CN1667856A - 高容量锂离子电池阳极材料及制备方法 - Google Patents

高容量锂离子电池阳极材料及制备方法 Download PDF

Info

Publication number
CN1667856A
CN1667856A CNA2005100250084A CN200510025008A CN1667856A CN 1667856 A CN1667856 A CN 1667856A CN A2005100250084 A CNA2005100250084 A CN A2005100250084A CN 200510025008 A CN200510025008 A CN 200510025008A CN 1667856 A CN1667856 A CN 1667856A
Authority
CN
China
Prior art keywords
anode material
lithium ion
ion cell
capacity lithium
cell anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2005100250084A
Other languages
English (en)
Inventor
应战
宋志棠
封松林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Microsystem and Information Technology of CAS
Original Assignee
Shanghai Institute of Microsystem and Information Technology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Microsystem and Information Technology of CAS filed Critical Shanghai Institute of Microsystem and Information Technology of CAS
Priority to CNA2005100250084A priority Critical patent/CN1667856A/zh
Publication of CN1667856A publication Critical patent/CN1667856A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明涉及一种高容量锂离子电池阳极材料及制备方法。所述的SnO2纳米线是采用热蒸发技术,以金属锡作为蒸发源,在温度和气氛可控的石英管式炉中,通入流量为3-5L/h的氮气,快速的制备出大量氧化锡纳米线作为阳极材料或经与乙炔黑,按比例混合后,加溶剂,以流延工艺制成片状,作为阳极材料,组装成电池后,测定其循环充、放电特性,结果表明:电池既保持了高电压、循环寿命长、安全性能好等优点,又具有超高容量的显著特性。此技术能够实现大批量,低成本,超高速充放电过程。特别实用于大功率器件的应用,同时在便携式电子产品、电动汽车、空间技术、国防工业等多方面有广阔的应用前景和潜在的巨大经济效益。

Description

高容量锂离子电池阳极材料及制备方法
技术领域
本发明涉及一种高容量锂离子电池阳极材料及制备方法,更确切地说是一种能快速合成纳米级线状物的一种高容量锂离子电池阳极材料的制备方法。
背景技术
锂离子电池产业中,研制可用于手机等通讯设备和电动汽车等运输工具的高容量动力电池一直是一个热点,而如何保持锂离子电池充放循环次数来提高容量,是其中关键问题。目前所广泛商业应用的阳极材料石墨的容量比为330mAhg-1,而一些取代阳极石墨的热点材料例如碳纳米管[容量为480mAhg-1,Applied Physics Letters 79 3500(1999)],锡基纳米粒子[容量为1500mAhg-1,Materials Letters 57 3341(2003)],锡碳复合材料[容量为800mAhg-1,Advanced Materils 16 1432(2004)],他们的容量也没有达到一维纳米SnO2的容量,高容量的阳极材料研究还未有阶段性成果,这是提高整个锂离子电池系统容量的制约因素。
发明内容
本发明的目的是提供一种高容量的锂离子电池阳极材料及制备方法,其特征是在于所述锂离子电池的阳极材料是用热蒸发的方法得到一维纳米线状结构的二氧化锡,其制备步骤为:
1.将金属Sn(粉末或块状金属)置于石英舟中。将石英管温度加热至700-800℃。
2.将放置金属Sn的石英舟推入石英管中间。将面积为2cm×2cm的硅片平置于石英舟前方10cm处。硅片上附有20nm厚的Au层。所述的前方是指与气流方向一致的方向。
3.保温2个小时,并通入流量为3-5L/h纯度为99.9%的氮气,2小时后,自然降温至室温。
4.取出石英舟,可以在硅片上得到白色绒毛状固体产物。在扫描电镜下观测为一维线状结构。
该一维线状纳米结构材料作为锂离子阳极材料使用,或将该白色绒毛状固体产物二氧化锡与导电剂,黏结剂按质量比例2∶1∶1混合,以常用的流延工艺制成片状,作为阳极材料。所述的流延工艺是将混合的浆料,经高速搅拌均匀浆料,旋涂在金属铝箱表面,湿膜厚度为1mm,在120-140℃烘干,烘干真空度为1.33Pa。所述的导电剂一般为粉末状乙炔黑,黏结剂为PVDF(聚偏氟氯乙烯)或PTFE(聚四氟乙烯)中一种
本发明的有益效果是:1.使用廉价易得的金属粉末,颗粒或者块状锡,利用热蒸发法得到了一维纳米线状结构的阳极材料,得到的纳米线状物形状均一,直径为20nm-100nm,相成分单一,为单晶结构。2.制备的材料产量高,材料制备温度为700-800℃,时间为2小时,比一般的方法时间短,3.经系统地测试其循环充放电性能,其容量远远高于普通阳极材料。一维纳米线状结构的二氧化锡的容量为普通石墨阳极材料锂离子电池(容量比为372mAhg-1)的9倍,达到2133mAhg-1,其充放电速度和循环性能也比较高,实验数据表明完成一次充放电的时间为5小时,在连续不间断完全充放电的情况下,循环性能还能达到100余次。这么高的容量可以大大提高电池工作时间,并有可能在将来应用于手机,航天器件,电动汽车等领域。
附图说明
图1为本发明提供的制备纳米线SnO2的反应示意图
图2为白色绒毛状纳米氧化锡的数码照片
图3为实施例1产品的X光粉末衍射谱图;
图4为本发明方法所得阳极材料的扫描电镜图;
图5为本发明方法所得阳极材料的锂离子电池的高容量循环测试曲线。
具体实施方式
实施例1:
准确称量0.5克Sn金属粉末,将Sn金属粉末放置于一个石英舟中,将面积为2cm×2cm的硅片平置于石英舟前方,且与氮气流方向一致。硅片上附有20nm厚的Au层。将石英管加热至800℃,将放置了Sn金属粉末的石英舟放置于石英管中间位置,并通入流量为4L/h纯度为99.9%的氮气,保温2小时,然后让炉管自然冷却置室温,取出石英舟,可以得到生长在硅片上的白色绒毛状固体产物SnO2纳米线。其XRD(X光粉末衍射)谱如图3所示。白色绒毛状固体产物SnO2纳米线扫描电镜图如图4所示,直径为20-100nm。
实施例2
将黏结剂(PVDF)+NMP(溶剂)进行搅拌,直至透明的粘稠物再加入用实施例一得到的白色绒毛状固体产物SnO2纳米线和乙炔黑混合,其中质量比例为SnO2纳米线2:黏结剂1:乙炔黑1,经过24小时高速机械搅拌(600转/分)得到均匀浆料。将浆料采用流延法涂在清洁的金属铝箔表面,刀口控制湿膜厚度小于1mm。将湿膜在140℃烘干,真空度为1.33Pa干燥,在氩气气氛手套箱中于金属锂片,电解液和隔膜组装成电池。将电池在电化学测试仪上进行高速率循环充放电测试。测试结果如附图5所示。
实施例3
一维纳米结构SnO2的制备方法及条件与实施例1相同,仅石英管加热到700℃,生成的纳米线直径为20-100nm。

Claims (10)

1、一种高容量锂离子电池阳极材料,其特征在于该阳极材料为白色绒毛状的二氧化锡,它是一维纳米结构。
2、按权利要求1所述高容量锂离子电池阳极材料,其特征在于所述的一维纳米线直径为20nm-100nm。
3、制备如权利要求1所述高容量锂离子电池阳极材料的制备,其特征在于所述锂离子电池阳极材料是以金属锡作为蒸发源,利用热蒸发技术,在温度和气氛可控的石英管式炉里,快速制备而成的,其制备步骤为:
(1)将金属Sn置于石英舟中;
(2)将石英管温度加热至700-800℃;
(3)将放置金属Sn的石英舟推入石英管中间,在将面积为2cm×2cm的硅片平置于与气流方向一致的石英舟前方10cm处,硅片上附有20nm厚的Au层;
(4)保温2个小时,并通入流量为3-5L/h纯度为99.9%的氮气,2小时后,自然降温至室温;
(5)取出衬底,在硅片上得到一维线状结构的白色绒毛状固体产物。
4、根据权利要求3所述高容量锂离子电池阳极材料制备方法,其特征在于所述金属材料Sn为金属锡粉末、颗粒或块状。
5、一种高容量锂离子电池阳极材料,其特征在于所述的阳极材料是由白色绒毛状的呈一维纳米结构的二氧化锡与导电剂、黏结剂按质量比2∶1∶1混合,流延工艺制成片状。
6、按权利要求5所述高容量锂离子电池阳极材料,其特征在于所述一维纳米线直径为20-100nm。
7、制备如权利要求5所述的高容量锂离子电池阳极材料,其特征在于具体步骤是:
(1)将金属Sn置于石英舟中;
(2)将石英管温度加热至700-800℃;
(3)将放置金属Sn的石英舟推入石英管中间,在将面积为2cm×2cm的硅片平置于石英舟前方10cm处,硅片上附有20nm厚的Au层;
(4)保温2个小时,并通入流量为3-5L/h纯度为99.9%的氮气,2小时后,自然降温至室温;
(5)取出衬底,在硅片上得到一维线状结构的白色绒毛状固体产物;
(6)将步骤(5)所得的产物与导电剂,黏结剂按质量比例2∶1∶1混合成浆料,以流延工艺制成片状,作为阳极材料。
8、根据权利要求7所述高容量锂离子电池阳极材料制备方法,其特征在于所述金属材料Sn为金属粉末、颗粒或块状。
9、按权利要求7所述高容量锂离子电池阳极材料制备方法,其特征在于所述流延工艺是将混合的浆料,经高速搅拌均匀浆料,旋涂在金属铝箔表面,湿膜在120-140℃烘干,烘干真空度为1.33Pa;湿膜厚度小于1mm。
10、按权利要求7所述高容量锂离子电池阳极材料制备方法,其特征在于导电剂为粉末状乙炔黑,黏结剂为聚偏氟氯乙烯或聚四氟乙烯中一种。
CNA2005100250084A 2005-04-08 2005-04-08 高容量锂离子电池阳极材料及制备方法 Pending CN1667856A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNA2005100250084A CN1667856A (zh) 2005-04-08 2005-04-08 高容量锂离子电池阳极材料及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNA2005100250084A CN1667856A (zh) 2005-04-08 2005-04-08 高容量锂离子电池阳极材料及制备方法

Publications (1)

Publication Number Publication Date
CN1667856A true CN1667856A (zh) 2005-09-14

Family

ID=35038816

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2005100250084A Pending CN1667856A (zh) 2005-04-08 2005-04-08 高容量锂离子电池阳极材料及制备方法

Country Status (1)

Country Link
CN (1) CN1667856A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100354208C (zh) * 2006-07-17 2007-12-12 华东理工大学 一种二氧化锡纳米棒的制备方法
CN100581988C (zh) * 2007-09-03 2010-01-20 中国科学院理化技术研究所 热蒸发稳定制备一维纳米结构材料的装置和方法
CN101372358B (zh) * 2008-10-21 2010-06-02 北京科技大学 常压气相沉积制备氧化锡纳米线的方法
CN101595584B (zh) * 2006-12-01 2012-09-05 通用汽车环球科技运作公司 燃料电池电极用的纳米线负载催化剂
KR101617953B1 (ko) * 2014-08-06 2016-05-03 고려대학교 산학협력단 물리적 기상증착법을 이용하여 기판 위에 수직성장한 셀레늄 주석 나노시트의 제조방법
CN105668618A (zh) * 2016-04-15 2016-06-15 广东工业大学 一种二氧化锡纳米线及其制备方法
CN110040767A (zh) * 2019-04-29 2019-07-23 吉林大学 一种可控制备二氧化锡纳米线的方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100354208C (zh) * 2006-07-17 2007-12-12 华东理工大学 一种二氧化锡纳米棒的制备方法
CN101595584B (zh) * 2006-12-01 2012-09-05 通用汽车环球科技运作公司 燃料电池电极用的纳米线负载催化剂
US8409659B2 (en) 2006-12-01 2013-04-02 GM Global Technology Operations LLC Nanowire supported catalysts for fuel cell electrodes
CN100581988C (zh) * 2007-09-03 2010-01-20 中国科学院理化技术研究所 热蒸发稳定制备一维纳米结构材料的装置和方法
CN101372358B (zh) * 2008-10-21 2010-06-02 北京科技大学 常压气相沉积制备氧化锡纳米线的方法
KR101617953B1 (ko) * 2014-08-06 2016-05-03 고려대학교 산학협력단 물리적 기상증착법을 이용하여 기판 위에 수직성장한 셀레늄 주석 나노시트의 제조방법
CN105668618A (zh) * 2016-04-15 2016-06-15 广东工业大学 一种二氧化锡纳米线及其制备方法
CN110040767A (zh) * 2019-04-29 2019-07-23 吉林大学 一种可控制备二氧化锡纳米线的方法
CN110040767B (zh) * 2019-04-29 2022-03-01 吉林大学 一种可控制备二氧化锡纳米线的方法

Similar Documents

Publication Publication Date Title
CN106654194B (zh) 一种元素掺杂的SiOx负极复合材料及其制备方法和应用
CN110299516B (zh) 碳纳米管阵列负载钛酸锂柔性电极材料的制备方法
Xiao et al. Modification research of LiAlO 2-coated LiNi 0.8 Co 0.1 Mn 0.1 O 2 as a cathode material for lithium-ion battery
CN108346790B (zh) 一种内含核壳结构钴基硫化物纳米球的碳纤维的制备方法及其应用
CN1667856A (zh) 高容量锂离子电池阳极材料及制备方法
Narsimulu et al. Surfactant-free microwave hydrothermal synthesis of SnO2 nanosheets as an anode material for lithium battery applications
KR102448921B1 (ko) 황화물 고체전해질
CN105870417A (zh) 一种钠离子电池二硫化钨/碳纳米管负极复合材料的制备方法
Li et al. Interconnected Bi5Nb3O15@ CNTs network as high-performance anode materials of Li-ion battery
Shi et al. Fast microwave-assisted synthesis of Nb-doped Li 4 Ti 5 O 12 for high-rate lithium-ion batteries
Zhang et al. Preparation and performance of a sulfur/graphene composite for rechargeable lithium-sulfur battery
Li et al. In situ synthesis of Fe (1− x) Co x F 3/MWCNT nanocomposites with excellent electrochemical performance for lithium-ion batteries
Zhang et al. Fluorine-doped SnO 2/reduced graphene oxide-artificial graphite hybrids as lithium-ion battery anodes with stable capacity
Wu et al. Enhanced high-rate performance of sub-micro Li 4 Ti 4.95 Zn 0.05 O 12 as anode material for lithium-ion batteries
Zhang et al. Microwave synthesis of LiMg 0.05 Mn 1.95 O 4 and electrochemical performance at elevated temperature for lithium-ion batteries
Zhi et al. Synthesis and electrochemical performance of LiFePO4/C composite by improved solid-state method using a complex carbon source
CN111261854A (zh) 一种榆钱状二硒化钼@氮掺杂碳纳米纤维及其制备方法和应用
Xu et al. SnO 2 nanorods encapsulated within a 3D interconnected graphene network architecture as high-performance lithium-ion battery anodes
Pei et al. Preparation of a fusiform shape MnO/C composite as anode materials for lithium-ion batteries
Ding et al. Preparation and electrochemical properties of high capacity silicon-based composites for lithium-ion batteries
Mateti et al. In situ prepared V 2 O 5/graphene hybrid as a superior cathode material for lithium-ion batteries
Ding et al. High performance of Pb-doped Li4Ti5O12 as an anode material for lithium ion batteries
Pang et al. Cupric oxide nanorods on double-face copper micropuzzles electrode as promising anode materials for lithium ion batteries
Lu et al. Mn-doped FeF 3· 0.33 H 2 O with enhanced electrochemical performance as cathode materials for lithium-ion batteries
Kong et al. Electrochemical characteristics of phosphorus doped silicon and graphite composite for the anode materials of lithium secondary batteries

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication