CN1651863A - 自动引导车辆无线定位、导航与控制系统 - Google Patents

自动引导车辆无线定位、导航与控制系统 Download PDF

Info

Publication number
CN1651863A
CN1651863A CN 200410011248 CN200410011248A CN1651863A CN 1651863 A CN1651863 A CN 1651863A CN 200410011248 CN200410011248 CN 200410011248 CN 200410011248 A CN200410011248 A CN 200410011248A CN 1651863 A CN1651863 A CN 1651863A
Authority
CN
China
Prior art keywords
circuit
module
microprocessor
control
navigation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 200410011248
Other languages
English (en)
Other versions
CN100402981C (zh
Inventor
王树勋
燕学智
孙晓颖
郭纲
胡封晔
魏晓莉
马中胜
李辛
黄志强
尹万宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CNB2004100112484A priority Critical patent/CN100402981C/zh
Publication of CN1651863A publication Critical patent/CN1651863A/zh
Application granted granted Critical
Publication of CN100402981C publication Critical patent/CN100402981C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明涉及一种自动引导车辆无线定位、导航与控制系统,结构由两部分组成:车载系统、导航控制系统,该车载系统包括车载控制执行模块、无线定位模块1、蓝牙无线通信模块1,导航控制系统包括无线定位模块2、蓝牙无线通信模块2、PC机,电源管理模块作为一个相对独立的部分,分别为蓝牙无线通信模块1、无线定位模块1,车载控制执行模块提供合适的电源电压。本发明能以最少的投入获得最大的效益,也就是性价比越高越好,本发明优点是以最经济的投入,获得对AGV最好的控制,最精确的定位,以及最为灵活的路径输入方式。实现了自定义路径下基于超声传感器定位的AGV系统。

Description

自动引导车辆无线定位、导航与控制系统
技术领域
本发明涉及一种自动引导车辆无线定位、导航与控制系统。
背景技术
所谓自动引导车辆AGV(Automatic Guide Vehicle),是通过各种传感器的融合提取车辆的位置,同时自动控制执行机构实现AGV的自动导航;所谓自动引导车辆AGV无线定位是通过无线的方式确定自动引导车辆AGV在运行范围内的绝对坐标;所谓自动引导车辆AGV导航是自动引导车辆对自动引导车辆AGV所要行进的路径进行规划,并根据路径跟踪算法保证自动引导车辆AGV沿着事先定义好的路径前进,当自动引导车辆AGV与预定路径有了偏差能够根据路径跟踪算法自动调整;所谓自动引导车辆AGV控制是根据路径跟踪算法得到的控制参数对自动引导车辆AGV运行速度,方向进行控制。
通过阅读相关资料和有关专利,主要引证以下专利:
     国名       专利号          公开日期
1、  美国       4,593,239       1986.7.3
2、  美国       4,700,427       1987.10.20
3、  美国       6,128,574       2000.10.3
4、  美国       6,690,134       2004.2.10
5、  美国       6,711,501       2004.3.23
6、  美国       6,721,638       2004.4.13
7、  美国       6,772,525       2004.8.10
8、  美国       6,781,338       2004.8.24
                 公开号
9、  中国       CN1438138A      2003.8.27
10、 中国       CN1450338A      2003.10.22
以上所述专利都是目前自动引导车辆AGV方面宝贵的科研成果,与本发明有一定的相关性,都是体现自动引导车辆“柔性化”的特点。专利1、2、6代表国外AGV发展水平,3、4、5、7、8与之有一定的相关性,专利9、10体现国内AGV发展现状。具体分类如下:
定位方式方面:
1、专利1定位系统采用光学系统,增加硬件复杂度,抗干扰能力弱。2、专利9中提出视觉定位方法,是通过设置在自动引导车上的CCD摄像机摄取在敷设地面的运行路径标线、工位地址编码标记符和加速、减速、停车、倒车的控制标记符。与摄像机相连的计算机根据摄取的图像信息,通过图像识别算法对车辆进行智能引导。其突出缺点是成本太高,图像处理过程复杂,处理速度实时性差。3、同样,专利10采用卫星定位,定位精度不高。
路径规划方面:
专利1和专利2路径的定义是在控制区域内设定几个点或者已知的存储起来的几条简单曲线,车在各个点之间行走或沿着简单曲线行走。
路径跟踪方面:
专利6中提出的路径跟踪实现方法是基于复杂的车载控制执行系统实现的。
无线通信方面:
专利10中所提及的通信模块使用的工作频段为GSM移动通信用的900MHz/1800MHz。
以上就是当前自动引导车辆的现状以及面临的问题。
发明内容
本发明提供一种自动引导车辆无线定位、导航与控制系统,以解决上述自动引导车辆所面临的问题。本发明采取的技术方案是:
结构由两部分组成:车载系统[5]、导航控制系统[6],该车载系统[5]包括车载控制执行模块[1]、无线定位模块1[2.1]、蓝牙无线通信模块1[3.1],导航控制系统[6]包括无线定位模块2[2.2]、蓝牙无线通信模块2[3.2]、PC机[4],电源管理模块[1.1]作为一个相对独立的部分,分别为蓝牙无线通信模块1[3.1]、无线定位模块1[2.1],车载控制执行模块[1]提供合适的电源电压,其中:
车载控制执行模块[1]属于车载系统[5],用于根据控制数据来完成对车的协调控制,使车完成前进、后退、加速、减速、停车、左转、右转等动作,它主要包括控制车前进、后退的主电机电路[1.2]、控制车转向的舵机电路[1.3]及微处理器1[1.4],其中主电机电路[1.2]包括:电子调速器[1.5]、主电机[1.6];舵机电路[1.3]包括:伺服控制电路[1.7]、H桥电机驱动电路[1.8]、舵机[1.9],微处理器1[1.4]连接伺服控制电路[1.7],该伺服控制电路[1.7]连接H桥电机驱动电路[1.8],该H桥电机驱动电路[1.8]连接舵机[1.9],微处理器1[1.4]还连接电子调速器[1.5],该电子调速器[1.5]连接主电机[1.6];车载控制执行模块[1]电路中微处理器使用的是Mirochip公司生产的Pic16f873单片机,该芯片能够输出PWM脉冲。
控制车速的驱动信号及控制转向的驱动信号由微处理器1[1.4]输出,微处理器1[1.4]根据蓝牙无线通信模块1[3.1]接收到的PC机的控制命令,改变输出脉冲的周期及占空比,输出控制运动速度的PWM脉冲给主电机电路[1.2]及控制转向的PWM脉冲给舵机电路[1.3]。
无线定位模块1[2.1]、2[2.2]采用基于超声传感器的主动信标定位方法,以红外发射时间作为基准,用于提取车上发射超声信号到接收端接收到超声信号的时延信息,对车进行精度达毫米级的精确定位。
无线定位模块1[2.1]属于车载系统[5],无线定位模块2[2.2]属于导航控制系统[6]。
无线定位模块1[2.1]的电路主要有红外接收电路[2.3]、微处理器2[2.4]、车头超声发射电路[2.5]、车尾超声发射电路[2.6],红外接收电路[2.3]接收红外信号作为微处理器2[2.4]发射超声驱动信号的时间基准,红外接收电路[2.3]与微处理器2[2.4]连接,该微处理器2[2.4]分别连接车头超声发射电路[2.5]和车尾超声发射电路[2.6]。
红外接收电路[2.3]接收到的红外信号作为微处理器2[2.4]发射超声驱动信号的时间基准。微处理器2[2.4]在接收到红外信号后立即输出车头超声发射电路[2.5]所需要的驱动信号,25ms后发射车尾超声发射电路[2.6]所需要的驱动信号。车头超声发射电路[2.5]、车尾超声发射电路[2.6]接收到微处理器2[2.4]的驱动信号后发射超声信号。使用的是红外接收模块,当接好电源和地时信号端可以检测红外信号的有无并产生相应的脉冲。通过变压器升压驱动超声发射传感器,超声发射器选用的是频率为40kHz的全向超声发射器,型号为US40KT-01,是由美国精量公司生产的,超声发射电路中的微处理器使用的是Mirochip公司生产的Pic12c508,单片机,该芯片具有体积小,功能强的优点。
无线定位模块2[2.2]上的电路主要有红外信号发射电路[2.7]、超声信号放大电路[2.8]、电压比较电路[2.9][2.10]、时延提取电路[2.11]、微处理器3[2.12]、温度测量电路[2.13],微处理器3[2.12]分别连接红外信号发射电路[2.7],时延提取电路[2.11]、温度测量电路[2.13]、超声信号放大电路[2.8],其中时延提取电路[2.11]分别连接电压比较电路[2.9]、[2.10]。
超声信号放大电路[2.8]主要包括:低噪声前置放大电路[2.14][2.15]、第二级放大电路[2.16][2.17]、自动增益放大电路[2.18][2.19]、第四级放大电路[2.20][2.21]。前置放大电路[2.14]、[2.15]分别连接对超声信号进一步放大的第二级放大电路[2.16]、[2.17],该第二级放大电路[2.16]、[2.17]分别连接自动增益放大电路[2.18][2.19],该自动增益放大电路[2.18]、[2.19]分别连接第四级放大电路[2.20]、[2.21]。
前置放大电路[2.14][2.15]保证超声信号被放大的同时抑制噪声的影响;第二级放大电路[2.16][2.17]对超声信号进一步放大;自动增益放大电路[2.18][2.19]保证超声信号的幅度不会因为AGV运行的位置改变而有较大的波动。由于自动增益放大电路[2.18][2.19]的输出信号还未饱和,加入第四级放大电路[2.20][2.21]保证超声信号的第一个沿被饱和放大,以提高定位的精度。电压比较电路[2.9][2.10]与时延提取电路[2.11]处理放大后的超声信号,将处理过的信号传给微处理器3[2.12]。超声接收器是选用的是频率为40kHz的波束角为55度的超声接收器,型号为40LR16,是由Polaroid公司生产的。自动增益放大电路[2.18][2.19]使用Dallas公司生产的DS1868双路数字电位芯片,通过改变电位计阻值改变放大电路放大倍数。
由于超声波在介质中传播速度c的值会随着温度的变化而变化,在空气中c与温度的关系为: c = 331.4 1 + t / 273 m / s (t为摄氏温度),本发明加入温度测量电路[2.13],实时测量环境温度,对超声传播速度进行补偿,保证从发射传感器到接收传感器距离的精确测量。
微处理器3[2.12]通过自身AD转换器接收温度测量电路[2.13]送来的与温度有关的模拟信号,将其转化为数字量,每50ms发射驱动红外信号的脉冲,并提取车头、车尾发射过来的超声信号的时延信息。微处理器3[2.12]控制自动增益放大电路[2.18][2.19],调整超声信号的幅度,最后,将时延、温度等信息通过通用异步串口传给PC机。上述工作过程循环重复。微处理器3使用的是Mirochip公司生产的Pic16f873单片机,通过它的CCP模块来提取超声信号传播时间。
蓝牙无线通信模块1[3.1]及蓝牙无线通信模块2[3.2]。
蓝牙无线通信模块1[3.1]属于车载系统[5]用于无线接收,蓝牙无线通信模块2[3.2]属于导航控制系统[6]用于无线发射。蓝牙无线通信模块的作用是将PC机计算得的车辆控制参数传给车载控制执行模块[1]。
蓝牙无线通信模块1[3.1]与蓝牙无线通信模块2[3.2]中的主要元件是蓝牙无线通信模块[3.3]。蓝牙无线通信模块是一种单片蓝牙数据、语音收发、组网蓝牙无线通信模块,它可直接与单片机的串口连接;也可通过电平转换电路与计算机串口进行通讯。
PC机[4]的作用是在Visual C++编程环境下实现通信与算法,包括通信[4.1]、位置显示[4.2]、路径规划[4.3]及路径跟踪[4.3]部分,其中
通信[4.1]基于通用异步串口通信方式接收定位模块的温度信息和时延信息并传送给无线通信发射模块控制信息;
位置显示[4.2]部分根据当前温度计算超声传播速度,根据四个时延信息算得车头车尾到达两个信标的距离,由定位原理得到车头车尾坐标,并在屏幕上用数字、图形显示出来。定位原理如下:
位于固定位置的两路超声接收器接收来自于车头S1、车尾S2的超声发射信号,通过时延提取电路得到车头、车尾发射的超声到达R1、R2的传播时间,分别为τS1R1、τS1R2、τS2R1、τS2R2。根据串口传送来的温度信息,由公式1可以计算得到超声当前的传播速度c。由公式(1-4)可以求出S1R1、S1R2、S2R1、S2R2四条线段的长度:
S 1 R 1 = τ S 1 R 1 × c - - - ( 1 )
S 1 R 2 = τ S 1 R 2 × c - - - ( 2 )
S 2 R 1 = τ S 2 R 1 × c - - - ( 3 )
S 2 R 2 = τ S 2 R 2 × c - - - ( 4 )
又根据平面几何原理有:
S 1 R 1 = ( x 1 - x a ) 2 + ( y 1 - y a ) 2 S 1 R 2 = ( x 1 - x b ) 2 + ( y 1 - y a ) 2 - - - - ( 5 )
S 2 R 1 = ( x 2 - x a ) 2 + ( y 2 - y a ) 2 S 2 R 2 = ( x 2 - x b ) 2 + ( y 2 - y a ) 2 - - - - ( 6 )
由(1)、(2)、(5)可以得到S1点坐标(x1,y1):
x 1 = ( x b 2 - x a 2 ) - ( cτ S 1 R 2 ) 2 + ( cτ S 1 R 1 ) 2 2 ( x b - x a ) y 1 = y a + ( cτ S 1 R 1 ) 2 - ( x 1 - x a ) 2 - - - - ( 7 )
由(3)、(4)、(6)可以得到S2点坐标(x2,y2):
x 2 = ( x b 2 - x a 2 ) - ( cτ S 2 R 2 ) 2 + ( cτ S 2 R 1 ) 2 2 ( x b - x a ) y 2 = y a + ( cτ S 2 R 1 ) 2 - ( x 2 - x a ) 2 - - - - ( 8 )
从而得到车头车尾、坐标。
路径规划[4.3]是要根据AGV在所要运行地图中的当前位置,及所要到达的终点位置确定AGV的运行路径。本发明设计了三种路径输入方式:鼠标输入路径方式[4.5]、CAD输入路径方式[4.6]、手写输入系统路径输入方式[4.7]。手写输入系统路径输入方式[4.7]是操作者用手写笔在一块与车实际运行区域相互映射的输入板上根据实际需要输入行车路径(当然其中也有一些规则),主控系统会自动对路径识别并存储在系统中作为自定义路径。
路径跟踪[4.4]是要保证AGV沿着事先定义好的路径前进,当AGV与预定路径有了偏差能够通过根据路径算法得到的控制信息令车重新返回路径。本发明有两种路径跟踪方式:手动控制方式及自动控制方式。手动控制方式用户可以根据车在工作环境中的位置及环境信息手动控制车的速度转向;路径跟踪方式本发明采用几何原理与控制理论联合算法。算法涉及的参数比较多,主要有车的当前姿态(车头、车尾位置),运行速度、加速度、舵方向、车的给定运动轨迹的曲率及方向,地面质量(摩擦力不同)。
本项发明基于超声传感器的主动信标定位理论对AGV进行高精度定位,通过多种自定义路径的路径规划方式,鲜明地体现了自动引导车辆“柔性化”的特点,本项发明对今后自动引导车辆将产生很大的积极影响,有关本发明的突出优点可概括如下:
1本发明实现了AGV无线定位、导航与控制,在成本上,使用了最为经济、高效、稳定的方案及设备。而如上所述的其他类型的自动引导车辆的装置,不是定位方法昂贵(如图像定位专利9所述),就是控制装置昂贵(如专利6所述)。
2本发明的定位精度高,利用红外信号传播的高速特性精确确定超声发射时间;使用了低噪声前置放大电路,保证超声信号被放大的同时抑制噪声的影响;使用自动增益放大电路,保证超声信号的幅度不会因为AGV运行的位置改变而有较大的波动。
3在路径规划的实现上,以上所述的代表性专利路径很难实现自由化,要么是所控制区域给出几个点,车在各个点之间运动,并不能保证每次在两点之间行走都能沿同一路径,要么存储固定的几条曲线,这样的智能引导车辆无法实现对车的自由引导。而本发明AGV的路径规划采用多种方式,可以根据环境不同任意修改,更加自由、灵活。
4对车的路径跟踪控制采用了几何跟踪方式与控制理论相结合的方式,不用对车载控制执行系统作太大的改动就能保证路径跟踪有很高的精度,提高了对车控制的灵敏度。
5通信方式采用基于蓝牙技术的无线通信方式,使用的工作频段为2.4GHz。使用的频段为工业、科学和医学频段,在全球范围适用,使用跳频方式来扩展频谱具有很好的抗干扰能力、同时还具有低功耗、接口标准,能组网、成本低等优点。
总之,本发明能以最少的投入获得最大的效益,也就是性价比越高越好,本项发明恰恰以最为经济的投入,获得对AGV最好的控制,最精确的定位,以及最为灵活的路径输入方式。实现了自定义路径下基于超声传感器定位的AGV系统,经济、准确、灵活是本发明的优势所在。
附图说明
图1为AGV的无线定位、导航与控制系统框图
图2为车载系统框图
图3为导航控制系统框图
图4车载控制执行模块电路原理图
图5为微处理器1的流程框图
图6为微处理器2的流程框图
图7为红外接收电路原理图
图8为超声发射电路原理图
图9为红外信号发射电路原理图
图10为超声信号的一、二级放大电路原理图
图11为超声信号的三、四级放大电路原理图
图12为微处理器3的电路原理图
图13为微处理器3的流程框图
图14为蓝牙无线通信模块顶视图
图15蓝牙无线通信模块1电路原理图
图16蓝牙无线通信模块2电路原理图。
图17为PC机上程序流程框图
图18为定位原理示意图
具体实施方式
如图1,结构由两部分组成:车载系统[5]、导航控制系统[6],该车载系统[5]包括车载控制执行模块[1]、无线定位模块1[2.1]、蓝牙无线通信模块1[3.1],导航控制系统[6]包括无线定位模块2[2.2]、蓝牙无线通信模块2[3.2]、PC机[4],电源管理模块[1.1]作为一个相对独立的部分,分别为蓝牙无线通信模块1[3.1]、无线定位模块1[2.1],车载控制执行模块[1]提供合适的电源电压,其中:
如图2,车载控制执行模块[1]属于车载系统[5],用于根据控制数据来完成对车的协调控制,使车完成前进、后退、加速、减速、停车、左转、右转等动作,它主要包括控制车前进、后退的主电机电路[1.2]、控制车转向的舵机电路[1.3]及微处理器1[1.4],其中主电机电路[1.2]包括:电子调速器[1.5]、主电机[1.6];舵机电路[1.3]包括:伺服控制电路[1.7]、H桥电机驱动电路[1.8]、舵机[1.9],微处理器1[1.4]连接伺服控制电路[1.7],该伺服控制电路[1.7]连接H桥电机驱动电路[1.8],该H桥电机驱动电路[1.8]连接舵机[1.9],微处理器1[1.4]还连接电子调速器[1.5],该电子调速器[1.5]连接主电机[1.6];该车载控制执行模块[1]电路原理如图4,车载控制执行模块[1]电路中微处理器使用的是Mirochip公司生产的Pic16f873单片机,该芯片能够输出PWM脉冲。
控制车速的驱动信号及控制转向的驱动信号由微处理器1[1.3]输出,微处理器1[1.3]根据蓝牙无线通信模块2[1.2]接收到的PC机的控制命令,改变输出脉冲的周期及占空比,输出控制运动速度的PWM脉冲给主电机电路[1.1]及控制转向的PWM脉冲给舵机电路[1.2]。微处理器1流程图如图5。
无线定位模块1[2.1]、2[2.2]采用基于超声传感器的主动信标定位方法,以红外发射时间作为基准,用于提取车上发射超声信号到接收端接收到超声信号的时延信息,对车进行精度达毫米级的精确定位。
无线定位模块1[2.1]属于车载系统[5],无线定位模块2[2.2]属于导航控制系统[6]。
无线定位模块1[2.1]的电路主要有红外接收电路[2.3]、微处理器2[2.4]、车头超声发射电路[2.5]、车尾超声发射电路[2.6],红外接收电路[2.3]接收红外信号作为微处理器2[2.4]发射超声驱动信号的时间基准,红外接收电路[2.3]与微处理器2[2.4]连接,该微处理器2[2.4]分别连接车头超声发射电路[2.5]和车尾超声发射电路[2.6]。
红外接收电路[2.3]接收到的红外信号作为微处理器2[2.4]发射超声驱动信号的时间基准。微处理器2[2.4]在接收到红外信号后立即输出车头超声发射电路[2.5]所需要的驱动信号,25ms后发射车尾超声发射电路[2.6]所需要的驱动信号。微处理器2[2.4]的流程框图如图6所示。车头超声发射电路[2.5]、车尾超声发射电路[2.6]接收到微处理器2[2.4]的驱动信号后发射超声信号。红外接收电路原理图如图7,使用的是红外接收模块,当接好电源和地时信号端可以检测红外信号的有无并产生相应的脉冲。通过变压器升压驱动超声发射传感器,超声发射器选用的是频率为40kHz的全向超声发射器,型号为US40KT-01,是由美国精量公司生产的,超声发射电路中的微处理器使用的是Mirochip公司生产的Pic12c508,单片机,该芯片具有体积小,功能强的优点。
无线定位模块2[2.2]上的电路主要有红外信号发射电路[2.7]、超声信号放大电路[2.8]、电压比较电路[2.9][2.10]、时延提取电路[2.11]、微处理器3[2.12]、温度测量电路[2.13],微处理器3[2.12]分别连接红外信号发射电路[2.7],时延提取电路[2.11]、温度测量电路[2.13]、超声信号放大电路[2.8],其中时延提取电路[2.11]分别连接电压比较电路[2.9]、[2.10]。
超声信号放大电路[2.8]主要包括:低噪声前置放大电路[2.14][2.15]、第二级放大电路[2.16][2.17]、自动增益放大电路[2.18][2.19]、第四级放大电路[2.20][2.21]。前置放大电路[2.14]、[2.15]分别连接对超声信号进一步放大的第二级放大电路[2.16]、[2.17],该第二级放大电路[2.16]、[2.17]分别连接自动增益放大电路[2.18][2.19],该自动增益放大电路[2.18]、[2.19]分别连接第四级放大电路[2.20]、[2.21]。
前置放大电路[2.14][2.15]保证超声信号被放大的同时抑制噪声的影响;第二级放大电路[2.16][2.17]对超声信号进一步放大;自动增益放大电路[2.18][2.19]保证超声信号的幅度不会因为AGV运行的位置改变而有较大的波动。由于自动增益放大电路[2.18][2.19]的输出信号还未饱和,加入第四级放大电路[2.20][2.21]保证超声信号的第一个沿被饱和放大,以提高定位的精度。电压比较电路[2.9][2.10]与时延提取电路[2.11]处理放大后的超声信号,将处理过的信号传给微处理器3[2.12]。红外信号发射电路原理图如图9;超声信号的低噪声前置放大电路[2.14][2.15]、第二级放大电路[2.16][2.17]原理图如图10。超声接收器是选用的是频率为40kHz的波束角为55度的超声接收器,型号为40LR16,是由Polaroid公司生产的。超声信号的自动增益放大电路[2.18][2.19]、第四级放大电路[2.20][2.21]原理图如图11。其中自动增益放大电路[2.18][2.19]使用Dallas公司生产的DS1868双路数字电位芯片,通过改变电位计阻值改变放大电路放大倍数。
由于超声波在介质中传播速度c的值会随着温度的变化而变化,在空气中c与温度的关系为: c = 331.4 1 + t / 273 m / s (t为摄氏温度),本发明加入温度测量电路[2.13],实时测量环境温度,对超声传播速度进行补偿,保证从发射传感器到接收传感器距离的精确测量。
微处理器3[2.12]通过自身AD转换器接收温度测量电路[2.13]送来的与温度有关的模拟信号,将其转化为数字量,每50ms发射驱动红外信号的脉冲,并提取车头、车尾发射过来的超声信号的时延信息。微处理器3[2.12]控制自动增益放大电路[2.18][2.19],调整超声信号的幅度,最后,将时延、温度等信息通过通用异步串口传给PC机。上述工作过程循环重复。微处理器3[2.12]的电路原理图如图12,微处理器3使用的是Mirochip公司生产的Pic16f873单片机,通过它的CCP模块来提取超声信号传播时间。微处理器3[2.12]流程图如图13。
蓝牙无线通信模块1[3.1]及蓝牙无线通信模块2[3.2]
蓝牙无线通信模块1[3.1]属于车载系统[5]用于无线接收,蓝牙无线通信模块2[3.2]属于导航控制系统[6]用于无线发射。蓝牙无线通信模块的作用是将PC机计算得的车辆控制参数传给车载控制执行模块[1]。
蓝牙无线通信模块1[3.1]与蓝牙无线通信模块2[3.2]中的主要元件是蓝牙无线通信模块[3.3]。蓝牙无线通信模块顶视图如图14。蓝牙无线通信模块是一种单片蓝牙数据、语音收发、组网蓝牙无线通信模块,它可直接与单片机的串口连接;也可通过电平转换电路与计算机串口进行通讯。蓝牙无线通信模块1[3.1]电路原理图如图15,蓝牙无线通信模块2[3.2]电路原理图如图16。
PC机[4]
PC机[4]的作用是在Visual C++编程环境下实现通信与算法。包括通信[4.1]、位置显示[4.2]、路径规划[4.3]及路径跟踪[4.3]几个部分,图17为PC机上程序流程框图,其中:
通信[4.1]部分基于通用异步串口通信方式接收定位模块的温度信息和时延信息并传送给无线通信发射模块控制信息。
位置显示[4.2]部分根据当前温度计算超声传播速度,根据四个时延信息算得车头车尾到达两个信标的距离,由定位原理得到车头车尾坐标,并在屏幕上用数字、图形显示出来。定位原理示意图如图18,定位原理如下:
位于固定位置的两路超声接收器接收来自于车头S1、车尾S2的超声发射信号,通过时延提取电路得到车头、车尾发射的超声到达R1、R2的传播时间,分别为τS1R1、τS1R2、τS2R1、τS2R2。根据串口传送来的温度信息,由公式1可以计算得到超声当前的传播速度c。由公式(1-4)可以求出S1R1、S1R2、S2R1、S2R2四条线段的长度:
S 1 R 1 = τ S 1 R 1 × c - - - ( 1 )
S 1 R 2 = τ S 1 R 2 × c - - - ( 2 )
S 2 R 1 = τ S 2 R 1 × c - - - ( 3 )
S 2 R 2 = τ S 2 R 2 × c - - - ( 4 )
又根据平面几何原理有:
S 1 R 1 = ( x 1 - x a ) 2 + ( y 1 - y a ) 2 S 1 R 2 = ( x 1 - x b ) 2 + ( y 1 - y a ) 2 - - - - ( 5 )
S 2 R 1 = ( x 2 - x a ) 2 + ( y 2 - y a ) 2 S 2 R 2 = ( x 2 - x b ) 2 + ( y 2 - y a ) 2 - - - - ( 6 )
由(1)、(2)、(5)可以得到S1点坐标(x1,y1):
x 1 = ( x b 2 - x a 2 ) - ( cτ S 1 R 2 ) 2 + ( cτ S 1 R 1 ) 2 2 ( x b - x a ) y 1 = y a + ( cτ S 1 R 1 ) 2 - ( x 1 - x a ) 2 - - - - ( 7 )
由(3)、(4)、(6)可以得到S2点坐标(x2,y2):
x 2 = ( x b 2 - x a 2 ) - ( cτ S 2 R 2 ) 2 + ( cτ S 2 R 1 ) 2 2 ( x b - x a ) y 2 = y a + ( cτ S 2 R 1 ) 2 - ( x 2 - x a ) 2 - - - - ( 8 )
从而得到车头车尾、坐标。
路径规划[4.3]是要根据AGV在所要运行地图中的当前位置,及所要到达的终点位置确定AGV的运行路径。本发明设计了三种路径输入方式:鼠标输入路径方式[4.5]、CAD输入路径方式[4.6]、手写输入系统路径输入方式[4.7]。手写输入系统路径输入方式[4.7]是操作者用手写笔在一块与车实际运行区域相互映射的输入板上根据实际需要输入行车路径(当然其中也有一些规则),主控系统会自动对路径识别并存储在系统中作为自定义路径。
路径跟踪[4.4]是要保证AGV沿着事先定义好的路径前进,当AGV与预定路径有了偏差能够通过根据路径算法得到的控制信息令车重新返回路径。本发明有两种路径跟踪方式:手动控制方式及自动控制方式。手动控制方式用户可以根据车在工作环境中的位置及环境信息手动控制车的速度转向;路径跟踪方式本发明采用几何原理与控制理论联合算法。算法涉及的参数比较多,主要有车的当前姿态(车头、车尾位置),运行速度、加速度、舵方向、车的给定运动轨迹的曲率及方向,地面质量(摩擦力不同)。

Claims (9)

1、一种自动引导车辆无线定位、导航与控制系统,其特征在于:结构由两部分组成:车载系统[5]、导航控制系统[6],该车载系统[5]包括车载控制执行模块[1]、无线定位模块1[2.1]、蓝牙无线通信模块1[3.1],导航控制系统[6]包括无线定位模块2[2.2]、蓝牙无线通信模块2[3.2]、PC机[4],PC机[4]分别与蓝牙无线通信模块2[3.2]、无线定位模块2[2.2]连接,蓝牙无线通信模块1[3.1]与蓝牙无线通信模块2[3.2]无线连接,蓝牙无线通信模块1[3.1]与车载控制执行模块[1]连接,车载控制执行模块[1]与无线定位模块1[2.1]彼此独立无连接,无线定位模块1[2.1]通过超声与无线定位模块2[2.2]无线连接,电源管理模块[1.1]作为一个相对独立的部分,分别为蓝牙无线通信模块1[3.1]、无线定位模块1[2.1],车载控制执行模块[1]提供合适的电源电压。
2、根据权利要求1所述的自动引导车辆无线定位、导航与控制系统,其特征在于:控制AGV的前进速度与方向的车载控制执行模块[1]属于车载系统[5],用于根据控制数据来完成对车的协调控制,使车完成前进、后退、加速、减速、停车、左转、右转等动作,它主要包括控制车前进、后退的主电机电路[1.2]、控制车转向的舵机电路[1.3]及微处理器1[1.4],其中主电机电路[1.2]包括:电子调速器[1.5]、主电机[1.6];舵机电路[1.3]包括:伺服控制电路[1.7]、H桥电机驱动电路[1.8]、舵机[1.9],微处理器1[1.4]连接伺服控制电路[1.7],该伺服控制电路[1.7]连接H桥电机驱动电路[1.8],该H桥电机驱动电路[1.8]连接舵机[1.9],微处理器1[1.4]还连接电子调速器[1.5],该电子调速器[1.5]连接主电机[1.6]。
3、根据权利要求2所述的自动引导车辆无线定位、导航与控制系统,其特征在于:车载控制执行模块[1]电路中微处理器使用的是Mirochip公司生产的Pic16f873单片机,该芯片能够输出PWM脉冲。
4、根据权利要求1所述的自动引导车辆无线定位、导航与控制系统,其特征在于:无线定位模块1[2.1]采用基于超声传感器的主动信标定位方法,以红外发射时间作为基准,用于提取车上发射超声信号到接收端接收到超声信号的时延信息,对车进行精度达毫米级的精确定位,其电路主要有红外接收电路[2.3]、微处理器2[2.4]、车头超声发射电路[2.5]、车尾超声发射电路[2.6],红外接收电路[2.3]接收红外信号作为微处理器2[2.4]发射超声驱动信号的时间基准,红外接收电路[2.3]与微处理器2[2.4]连接,该微处理器2[2.4]分别连接车头超声发射电路[2.5]和车尾超声发射电路[2.6]。
5、根据权利要求4所述的自动引导车辆无线定位、导航与控制系统,其特征在于:车头超声发射电路[2.5]和车尾超声发射电路[2.6]中的微处理器使用的是Mirochip公司生产的Pic12c508,单片机,通过变压器升压驱动超声发射传感器1和2,超声发射器选用的是频率为40kHz的全向超声发射器,型号为US40KT-01,是由美国精量公司生产的。
6、根据权利要求1所述的自动引导车辆无线定位、导航与控制系统,其特征在于:无线定位模块2[2.2]上的电路主要有红外信号发射电路[2.7]、超声信号放大电路[2.8]、电压比较电路[2.9]、[2.10]、时延提取电路[2.11]、微处理器3[2.12]、温度测量电路[2.13],微处理器3[2.12]分别连接红外信号发射电路[2.7],时延提取电路[2.11]、温度测量电路[2.13]、超声信号放大电路[2.8],其中时延提取电路[2.11]分别连接电压比较电路[2.9]、[2.10]。
7、根据权利要求6所述的自动引导车辆无线定位、导航与控制系统,其特征在于:超声信号放大电路[2.8]主要包括:低噪声前置放大电路[2.14][2.15]、第二级放大电路[2.16][2.17]、自动增益放大电路[2.18][2.19]、第四级放大电路[2.20][2.21]。前置放大电路[2.14]、[2.15]分别连接对超声信号进一步放大的第二级放大电路[2.16]、[2.17],该第二级放大电路[2.16]、[2.17]分别连接自动增益放大电路[2.18][2.19],该自动增益放大电路[2.18]、[2.19]分别连接第四级放大电路[2.20]、[2.21]。
8、根据权利要求1所述的自动引导车辆无线定位、导航与控制系统,其特征在于:蓝牙无线通信模块1[3.1]属于车载系统[5],用于无线接收,蓝牙无线通信模块2[3.2]属于导航控制系统[6],用于无线发射,将PC机[4]计算得的车辆控制参数传给车载控制执行模块[1]。
9、根据权利要求1所述的自动引导车辆无线定位、导航与控制系统,其特征在于:PC机[4]的作用是在Visual C++编程环境下实现通信与算法,包括通信[4.1]、位置显示[4.2]、路径规划[4.3]及路径跟踪[4.3]部分,其中
通信[4.1]基于通用异步串口通信方式接收定位模块的温度信息和时延信息并传送给无线通信发射模块控制信息;
位置显示[4.2]是根据当前温度计算超声传播速度,根据四个时延信息算得车头车尾到达两个信标的距离,由定位原理得到车头车尾坐标,并在屏幕上用数字、图形显示出来;
路径规划[4.3]根据AGV在所要运行地图中的当前位置,及所要到达的终点位置确定AGV的运行路径;
路径跟踪[4.4]是保证AGV沿着事先定义好的路径前进,当AGV与预定路径有了偏差能够通过根据路径算法得到的控制信息令车重新返回路径。
CNB2004100112484A 2004-11-24 2004-11-24 自动引导车辆无线定位、导航与控制系统 Expired - Fee Related CN100402981C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2004100112484A CN100402981C (zh) 2004-11-24 2004-11-24 自动引导车辆无线定位、导航与控制系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2004100112484A CN100402981C (zh) 2004-11-24 2004-11-24 自动引导车辆无线定位、导航与控制系统

Publications (2)

Publication Number Publication Date
CN1651863A true CN1651863A (zh) 2005-08-10
CN100402981C CN100402981C (zh) 2008-07-16

Family

ID=34867740

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004100112484A Expired - Fee Related CN100402981C (zh) 2004-11-24 2004-11-24 自动引导车辆无线定位、导航与控制系统

Country Status (1)

Country Link
CN (1) CN100402981C (zh)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100373305C (zh) * 2006-03-01 2008-03-05 上海燃料电池汽车动力系统有限公司 基于车内网络和远程无线通讯服务的车载系统
CN101976068A (zh) * 2010-09-22 2011-02-16 上海交通大学 自主式温室移动平台循墙行走超声导航装置
CN102063822A (zh) * 2011-01-11 2011-05-18 吉林大学 自动导驶车辆运输系统教具
CN102231233A (zh) * 2011-06-29 2011-11-02 南京航空航天大学 自动引导车分布式自主协同控制系统及控制方法
CN102385369A (zh) * 2011-09-28 2012-03-21 山东电力集团公司临沂供电公司 电动汽车充换电站车辆导引系统
CN102768537A (zh) * 2012-07-27 2012-11-07 苏州工业园区职业技术学院 自动导引车辆无线控制系统
CN103042949A (zh) * 2013-01-18 2013-04-17 中国农业大学 一种蓝牙串口遥控调速和转向的电动底盘
CN103076803A (zh) * 2012-12-13 2013-05-01 鼎力联合(北京)科技有限公司 一种车辆自动跟随系统、装置及方法
CN103309350A (zh) * 2013-05-24 2013-09-18 南京航空航天大学 基于全局无线精确定位的自动导引车调度系统及其方法
CN103529450A (zh) * 2013-10-21 2014-01-22 深圳市米克力美科技有限公司 无人搬运小车障碍物检测方法及其装置
CN103970130A (zh) * 2013-01-25 2014-08-06 鸿富锦精密工业(武汉)有限公司 室内物体移动方法及系统
CN104409053A (zh) * 2014-10-22 2015-03-11 重庆金宏汽车电子有限公司 车载导航系统的驱动控制电路
CN105573320A (zh) * 2015-12-30 2016-05-11 天津天瑞达自动化设备有限公司 自主物流机器人系统
CN104331079B (zh) * 2014-11-17 2017-03-08 成都四威高科技产业园有限公司 一种agv交通管制系统及管制方法
CN106502244A (zh) * 2016-09-29 2017-03-15 广西大学 一种自动导引小车的导航定位系统
CN106526534A (zh) * 2016-10-17 2017-03-22 南京理工大学 基于无线电导航的移动小车自动分拣搬运物品装置及方法
CN107856733A (zh) * 2017-11-07 2018-03-30 长春工业大学 一种面向人机和谐的汽车躲避动障碍物控制方法
CN107918965A (zh) * 2016-10-06 2018-04-17 德国邮政股份公司 对打开无人运载工具的接收隔间的授权
CN108368682A (zh) * 2015-12-10 2018-08-03 卡特彼勒路面机械公司 用于协调铣削机和摊铺机的系统
CN109327013A (zh) * 2018-11-05 2019-02-12 苏州科技大学 一种串联谐振试验过热保护装置
CN114018264A (zh) * 2021-10-28 2022-02-08 北京信息科技大学 导航用芯片

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4700427A (en) * 1985-10-17 1987-10-20 Knepper Hans Reinhard Method of automatically steering self-propelled floor-cleaning machines and floor-cleaning machine for practicing the method
US6092010A (en) * 1997-09-03 2000-07-18 Jervis B. Webb Company Method and system for describing, generating and checking non-wire guidepaths for automatic guided vehicles
US6941200B2 (en) * 2000-10-16 2005-09-06 Matsushita Electric Industrial Co., Ltd. Automated guided vehicle, operation control system and method for the same, and automotive vehicle
US6721638B2 (en) * 2001-05-07 2004-04-13 Rapistan Systems Advertising Corp. AGV position and heading controller
CN2773624Y (zh) * 2004-11-24 2006-04-19 吉林大学 自动引导车辆无线定位、导航与控制系统

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100373305C (zh) * 2006-03-01 2008-03-05 上海燃料电池汽车动力系统有限公司 基于车内网络和远程无线通讯服务的车载系统
CN101976068A (zh) * 2010-09-22 2011-02-16 上海交通大学 自主式温室移动平台循墙行走超声导航装置
CN102063822B (zh) * 2011-01-11 2012-06-27 吉林大学 自动导驶车辆运输系统教具
CN102063822A (zh) * 2011-01-11 2011-05-18 吉林大学 自动导驶车辆运输系统教具
CN102231233B (zh) * 2011-06-29 2013-05-29 南京航空航天大学 自动引导车分布式自主协同控制系统的控制方法
CN102231233A (zh) * 2011-06-29 2011-11-02 南京航空航天大学 自动引导车分布式自主协同控制系统及控制方法
CN102385369A (zh) * 2011-09-28 2012-03-21 山东电力集团公司临沂供电公司 电动汽车充换电站车辆导引系统
CN102768537A (zh) * 2012-07-27 2012-11-07 苏州工业园区职业技术学院 自动导引车辆无线控制系统
CN102768537B (zh) * 2012-07-27 2014-12-31 苏州工业园区职业技术学院 自动导引车辆无线控制系统
CN103076803A (zh) * 2012-12-13 2013-05-01 鼎力联合(北京)科技有限公司 一种车辆自动跟随系统、装置及方法
CN103076803B (zh) * 2012-12-13 2015-06-24 鼎力联合(北京)科技有限公司 一种车辆自动跟随系统、装置及方法
CN103042949A (zh) * 2013-01-18 2013-04-17 中国农业大学 一种蓝牙串口遥控调速和转向的电动底盘
CN103970130A (zh) * 2013-01-25 2014-08-06 鸿富锦精密工业(武汉)有限公司 室内物体移动方法及系统
CN103309350A (zh) * 2013-05-24 2013-09-18 南京航空航天大学 基于全局无线精确定位的自动导引车调度系统及其方法
CN103529450A (zh) * 2013-10-21 2014-01-22 深圳市米克力美科技有限公司 无人搬运小车障碍物检测方法及其装置
CN104409053A (zh) * 2014-10-22 2015-03-11 重庆金宏汽车电子有限公司 车载导航系统的驱动控制电路
CN104331079B (zh) * 2014-11-17 2017-03-08 成都四威高科技产业园有限公司 一种agv交通管制系统及管制方法
CN108368682A (zh) * 2015-12-10 2018-08-03 卡特彼勒路面机械公司 用于协调铣削机和摊铺机的系统
CN105573320A (zh) * 2015-12-30 2016-05-11 天津天瑞达自动化设备有限公司 自主物流机器人系统
CN106502244A (zh) * 2016-09-29 2017-03-15 广西大学 一种自动导引小车的导航定位系统
CN107918965A (zh) * 2016-10-06 2018-04-17 德国邮政股份公司 对打开无人运载工具的接收隔间的授权
CN106526534A (zh) * 2016-10-17 2017-03-22 南京理工大学 基于无线电导航的移动小车自动分拣搬运物品装置及方法
CN106526534B (zh) * 2016-10-17 2019-06-04 南京理工大学 基于无线电导航的移动小车自动分拣搬运物品装置及方法
CN107856733A (zh) * 2017-11-07 2018-03-30 长春工业大学 一种面向人机和谐的汽车躲避动障碍物控制方法
CN107856733B (zh) * 2017-11-07 2019-11-05 长春工业大学 一种面向人机和谐的汽车躲避动障碍物控制方法
CN109327013A (zh) * 2018-11-05 2019-02-12 苏州科技大学 一种串联谐振试验过热保护装置
CN114018264A (zh) * 2021-10-28 2022-02-08 北京信息科技大学 导航用芯片
CN114018264B (zh) * 2021-10-28 2023-05-23 北京信息科技大学 导航用芯片

Also Published As

Publication number Publication date
CN100402981C (zh) 2008-07-16

Similar Documents

Publication Publication Date Title
CN1651863A (zh) 自动引导车辆无线定位、导航与控制系统
CN109240284B (zh) 一种无人驾驶农机的自主路径规划方法及装置
US7899618B2 (en) Optical laser guidance system and method
CN103699126B (zh) 智能导游机器人的导游方法
CN108508430B (zh) 用于目标检测的激光雷达转动控制方法
CN208126197U (zh) 一种无人小车控制系统及无人小车
CN108844543A (zh) 基于uwb定位及航位推算的室内agv导航控制方法
CN103487812A (zh) 一种温室自主移动车辆的超声波导航装置及方法
CN110262504A (zh) 一种结构可调的多激光雷达耦合系统及其控制方法
CN105487558A (zh) 基于移动机器人的目标跟随系统及方法
CN2773624Y (zh) 自动引导车辆无线定位、导航与控制系统
CN111465908B (zh) 一种分段式自主充电对接方法及移动设备、充电站
CN108536146A (zh) 基于路径和rssi的移动机器人定位充电基座的智能控制方法
CN106101621A (zh) 一种基于导航机器人的室内街景绘制系统及方法
CN111251303B (zh) 一种周期性姿态调整的机器人运动控制方法
CN206892666U (zh) 一种基于视觉导航的四旋翼无人机的自主飞行系统
CN211207169U (zh) 一种温室采摘机器人底盘控制系统
CN211590199U (zh) 一种基于视觉slam的管道机器人
CN110757466B (zh) 基于stm32的矿井勘测机器人控制系统
CN112540382B (zh) 一种基于视觉识别检测的激光导航agv辅助定位方法
KR20210046501A (ko) 무인 잔디 깎기 로봇 및 그 구동 방법
CN203650526U (zh) 一种基于嵌入式的适于自动追踪与循迹的机器人
CN206892659U (zh) 一种智能小车室内导航系统
CN108896041A (zh) 基于超声波的惯性导引车导航方法及导引车
CN112207844A (zh) 一种基于ismart的智引机器人

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080716

Termination date: 20121124