl2,有机溶剂采用氯仿,有机前驱材料采用TPyP,HgCl2的水溶液浓度为10-200mM,TPyP的氯仿溶液的浓度为0.1-1mM,反应时间1分钟-1小时。
9、根据权利要求4所述的制备方法,其特征在于金属盐采用K2PtCl4,有机溶剂采用氯仿,有机前驱材料采用TPyP,K2PtCl4的水溶液浓度为0.1-1mM,TPyP的氯仿溶液的浓度为0.1-1mM,反应时间1小时-1周。
10、根据权利要求4所述的制备方法,其特征在于金属盐采用K2PdCl4,有机溶剂采用氯仿,有机前驱材料采用ZnDPyDPP,K2PdCl4的水溶液浓度为0.1-1mM,ZnDPyDPP的氯仿溶液的浓度为0.1-1mM,反应时间1小时-1周。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2005100240542A CN1305937C (zh) | 2005-02-25 | 2005-02-25 | 一种金属配位聚合物纳米结构材料的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CNB2005100240542A CN1305937C (zh) | 2005-02-25 | 2005-02-25 | 一种金属配位聚合物纳米结构材料的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1673258A true CN1673258A (zh) | 2005-09-28 |
CN1305937C CN1305937C (zh) | 2007-03-21 |
Family
ID=35046048
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2005100240542A Expired - Fee Related CN1305937C (zh) | 2005-02-25 | 2005-02-25 | 一种金属配位聚合物纳米结构材料的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1305937C (zh) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009139939A3 (en) * | 2008-02-22 | 2010-03-18 | The University Of North Carolina At Chapel Hill | Hybrid nanoparticles as anti-cancer therapeutic agents and dual therapeutic/imaging contrast agents |
CN101649393B (zh) * | 2008-08-12 | 2011-05-11 | 兰州大学 | 从含轻金属的混合溶液中富集低浓度有价金属的方法 |
CN102240573A (zh) * | 2011-04-09 | 2011-11-16 | 苏州大学 | 制备有机空心结构纳米材料的方法 |
WO2012034379A1 (zh) * | 2010-09-17 | 2012-03-22 | 上海交通大学 | Ph响应金属有机配位聚合物的制备方法 |
CN104232079A (zh) * | 2014-09-24 | 2014-12-24 | 西安科技大学 | 一种具有荧光效应的银纳米复合材料的制备方法 |
US9693957B2 (en) | 2011-07-08 | 2017-07-04 | The University Of North Carolina At Chapel Hill | Metal bisphosphonate nanoparticles for anti-cancer therapy and imaging and for treating bone disorders |
US10206871B2 (en) | 2014-10-14 | 2019-02-19 | The University Of Chicago | Nanoparticles for photodynamic therapy, X-ray induced photodynamic therapy, radiotherapy, chemotherapy, immunotherapy, and any combination thereof |
US10517822B2 (en) | 2013-11-06 | 2019-12-31 | The University Of Chicago | Nanoscale carriers for the delivery or co-delivery of chemotherapeutics, nucleic acids and photosensitizers |
US10806694B2 (en) | 2014-10-14 | 2020-10-20 | The University Of Chicago | Nanoparticles for photodynamic therapy, X-ray induced photodynamic therapy, radiotherapy, radiodynamic therapy, chemotherapy, immunotherapy, and any combination thereof |
US11246877B2 (en) | 2016-05-20 | 2022-02-15 | The University Of Chicago | Nanoparticles for chemotherapy, targeted therapy, photodynamic therapy, immunotherapy, and any combination thereof |
US11826426B2 (en) | 2017-08-02 | 2023-11-28 | The University Of Chicago | Nanoscale metal-organic layers and metal-organic nanoplates for x-ray induced photodynamic therapy, radiotherapy, radiodynamic therapy, chemotherapy, immunotherapy, and any combination thereof |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100591897B1 (ko) * | 2000-02-21 | 2006-06-20 | 엘지.필립스 엘시디 주식회사 | 액정표시장치용 어레이기판 제조방법 |
WO2003082900A2 (en) * | 2002-03-22 | 2003-10-09 | Emory University | Self-assembling-peptide-based structures and processes for controlling the self-assembly of such structures |
CN1215132C (zh) * | 2002-09-25 | 2005-08-17 | 东南大学 | 金属自组装纳米阻蚀膜的组装方法 |
CN1257224C (zh) * | 2004-04-23 | 2006-05-24 | 中国科学院长春应用化学研究所 | 一种纳米结构材料模板的制作方法 |
-
2005
- 2005-02-25 CN CNB2005100240542A patent/CN1305937C/zh not_active Expired - Fee Related
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009139939A3 (en) * | 2008-02-22 | 2010-03-18 | The University Of North Carolina At Chapel Hill | Hybrid nanoparticles as anti-cancer therapeutic agents and dual therapeutic/imaging contrast agents |
CN101649393B (zh) * | 2008-08-12 | 2011-05-11 | 兰州大学 | 从含轻金属的混合溶液中富集低浓度有价金属的方法 |
WO2012034379A1 (zh) * | 2010-09-17 | 2012-03-22 | 上海交通大学 | Ph响应金属有机配位聚合物的制备方法 |
CN102240573A (zh) * | 2011-04-09 | 2011-11-16 | 苏州大学 | 制备有机空心结构纳米材料的方法 |
US9693957B2 (en) | 2011-07-08 | 2017-07-04 | The University Of North Carolina At Chapel Hill | Metal bisphosphonate nanoparticles for anti-cancer therapy and imaging and for treating bone disorders |
US10596116B2 (en) | 2011-07-08 | 2020-03-24 | The University Of North Carolina At Chapel Hill | Metal bisphosphonate nanoparticles for anti-cancer therapy and imaging and for treating bone disorders |
US11872311B2 (en) | 2011-07-08 | 2024-01-16 | The University Of North Carolina At Chapel Hill | Metal bisphosphonate nanoparticles for anti-cancer therapy and imaging and for treating bone disorders |
US10517822B2 (en) | 2013-11-06 | 2019-12-31 | The University Of Chicago | Nanoscale carriers for the delivery or co-delivery of chemotherapeutics, nucleic acids and photosensitizers |
CN104232079B (zh) * | 2014-09-24 | 2016-06-01 | 西安科技大学 | 一种具有荧光效应的银纳米复合材料的制备方法 |
CN104232079A (zh) * | 2014-09-24 | 2014-12-24 | 西安科技大学 | 一种具有荧光效应的银纳米复合材料的制备方法 |
US10206871B2 (en) | 2014-10-14 | 2019-02-19 | The University Of Chicago | Nanoparticles for photodynamic therapy, X-ray induced photodynamic therapy, radiotherapy, chemotherapy, immunotherapy, and any combination thereof |
US10780045B2 (en) | 2014-10-14 | 2020-09-22 | The University Of Chicago | Nanoparticles for photodynamic therapy, X-ray induced photodynamic therapy, radiotherapy, chemotherapy, immunotherapy, and any combination thereof |
US10806694B2 (en) | 2014-10-14 | 2020-10-20 | The University Of Chicago | Nanoparticles for photodynamic therapy, X-ray induced photodynamic therapy, radiotherapy, radiodynamic therapy, chemotherapy, immunotherapy, and any combination thereof |
US11246877B2 (en) | 2016-05-20 | 2022-02-15 | The University Of Chicago | Nanoparticles for chemotherapy, targeted therapy, photodynamic therapy, immunotherapy, and any combination thereof |
US11826426B2 (en) | 2017-08-02 | 2023-11-28 | The University Of Chicago | Nanoscale metal-organic layers and metal-organic nanoplates for x-ray induced photodynamic therapy, radiotherapy, radiodynamic therapy, chemotherapy, immunotherapy, and any combination thereof |
Also Published As
Publication number | Publication date |
---|---|
CN1305937C (zh) | 2007-03-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yuan et al. | Two-Dimensional Amorphous SnO x from Liquid Metal: Mass Production, Phase Transfer, and Electrocatalytic CO2 Reduction toward Formic Acid | |
Nadagouda et al. | Green and controlled synthesis of gold and platinum nanomaterials using vitamin B2: density-assisted self-assembly of nanospheres, wires and rods | |
Zhang et al. | Morphosynthesis and ornamentation of 3D dendritic nanoarchitectures | |
Zhang et al. | Electrodeposition in ionic liquids | |
Li et al. | Controllable synthesis of CuS nanostructures from self-assembled precursors with biomolecule assistance | |
Behrens et al. | Silver nanoparticle and nanowire formation by microtubule templates | |
Wu et al. | Large-scale synthesis of single-crystal double-fold snowflake Cu2S dendrites | |
CN1673258A (zh) | 一种金属配位聚合物纳米结构材料的制备方法 | |
US20050255629A1 (en) | Biomimetic approach to low-cost fabrication of complex nanostructures of metal oxides by natural oxidation at low-temperature | |
Tang et al. | Self-assembly mechanism of complex corrugated particles | |
Ding et al. | The fabrication of controlled coral-like Cu2O films and their hydrophobic property | |
Xu et al. | Direct growth and shape control of Cu2O film via one-step chemical bath deposition | |
Zhang et al. | A covalently attached film based on poly (methacrylic acid)-capped Fe3O4 nanoparticles | |
Zheng et al. | Cu and Cu2O films with semi-spherical particles grown by electrochemical deposition | |
CN105562709B (zh) | 一种超细铜纳米颗粒的制备方法 | |
Wang et al. | Fabrication of nanostructure via self-assembly of nanowires within the AAO template | |
CN105293480A (zh) | 一种二维有序介孔石墨烯骨架薄膜材料的制备方法 | |
CN1166725C (zh) | 固态基底表面有序排布纳米颗粒的方法 | |
Zuraiqi et al. | Field’s Metal Nanodroplets for Creating Phase-Change Materials | |
Chen et al. | Inspired superhydrophobic surfaces by a double-metal-assisted chemical etching route | |
RU2233791C2 (ru) | Способ получения наночастиц и изготовления материалов и устройств, содержащих наночастицы | |
Wang et al. | Fabrication of surface-patterned and free-standing ZnO nanobowls | |
Park et al. | Macroscopic alignment of metal–organic framework crystals in specific crystallographic orientations | |
CN1800027A (zh) | 一种磁性过渡金属氧化物纳米颗粒液相生长过程中颗粒粒径的控制方法 | |
Chung et al. | Self-assembled perpendicular growth of organic nanoneedles via simple vapor-phase deposition: one-step fabrication of a superhydrophobic surface |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20070321 Termination date: 20100225 |