CN1598248B - 减小诱发压缩机翼面振动的装置 - Google Patents

减小诱发压缩机翼面振动的装置 Download PDF

Info

Publication number
CN1598248B
CN1598248B CN200410064464.5A CN200410064464A CN1598248B CN 1598248 B CN1598248 B CN 1598248B CN 200410064464 A CN200410064464 A CN 200410064464A CN 1598248 B CN1598248 B CN 1598248B
Authority
CN
China
Prior art keywords
aerofoil
winglet
sidewall
side wall
leading edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN200410064464.5A
Other languages
English (en)
Other versions
CN1598248A (zh
Inventor
J·H·努斯鲍姆
X·魏
T·蔡德兹
M·麦克罗里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of CN1598248A publication Critical patent/CN1598248A/zh
Application granted granted Critical
Publication of CN1598248B publication Critical patent/CN1598248B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/16Form or construction for counteracting blade vibration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/10Anti- vibration means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/141Shape, i.e. outer, aerodynamic form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/10Manufacture by removing material
    • F05D2230/11Manufacture by removing material by electrochemical methods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/301Cross-sectional characteristics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/70Shape
    • F05D2250/71Shape curved
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • Y10T29/49318Repairing or disassembling

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种燃气涡轮发动机(10)的翼面(42),它包括一个前缘(48),一个后缘(50),一个顶部(54),第一侧壁(44),第二侧壁(46)和一个小翼。该第一侧壁(44)在径向翼展上,在翼面根部(52)和顶部之间延伸,该第一侧面形成该翼面的第一侧面。该第二侧壁(46)在该后缘的前缘处,与该第一侧壁连接。该第二侧壁在径向翼展上,在该翼面根部和顶部之间延伸。该第二侧壁构成所述翼面的第二侧面。该小翼从所述第一侧壁和所述第二侧壁中的至少一个侧壁,向外伸出,使半径R1在该小翼和该第一和第二侧壁中的至少一个侧壁之间延伸。

Description

减小诱发压缩机翼面振动的装置
技术领域
本发明总的涉及燃气涡轮机轮子叶片,尤其涉及减小诱发转子叶片振动的装置。
背景技术
一般,燃气涡轮机转子叶片包括具有前缘和后缘、压力侧和负压侧的翼面。该压力侧和负压侧在该翼面的前缘和后缘处连接,并径向横跨在翼面根部和顶部之间。该翼面根部至少部分地限定一个内部流道,而静止的壳体则至少部分地限定一个外部流道。例如,至少一些已知的压缩机包括多排从一个圆盘或短管轴沿径向外伸出的转子叶片。
已知压缩机的转子叶片,在邻近该内部流道处悬臂伸出,使每一个叶片的根部区域比叶片的顶部区域厚。更具体地说,因为该顶部区域比该根部区域薄,和因为一般该顶部区域机械上不受限制,因此,工作过程中涡区压力分布可以通过该顶部区域,将弦向弯曲或其他振动模式引入叶片中。另外,在发动机工作过程中的共振频率,也可将振动能量导入叶片中。在弦向弯曲或其他振动模式下继续工作,可以限制叶片的使用寿命。
为了便于减少顶部振动模式,和/或减少发动机工作过程中的共振频率的影响,至少一些已知的叶片的顶部区域制造得较厚。然而,增加叶片厚度对空气动力学性能有不利影响,和/或在转子组件中导入附加的径向负载。因此,与其他已知的叶片比较,另一些已知的叶片的弦向长度作得较短。但是,减小叶片的弦向长度也可对叶片的空气动力学性能有不利影响。
发明内容
在一个方面中,提供了制造燃气涡轮发动机的转子叶片的一种方法。该方法包括形成一个翼面和形成一个小翼。该翼面包括第一侧壁和第二侧壁,每一个侧壁都在径向翼展上,在一个翼面根部和一个翼面顶部之间延伸,并且该第一和第二侧壁在前缘和在后缘处连接。该小翼从该翼面的第一侧壁和该翼面的第二侧壁中的至少一个侧壁向外伸出,使得半径在该小翼和该翼面第一侧壁和第二侧壁中的至少一个侧壁之间延伸。
在另一个方面中,提供了燃气涡轮发动机的一个翼面,该翼面包括:
一个前缘;一个后缘;一个顶部;沿翼面根部和所述顶部之间的径向翼展延伸的第一侧壁;所述第一侧壁限定所述翼面的一第一侧面;在所述前缘和所述后缘处与所述第一侧壁连接的一第二侧壁;所述第二侧壁沿该翼面根部和所述顶部之间的径向翼展延伸,所述第二侧壁限定所述翼面的第二侧面;和位于离前缘和后缘间隔一距离的一个小翼,其从所述第一侧壁和所述第二侧壁中至少一个侧壁向外伸出,使得半径R1在所述小翼和所述第一和第二侧壁中的至少一个侧壁之间延伸,所述小翼离所述翼面顶部一个径向距离。
在再一个方面中提供了一种燃气涡轮发动机,包括多个转子叶片,每一个所述转子叶片包括一个翼面,该翼面包括:一个前缘,一个后缘,一第一侧壁,一第二侧壁和从所述第一侧壁和所述第二侧壁中的至少一个侧壁向外伸出,使得在所述小翼和所述第一和第二侧壁中的至少一个侧壁之间形成半径R1的至少一个小翼;所述翼面的第一和第二侧壁在所述前缘和后缘处轴向连接,所述第一和第二侧壁从叶片根部沿径向延伸至翼面顶部,位于离前缘和后缘一个距离的至少一个翼面小翼,并且该翼面小翼离所述翼面顶部一个径向距离。
附图说明
图1为燃气涡轮发动机的示意图;
图2为可以用于图1所示的燃气涡轮发动机中的一个转子叶片的透视图;
图3为从该转子叶片的相反一侧看的图2所示的转子叶片的部分透视图;
图4为图3所示的、沿着4-4线所取的转子叶片的横截面图;
图5为图3所示的、沿着5-5线所取的转子叶片的横截面图;
图6为可以用在图1所示的燃气涡轮发动机中的转子叶片的另一个实施例的横截面图。
具体实施方式
图1为燃气涡轮发动机10的示意图,该发动机包括一个风扇组件12,一个高压压缩机14和一个燃烧室16。发动机10还包括一个高压涡轮18,一个低压涡轮20和一个增压器22。风扇组件12包括一组从一个转子圆盘26沿径向向外伸出的风扇叶片24。发动机10具有一个进气侧28和一个排气侧30。在一个实施例中,该燃气涡轮发动机为Ohio州的Cincinnati域的通用电气公司销售的GE90。
在工作中,空气通过风扇组件12流动,并且压缩空气供给至高压压缩机14。高度压缩的空气输送至燃烧室16。从燃烧室16出来的气流(图1中没有示出)驱动涡轮18和20,而涡轮20又驱动风扇组件12。
图2为可以用于燃气涡轮发动机(例如图1所示的燃气涡轮发动机10)的一个转子叶片40的部分透视图。图3为仅转子叶片40的相反一侧看的该转子叶片40的部分透视图。图4为沿着4-4线所取的转子叶片40的横截面图。图5为沿着5-5线所取的转子叶片40的横截面图。在一个实施例中,多个转子转片40构成燃气涡轮发动机10的高压压缩机级(没有示出)。每一个转子叶片40包括一个翼面42和一个用于将该翼面42按已知方法安装在一个转子圆盘(没有示出)上的整体的榫43。另一种方式是,叶片40可沿径向从一个圆盘(没有示出)向外伸出,使多个叶片40形成一个转子部件(没有示出)。
每一个翼面42包括第一作成一定轮廓形状的侧壁44,和第二作成一定轮廓形状的侧壁46。第一侧壁44是中凸的,并形成翼面42的负压侧;而第二侧壁46为中凹的,形成翼面42的压力侧。侧壁44和46在翼面42的前缘48和在轴向隔开的后缘50处连接。更具体地说,翼面后缘50在弦向隔开,并在翼面前缘48的下游。第一和第二侧壁44和46分别,从邻近该榫43的叶片根部52,从径向,或在翼展上沿径向向外。延伸至翼面的顶部54。
一个小翼70从第二侧壁46向外伸出。在另一个实施例中,小翼70从第一侧壁44向外伸出。在又一个实施例中,第一小翼从第二侧壁46向外伸出,而第二小翼从第一侧壁44向外伸出。因此,小翼70的轮廓作成与侧壁46相符,因此遵循横过侧壁46上延伸的气流流线。在该示例性实施例中,小翼70在弦向方向,基本上横越侧壁46延伸,使得小翼70基本上与靠近前缘48和靠近后缘50的侧壁46齐平。另一种方案是,该小翼在非弦向方向与侧壁46对准。更具体地说,在该示例性实施例中,小翼70基本上在弦向,分别在翼面前缘48和后缘50之间延伸。另一种方式是,该小翼只分别延伸至翼面前缘48或后缘50中的一个处。在又一个实施例中,该小翼70只是部分地分别在翼面前缘48和后缘50之间,沿着侧壁46延伸,并且不延伸至前缘48或后缘50。
小翼70的横截面轮廓不是矩形的,其形状相对于侧壁46按空气动力学要求设计,使第一半径R1和第二半径R2在小翼70和侧壁46之间延伸。在该示例性实施例中,小翼70还包括一个在第一半径R1和第二半径R2之间延伸的一个弧形外表面90。更具体地说,第一半径R1沿着小翼70延伸,使小翼70和翼面顶部54之间平滑过渡;而第二半径R2沿着小翼70延伸度小翼70和根部52之间平滑过渡。在该示例性实施例中,第一半径R1比第二半径R2大。小翼70的几何形状,包括其相对于叶片40的相对位置,尺寸和小翼70的长度可以改变;并根据叶片40的工作和性能特性选择。
小翼70可增强翼面42的刚性、使翼面42的振动的自然频率增加至在发动机正常工作过程中,在燃气涡轮发动机10内不存在的频率。因此,可以诱发不包括小翼70的相同的翼面中的振动模式基本上可被小翼70消除。更具体地说,小翼70可以提供一种调整在发动机额定工作速度以外的弦向模式的频率的方法,使得可以达到所希望的频率范围。另外,小翼70也可以不提供频率范围而增加叶片40的强度。
另外,在装配翼面42过程中。小翼70的该横截面形状可使小翼70与翼面42作成一个整体,这样,与其他几何形状比较,可降低制造成本。特别是,小翼的第一半径R1,第二半径R2和弧形外表面90的综合,可以利用电解液径向流动的电化学加工(ECM)方法制成小翼70。更具体地说,由每一个半径R1和R2形成的小翼70和翼面42之间的平滑过渡,可使ECM电极平稳地和连续地在小翼70上滑移,而不会产生气穴现象或流动中断。与其他已知的叶片制造方法比较,ECM方法可以使叶片40的制造成本降低,制造时间减小。
导入翼面42的能量可以作为激励能量的力和翼面42的位移的点积计算。更具体地说,在工作过程中,因为一般顶部54机械上不受约束,因此,一般,空气动力学驱动力(即涡区压力分布)靠近该翼面顶部54是最高的。然而,与相同的不包括小翼70的翼面比较,小翼70增加翼面42的刚性,和增加翼面42的局部厚度,使翼面42的位移减小。因此,因为小翼70增大翼面42的频率和减小诱发翼面42的能量,因此,翼面42接受较少的空气动力学扰动和较少的从涡区压力分布来的谐波输入。另外,因为小翼70离开顶部54一个径向距离,因此小翼70不与静止的覆环接触。另外,因为第一半径R1比第二半径R2大,第一半径可减小小翼70和翼面42之间的应力集中,因此可改善叶片40的强度和使用寿命。
图6为可以用于燃气涡轮发动机10(如图1所示)的转子叶片200的另一个实施例的横截面图。转子叶片200基本上与转子叶片40相同(如图2~5所示),在图6中,与转子叶片40的零件相同的转子叶片200的零件,利用在图2~5中使用的相同的符号表示。特别是,在一个实施例中,除了转子叶片200包括除小翼70以外的第二小翼202以外,转子叶片200与转子叶片40相同。更具体地说,在该示例性实施例中,第二小翼202与肋70相同,但在侧壁44,而不是侧壁46上延伸。
第二小翼202从第一侧壁44向外伸出,并且其轮廓形状与侧壁44一致,因此,可以跟随在侧壁44上延伸的气流流线。在该示例性实施例中,第二小翼202在弦向方向,基本上横越侧壁44延伸,使该第二小翼202基本上与靠近前缘48和靠近后缘50的侧壁44齐平。另一种方案是,该第二小翼202在非弦向方向,与侧壁46对准。更具体地说,在该示例性实施例中,该第二小翼202分别基本上在翼面前缘48和后缘50之间,在弦向延伸。另外,该第二小翼202只延伸至翼面前缘48或后缘50中的一个上。在又一个实施例中,该第二小翼202只部分地沿着侧壁46,在翼面前缘48和后缘50之间延伸,并不延伸至前缘48或后缘50。
根据叶片40的工作和性能特性,可以变化地选择该第二小翼202的几何形状,包括其相对于叶片40的相对位置,尺寸和该第二小翼202的长度。在一个实施例中,该第二小翼202距离该翼面顶部54一个径向距离102,因此基本上在径现与上述小翼70对准。在另一个实施例中,该第二小翼202在径向不与小翼70对准。
上述的转子叶片成本低,很可靠。该转子叶片包括一个从该翼面表面中的至少一个表面向外伸出的小翼。该小翼便于在发动机正常工作速度范围外调整叶片的弦向模式频率。另外,该小翼的刚性可以减小导入每一个相应的翼面中的能量的量。另外,该小翼还可改善相对于具有基本上较小顶部弦长的翼面的该翼面的性能。结果,该小翼在以低成本和高可靠性提供叶片的空气力学稳定性的同时,可维持该叶片的空气动力学性能。
以上详细说明了叶片组件的示例性实施例。该叶片组件不是仅限于所述的具体实施例,而是每一个组件的零件可以独立地,与所述其他零件分开地使用。每一个转子叶片零件还可与其他转子叶片零件综合使用。
虽然针对各种具体实施例说明了本发明,但业内人士知道,在权利要求书的精神和范围内可对本发明进行改造。

Claims (6)

1.一种燃气涡轮发动机(10)的翼面(42),所述翼面包括:
一个前缘(48);
一个后缘(50);
一个顶部(54);
沿翼面根部(52)和所述顶部之间的径向翼展延伸的第一侧壁(44);所述第一侧壁限定所述翼面的一第一侧面;
在所述前缘和所述后缘处与所述第一侧壁连接的一第二侧壁(46);所述第二侧壁沿该翼面根部和所述顶部之间的径向翼展延伸,所述第二侧壁限定所述翼面的第二侧面;和
位于离前缘和后缘一个距离的一个小翼(70),其从所述第一侧壁和所述第二侧壁中至少一个侧壁向外伸出,使得半径R1在所述小翼和所述第一和第二侧壁中的至少一个侧壁之间延伸,所述小翼(70)离所述翼面顶部(54)一个径向距离。
2.如权利要求1所述的翼面(42),其特征为,所述小翼(70)还构形成,为所述翼面提供结构支承,使所述翼面的扭转或弦向振动的自然频率增加至在发动机(10)工作过程中在燃气涡轮发动机内不出现的一个频率。
3.如权利要求1所述的翼面(42),其特征为,所述小翼(70)包括非矩形的横截面轮廓。
4.如权利要求1所述的翼面(42),其特征为,还包括另一个小翼,其中一个小翼(70)从所述第一侧壁(44)向外伸出,另一个小翼(202)从所述第二侧壁(46)向外伸出。
5.如权利要求1所述的翼面(42),其特征为,所述小翼(70)利用电化学加工工艺与所述翼面整体制成。
6.一种燃气涡轮发动机(10),包括多个转子叶片(40),每一个所述转子叶片包括一个翼面(42),该翼面包括:一个前缘(48),一个后缘(50),一第一侧壁(44),一第二侧壁(46)和从所述第一侧壁和所述第二侧壁中的至少一个侧壁向外伸出、使得在所述小翼和所述第一和第二侧壁中的至少一个侧壁之间形成半径R1的至少一个小翼(70);所述翼面的第一和第二侧壁在所述前缘和后缘处轴向连接,所述第一和第二侧壁从叶片根部(52)沿径向延伸至翼面顶部(54),所述至少一个小翼位于离前缘和后缘一个距离,并且所述至少一个小翼离所述翼面顶部一个径向距离。
CN200410064464.5A 2003-08-28 2004-08-27 减小诱发压缩机翼面振动的装置 Active CN1598248B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/650,288 US6905309B2 (en) 2003-08-28 2003-08-28 Methods and apparatus for reducing vibrations induced to compressor airfoils
US10/650288 2003-08-28

Publications (2)

Publication Number Publication Date
CN1598248A CN1598248A (zh) 2005-03-23
CN1598248B true CN1598248B (zh) 2010-12-08

Family

ID=34104696

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200410064464.5A Active CN1598248B (zh) 2003-08-28 2004-08-27 减小诱发压缩机翼面振动的装置

Country Status (4)

Country Link
US (1) US6905309B2 (zh)
EP (1) EP1510652A3 (zh)
JP (1) JP4771672B2 (zh)
CN (1) CN1598248B (zh)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7112043B2 (en) * 2003-08-29 2006-09-26 General Motors Corporation Compressor impeller thickness profile with localized thick spot
JP4545009B2 (ja) * 2004-03-23 2010-09-15 三菱重工業株式会社 遠心圧縮機
EP1591624A1 (de) * 2004-04-27 2005-11-02 Siemens Aktiengesellschaft Verdichterschaufel und verdichter
US20060073022A1 (en) * 2004-10-05 2006-04-06 Gentile David P Frequency tailored thickness blade for a turbomachine wheel
US7497664B2 (en) * 2005-08-16 2009-03-03 General Electric Company Methods and apparatus for reducing vibrations induced to airfoils
JP4863162B2 (ja) * 2006-05-26 2012-01-25 株式会社Ihi ターボファンエンジンのファン動翼
US7845549B2 (en) * 2006-05-31 2010-12-07 General Electric Company MIM braze preforms
US20100043228A1 (en) * 2007-12-28 2010-02-25 James Lloyd Daniels Method of Preparing an Engine for Ferry Flight
US20100047077A1 (en) * 2007-12-28 2010-02-25 General Electric Company Ferry Flight Engine Fairing Kit
FR2944049B1 (fr) * 2009-04-02 2014-06-27 Turbomeca Roue a aubes dont les pales sont desaccordees
DE102009057987B4 (de) * 2009-12-11 2020-08-20 BMTS Technology GmbH & Co. KG Ladeeinrichtung und Leitschaufel für eine derartige Ladeeinrichtung
DE102012222953A1 (de) * 2012-12-12 2014-06-26 Honda Motor Co., Ltd. Flügelprofil für einen Axialströmungskompressor
US10465531B2 (en) 2013-02-21 2019-11-05 General Electric Company Turbine blade tip shroud and mid-span snubber with compound contact angle
DE102013209966A1 (de) * 2013-05-28 2014-12-04 Honda Motor Co., Ltd. Profilgeometrie eines Flügels für einen Axialkompressor
FR3022295B1 (fr) * 2014-06-17 2019-07-05 Safran Aircraft Engines Aube de turbomachine comportant une ailette anti-tourbillons
US20160024930A1 (en) * 2014-07-24 2016-01-28 General Electric Company Turbomachine airfoil
US20170130587A1 (en) * 2015-11-09 2017-05-11 General Electric Company Last stage airfoil design for optimal diffuser performance
US10156146B2 (en) 2016-04-25 2018-12-18 General Electric Company Airfoil with variable slot decoupling
US10935041B2 (en) * 2016-06-29 2021-03-02 Rolls-Royce Corporation Pressure recovery axial-compressor blading
US10907648B2 (en) * 2016-10-28 2021-02-02 Honeywell International Inc. Airfoil with maximum thickness distribution for robustness
US10895161B2 (en) 2016-10-28 2021-01-19 Honeywell International Inc. Gas turbine engine airfoils having multimodal thickness distributions
EP3441566B1 (en) * 2017-08-08 2020-04-15 Honeywell International Inc. Airfoil with distribution of thickness maxima for providing robustness
BE1026579B1 (fr) * 2018-08-31 2020-03-30 Safran Aero Boosters Sa Aube a protuberance pour compresseur de turbomachine
KR102411655B1 (ko) 2019-08-23 2022-06-21 두산에너빌리티 주식회사 베인과 이를 포함하는 압축기 및 가스 터빈
US11692462B1 (en) 2022-06-06 2023-07-04 General Electric Company Blade having a rib for an engine and method of directing ingestion material using the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3012709A (en) * 1955-05-18 1961-12-12 Daimler Benz Ag Blade for axial compressors
US3193185A (en) * 1962-10-29 1965-07-06 Gen Electric Compressor blading
US3653110A (en) * 1970-01-05 1972-04-04 North American Rockwell Method of fabricating hollow blades
US3706512A (en) * 1970-11-16 1972-12-19 United Aircraft Canada Compressor blades
US4108573A (en) * 1977-01-26 1978-08-22 Westinghouse Electric Corp. Vibratory tuning of rotatable blades for elastic fluid machines
US6503053B2 (en) * 1999-11-30 2003-01-07 MTU Motoren-und Turbinen München GmbH Blade with optimized vibration behavior

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2920864A (en) * 1956-05-14 1960-01-12 United Aircraft Corp Secondary flow reducer
GB1060338A (en) * 1965-07-22 1967-03-01 Rolls Royce Method and apparatus for making an aerofoil-shaped blade
US3758231A (en) * 1971-07-15 1973-09-11 Vernco Corp Flexible fan
US4012165A (en) * 1975-12-08 1977-03-15 United Technologies Corporation Fan structure
US4589824A (en) 1977-10-21 1986-05-20 United Technologies Corporation Rotor blade having a tip cap end closure
US4227703A (en) * 1978-11-27 1980-10-14 General Electric Company Gas seal with tip of abrasive particles
US4720239A (en) * 1982-10-22 1988-01-19 Owczarek Jerzy A Stator blades of turbomachines
JPH01313602A (ja) * 1988-06-10 1989-12-19 Agency Of Ind Science & Technol 空気穴付タービンブレードの製造方法
GB2236147B (en) * 1989-08-24 1993-05-12 Rolls Royce Plc Gas turbine engine with turbine tip clearance control device and method of operation
WO1992017686A1 (en) * 1991-04-02 1992-10-15 Rolls-Royce Plc Turbine casing
US5305599A (en) * 1991-04-10 1994-04-26 General Electric Company Pressure-ratio control of gas turbine engine
US5269057A (en) * 1991-12-24 1993-12-14 Freedom Forge Corporation Method of making replacement airfoil components
US5261789A (en) 1992-08-25 1993-11-16 General Electric Company Tip cooled blade
FR2708669B1 (fr) * 1993-08-05 1995-09-08 Snecma Système de ventilation des disques et du stator de turbine d'un turboréacteur.
JP3040650B2 (ja) * 1994-01-10 2000-05-15 三菱重工業株式会社 電解研磨装置
JP3353259B2 (ja) * 1994-01-25 2002-12-03 謙三 星野 タ−ビン
DE4432998C1 (de) * 1994-09-16 1996-04-04 Mtu Muenchen Gmbh Anstreifbelag für metallische Triebwerkskomponente und Herstellungsverfahren
US5611197A (en) * 1995-10-23 1997-03-18 General Electric Company Closed-circuit air cooled turbine
GB2313161B (en) * 1996-05-14 2000-05-31 Rolls Royce Plc Gas turbine engine casing
US5782076A (en) * 1996-05-17 1998-07-21 Westinghouse Electric Corporation Closed loop air cooling system for combustion turbines
US6065282A (en) * 1997-10-29 2000-05-23 Mitsubishi Heavy Industries, Ltd. System for cooling blades in a gas turbine
US6574965B1 (en) * 1998-12-23 2003-06-10 United Technologies Corporation Rotor tip bleed in gas turbine engines
DE19913269A1 (de) * 1999-03-24 2000-09-28 Asea Brown Boveri Turbinenschaufel
US6179556B1 (en) 1999-06-01 2001-01-30 General Electric Company Turbine blade tip with offset squealer
DE19933445C2 (de) * 1999-07-16 2001-12-13 Mtu Aero Engines Gmbh Dichtring für nicht- hermetische Fluiddichtungen
US6164914A (en) 1999-08-23 2000-12-26 General Electric Company Cool tip blade
US6299412B1 (en) 1999-12-06 2001-10-09 General Electric Company Bowed compressor airfoil
US6341942B1 (en) * 1999-12-18 2002-01-29 General Electric Company Rotator member and method
DE50015514D1 (de) * 1999-12-20 2009-02-26 Sulzer Metco Ag Profilierte, als Anstreifschicht verwendete Oberfläche in Strömungsmaschinen
US6378287B2 (en) * 2000-03-17 2002-04-30 Kenneth F. Griffiths Multi-stage turbomachine and design method
US6582183B2 (en) * 2000-06-30 2003-06-24 United Technologies Corporation Method and system of flutter control for rotary compression systems
US6524070B1 (en) * 2000-08-21 2003-02-25 General Electric Company Method and apparatus for reducing rotor assembly circumferential rim stress
US6533285B2 (en) * 2001-02-05 2003-03-18 Caterpillar Inc Abradable coating and method of production
US6382913B1 (en) 2001-02-09 2002-05-07 General Electric Company Method and apparatus for reducing turbine blade tip region temperatures
ITTO20011075A1 (it) * 2001-11-16 2003-05-16 Fiatavio Spa Organo a palette, in particolare per una turbina assiale di un motoreaeronautico.
US6779979B1 (en) * 2003-04-23 2004-08-24 General Electric Company Methods and apparatus for structurally supporting airfoil tips

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3012709A (en) * 1955-05-18 1961-12-12 Daimler Benz Ag Blade for axial compressors
US3193185A (en) * 1962-10-29 1965-07-06 Gen Electric Compressor blading
US3653110A (en) * 1970-01-05 1972-04-04 North American Rockwell Method of fabricating hollow blades
US3706512A (en) * 1970-11-16 1972-12-19 United Aircraft Canada Compressor blades
US4108573A (en) * 1977-01-26 1978-08-22 Westinghouse Electric Corp. Vibratory tuning of rotatable blades for elastic fluid machines
US6503053B2 (en) * 1999-11-30 2003-01-07 MTU Motoren-und Turbinen München GmbH Blade with optimized vibration behavior

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
US 6503053 B2,全文.

Also Published As

Publication number Publication date
EP1510652A3 (en) 2012-08-08
JP4771672B2 (ja) 2011-09-14
US6905309B2 (en) 2005-06-14
CN1598248A (zh) 2005-03-23
US20050047919A1 (en) 2005-03-03
EP1510652A2 (en) 2005-03-02
JP2005076634A (ja) 2005-03-24

Similar Documents

Publication Publication Date Title
CN1598248B (zh) 减小诱发压缩机翼面振动的装置
CN101344014B (zh) 用于回转式机械的翼型件及其制造方法
US8333559B2 (en) Outlet guide vanes for axial flow fans
US7527477B2 (en) Rotor blade and method of fabricating same
US6471474B1 (en) Method and apparatus for reducing rotor assembly circumferential rim stress
CA2697121C (en) Intentionally mistuned integrally bladed rotor
CN100406679C (zh) 逆向扭转的压气机翼面
CN103814192B (zh) 高弯度压缩机转子叶片
CN100443735C (zh) 一种用于燃气涡轮发动机的导流叶片组件
EP1111191A2 (en) Periodic stator airfoils
JPH04262002A (ja) 蒸気タービンの静翼構造
US7874794B2 (en) Blade row for a rotary machine and method of fabricating same
US20060275126A1 (en) Turbine rotor hub contour
EP2689107A1 (en) High camber stator vane
US6779979B1 (en) Methods and apparatus for structurally supporting airfoil tips
EP3092413A1 (en) Centrifugal compressor impeller with non-linear blade leading edge and associated design method
US7270519B2 (en) Methods and apparatus for reducing flow across compressor airfoil tips
JPH03138404A (ja) 蒸気タービン用の羽根
CN115853598B (zh) 轴向进气的涡轮叶片冷气增压叶轮及预旋增压供气系统
CN113446261B (zh) 一种超声速吸附式压气机串列静子叶片
CN211008775U (zh) 一种带长短翼的动叶片及转子
CN217682445U (zh) 压缩机叶轮和车辆中的增压设备
CN215256873U (zh) 一种涡轮分子泵
JPH04269302A (ja) 蒸気タービンの静翼
Cho et al. Study of Reverse Design for an Axial Turbine Blade Profile and Design Parameters for Designing Blade Geometry

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant