CN100406679C - 逆向扭转的压气机翼面 - Google Patents

逆向扭转的压气机翼面 Download PDF

Info

Publication number
CN100406679C
CN100406679C CNB2004100560391A CN200410056039A CN100406679C CN 100406679 C CN100406679 C CN 100406679C CN B2004100560391 A CNB2004100560391 A CN B2004100560391A CN 200410056039 A CN200410056039 A CN 200410056039A CN 100406679 C CN100406679 C CN 100406679C
Authority
CN
China
Prior art keywords
mentioned
aerofoil
blade
section
along
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CNB2004100560391A
Other languages
English (en)
Other versions
CN1580495A (zh
Inventor
B·K·多罗雷斯科
P·J·伍德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of CN1580495A publication Critical patent/CN1580495A/zh
Application granted granted Critical
Publication of CN100406679C publication Critical patent/CN100406679C/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/141Shape, i.e. outer, aerodynamic form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/321Rotors specially for elastic fluids for axial flow pumps for axial flow compressors
    • F04D29/324Blades
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S416/00Fluid reaction surfaces, i.e. impellers
    • Y10S416/02Formulas of curves

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

一种压气机转子叶片(20)具有沿叶片前缘和后缘(30,32)处连接在一起并在叶根(34)与叶尖(36)之间沿翼面全长延伸的相反的压力侧和负压侧(26,28)。上述叶片(20)的扭转角从叶根(34)往上逐渐增大,然后从叶片的中间翼展节距截面处往上逐渐减小。

Description

逆向扭转的压气机翼面
技术领域
本发明总的涉及燃气涡轮发动机,更具体地涉及其中的压气机。
背景技术
在燃气涡轮的压气机内,空气在压气机内受到压缩,并在燃烧室内与燃油混合而燃烧产生热的燃气。该燃气被排出而通过各级涡轮,涡轮从中吸取能量而驱动压气机,并产生输出功率在一个示例性涡扇式航空发动机应用中用于驱动一风扇。
多级的轴流式压气机具有多排互相协作的定子导叶和转子叶片,转子叶片的尺寸逐级减小以对空气加压。压气机定子导叶和转子叶片具有相应的翼面,该翼面的形状通常随其尺寸逐级减小而变化,以便获得最好的压气机性能。压气机性能包括例如压缩效率、流量生产率、和失速容限,这些性能全都受定子导叶和转子叶片形状的影响。
更具体地说,当空气通过定子导叶和转子叶片而受压缩时,其流量或压力的分布是一种复杂的三维流场,该流场沿圆周环绕压气机而变化,并沿径向沿定子导叶和转子叶片翼面翼展而变化,且沿轴向沿该翼面的圆周相反的压力侧和负压侧而变化。
叶片的压力侧是与相反的通常是凸起的负压侧相配合的通常为凹入的表面,以便当空气沿叶片前缘与后缘之间的轴向向下游方向流过叶片之间时受到有效的压缩。被压缩的空气的压力分布从翼面的径向内根部至径向外尖部是变化的,上述翼面的径向外尖部紧紧靠近环绕的压气机壳体而形成一个合适的径向空隙或者说间隙。
该翼面本身可按任何合适的方式由压气机转子来支承,例如,可整体地做成一种整体叶盘状,或者每个转子翼面具有一个整体的座和燕尾榫,将该压气机叶片安装在压气机转子周边上形成的相应的燕尾槽内。
影响压气机性能的一个重要特性是翼面尖部与环形壳体之间形成的径向间隙。该间隙应当尽可能地小,以便最大限度地减少流过的流量损失,但是,该间隙又必须足够地大,以便适应压气机的瞬间作业,这种作业可能偶尔引起叶尖磨损。叶尖磨损时,便从叶尖磨下材料,并积集在壳体内表面上。磨短的叶尖使其与壳体之间的间隙增大而降低压气机性能,这又受积集在壳体内表面的磨下的材料的影响,即破坏空气流的顺利流动。
尽管如此,涡扇式航空发动机的多级轴流式压气机的商用实践经验还是证明压气机转子叶片具有长的工作寿命和压气机具有持续的高性能。但是,在有用的叶片寿命期间,偶尔的压气机转子叶片叶尖的磨损增大了叶尖间隙并降低压气机性能。由于叶尖磨损造成的压气机性能降低还会降低发动机的性能,因为压缩空气要用于燃烧过程,且要从涡轮中的燃气中获取能量。
因此,希望提供一种即使由于叶尖磨损而增大叶尖间隙也具有高的气动效率的压气机转子翼面。
发明内容
根据本发明,提供了一种用于对环形壳体内的空气进行压缩的压气机翼面,该翼面具有:沿侧向相反的压力侧和负压侧,该压力侧和负压侧在弦长方向相反的前缘和后缘处连接在一起,并从叶根沿翼展延伸至叶尖;在上述叶根以上逐渐增大而在上述翼面的中间翼展的节距截面以上则逐渐减小的扭转角;和在上述节距截面以上至上述叶尖逐渐增大的相对于上述壳体的两面角。
附图说明
在下面结合附图的详细说明中,按照优选的和示例性实施例更详细地说明本发明的其他的目的和优点,附图中:
图1是多级轴流式压气机中一排压气机转子翼面的局部轴向投影侧视图;
图2是单独的一个图1所示示例性转子叶片的等角视图;
图3是图2所示压气机翼面沿3-3线的径向顶视图;
图4是在图1-3所示示例性实施例中扭转角沿其径向翼展变化的曲线;
图5是在图1-3所示示例性实施例中翼面的两面角在该径向翼展上沿翼面前缘变化的曲线;
图6是在图1-3所示示例性实施例中翼面的气动后掠角在该径向翼展上沿前缘和后缘变化的曲线。
具体实施方式
图1示出一排适宜地安装在燃气涡轮发动机的一种多级轴流式压气机的压气机转子(只示出局部)12上的压气机转子叶片10。压气机有几级与相应的压气机转子叶片协同配合的定子导叶(未示出),上述各级转子叶片的尺寸沿工作时压缩空气向下游的方向逐渐减小。压气机转子12沿发动机中心轴线16轴向对称,并在环形壳体18内支承着全排转子叶片10。
每个压气机转子叶片10具有一个在转子周围与壳体18的内表面之间沿径向轴线Z沿翼展延伸的翼面20,该翼面20可与转子12做成一个整体的叶盘外形,或按普通方式将二者可拆卸地连接。
例如,每个翼面具有一个界定被压缩的空气的内边界的整体座22。从与叶片做成整体的座22伸出一个整体的燕尾榫将叶片安装在转子周边上的相匹配的燕尾槽内,在图1所示的示例性实施例中,燕尾榫24是一种适合于安装在转子周边上的沿圆周插入的燕尾榫。
图1和2示出优选实施例的压气机转子叶片的翼面20,它具有沿圆周或者说沿侧向相反的压力侧和负压侧26,28。压力侧26通常是凹入的,当叶片沿圆周方向(以Y轴线表示)转动时,上述压力侧26位于通常是凸出的负压侧之前,并位于转子12的上部。轴线X平行于发动机中心轴线,代表通过多级压气机受压缩的空气流14的下游方向。
压力侧和负压侧26,28的相应表面在沿轴线或者说沿弦长方向相反的前缘和后缘30,32处连接在一起,并从与座22邻接的叶根34向叶尖36沿径向翼展延伸。
如图1所示,叶尖36位于紧邻环形壳体18的内表面处,并在它们之间形成一个在翼面前缘30与后缘32之间大致恒等的径向空隙或者说间隙。为了在空气14向下游流过每级压气机的转子叶片之间时对空气加压,翼面20通常做出大致为凹面形状的压力侧26和大致为凸面形状的负压侧28。
按照普通的实践经验做出叶片的三维形状,以便获得压气机的最佳气动性能包括效率、流量和失速容限。而且,叶片的形状也要设计成可最大限度地减小压气机叶片转动时所产生的离心力。
例如,普通的压气机转子叶片设计成具有从叶根至叶尖逐渐变化的扭转或者说交错,叶片各径向截面的重心沿合适的径向层叠轴线(可以选直线或弯曲线)重叠,以便减小工作时的离心应力。该翼面的表面设置比相反于被压缩的进入空气14具有合适的气动后掠角的值,该值在翼面前缘与后缘之间以及从叶根至叶尖是变化的。
如上所述,翼面尖部与壳体18的偶尔磨损可增大它们间的径向间隙,并降低普通压气机转子叶片的压气性能。为了减小图1和2所示压气机翼面对由于叶尖磨损所造成的间隙增大的敏感性,并且为了改善压气机性能,对翼面20作了如下所述的合理改进。
例如,图3示出图2所示叶片的上视图,在其压力侧和负压侧表面布满矩形格子。翼面上每个径向截面有一根从其前缘伸至后缘的直的弦38,该弦38与轴向的轴线X形成一个扭转角或者说交错角A。图4的曲线示出示例性实施例中扭转角A(°)从叶根(翼展为0)至名义叶尖(翼展为一单位(1.0))的变化情况。
图1~3所示压气机翼面的重要特征是引入沿其翼展弯曲的或者说逆向的扭转。该扭转角最好是在叶根34上方逐渐增大,而在中间翼展节距截面40上方逐渐减小。
在普通的压气机转子翼面中,扭转角通常从叶根至叶尖增大。理想的扭转角主要取决于受压缩的空气的压力分布,这种压力分布从叶根至叶尖是变化的。与此不同,图2和3所示压气机转子翼面的扭转角从叶根34的最小值至中间翼展节距截面40逐渐增大至较大值,然后,在截面40上方逐渐减小至叶根扭转角的值。
在图4所示的示例性曲线中,叶根的扭转角最小,约为40°,而在中间翼展节距截面40以上逐渐增至最大值,约为47°,然后,此最大值向叶尖逐渐减小,在叶尖约为43°,稍大于叶根的扭转角。最大扭转角最好位于叶片的中间翼展节距截面上方,有利于获得沿翼面翼展的理想压力分布。在图4所示的示例性实施例中,最大扭转角的值位于离叶根约60~65%翼展范围内。
在压气机翼面的中间翼展节距截面上方引入相反的或者说逆向的扭转角,使图2和3所示翼面具有不同的形状。在叶片的外翼展的逆向扭转角使其叶尖的扭转角明显小于普通压气机翼面在该部位的扭转角,从而显著减小了由于叶尖磨损所造成的间隙敏感性(正如三维计算机流体动力分析所证实的那样)。这就提高了正常间隙值的情况下的翼面气动效率,也显著提高由于叶尖磨损而增大间隙的情况下的叶片气动效率。分析研究还表明,叶尖间隙增大情况下的流体泵送性能也有改善,并有可能改善失速容限。
在图2和3所示的翼面上采用或者说表现逆向扭转,主要是沿相反于翼面后缘32的前缘30。尾缘32从叶根至叶尖基本上是直的,而前缘30则具有一个沿负压侧28的径向翼展的特殊的凹弓形,当叶片沿切向或者说图3所示圆周Y方向转动时,叶根和叶尖跟随翼面节距截面40运动。
图2和3所示压气机翼面叶尖的扭转减小或者说降低有利于增大叶尖前缘的两面角。叶尖的两面角在图2规定为翼面局部表面与图1所示环形壳体18之间的夹角β。叶尖两面角是一种普通参数,叶尖两面角为零则使叶尖取向垂直于壳体内表面。当叶尖的压力侧或叶尖的压力侧和负压侧与环形壳体形成一锐角时,使得到正值的叶尖两面角。
图5示出沿图1~3所示的翼面前缘相反于环形壳体的两面角B的示例性曲线图,可以看出,在翼面节距截面以上两面角逐渐增大,至叶尖36处为最大值。
如图5所示,节距截面以上的两面角是正值,并与叶根与节距截面之间的两面角相反,后者主要是负值。沿叶尖36的前缘30的两面角最好逐渐大于节距截面40以下的两面角。在图5所示的示例性实施例中,两面角从叶根处的零值变化到在约25%翼展处的最大负值7°左右,在约40%翼展处的节距截面下方回到零值,然后在100%翼展的叶尖处增大到约25°的最大值。
两面角B与上述的扭转角A相配合(二者皆沿翼面前缘30变化),使翼面前缘30沿负压侧28的全翼展成为凹弓形。两面角与扭转角相配合使翼面前缘处沿叶尖具有最大值的所需正两面角,而在叶片尾缘处具有较小的但仍然是正值的两面角。相应地,在稍高于叶根处两面角立即为负值,并与翼面的逆向扭转一起形成图2和3所示的特殊的反向弓形前缘30。
图3和5示出单向的两面角的最佳布局,从翼面前缘30至后缘32沿叶尖36都是相同的正值。这样,叶尖处就不会出现不希望有的负值两面角,从而改善叶片气动性能包括偶然的叶尖磨损后的性能。
图1所示的压气机转子翼面还具有气动后掠角C,这是一个技术上的普通术语。逆向扭转角和叶尖两面角允许新引入一个在叶尖16和前缘30和后缘32上的向前的或者说负的气动后掠角,以便进一步提高压气机叶片的气动性能。
图6是图1所示叶片的沿其径向翼展的前缘和后缘30,32的气动后掠角C(°)的示例性曲线图。在沿前缘和后缘处的叶尖上都介入负值的或者说向前的气动后掠角,而尾缘处的后掠角较大。从叶根34至节距截面40的翼面上介入向后的或者说正值的气动后掠角,然后,沿前缘和后缘在即将到达叶尖的下方,曲线沿径向向外延伸。沿翼面前缘30,后掠角在约90%翼展处从正值转变为负值,而沿叶片后缘32,后掠角在约80%翼展处从正值转变为负值。
图1示出翼面的轴向投影图或者说子午线视图,示出该翼面具有一个沿前缘30的凹入的轴向投影,叶根34和叶尖36沿翼面前缘向节距截面40的前方延伸。在这个轴向弯曲或者凹入的前缘投影上,翼面的外翼展是沿轴向向中间翼展的前方区,并允许在前缘和后缘都介入气动力学上满意的向前的叶尖后掠角。另外,轴向向前的叶尖部分允许叶尖处的后缘两面角保持满意的正值,从而避免沿叶尖出现不希望有的负值两面角。
如上所述,压气机转子叶片是复杂而尖端的三维零件,在通常设计中,综合考虑了各种气动性能和机械强度方面的相互矛盾的要求。扭转角、两面角和气动后掠角是设计现代压气机转子叶片时所用的全部普通特性,正如纳入本文参考的例示资料所述的那样。
但是,图1~3所示的示例性压气机转子叶片具有形式上与众不同的扭转角、两面角和气动后掠角,有利地用于不仅在叶尖与壳体的正常间隙的情况下提高压气机性能,而且在燃气涡轮发动上长期使用叶片致使叶尖磨损后而增大上述间隙的情况下仍有高的压气机性能。
在附图所示的压气机转子叶片叶尖上采用特定形式的扭转角、两面角和气动后掠角与翼面内翼展部分的扭转角、两面角和气动后掠角相结合,形成了新型的总体形状,并相应地提高了性能。
虽然上面说明了据认为是本发明的优选的和示例性实施例,但是,熟悉本技术的人们显然可从本发明原理出发作出其他的改进,因此要求将所有符合本发明实际精神和范围的上述改进都纳入所附权利要求书中。
因此,要求由美国专利证书保护的内容就是下列权利要求所规定和可区别的本发明内容。
零部件表
10  转子叶片
12  压气机转子
14  空气流
16  中心轴线
18  压气壳体
20  叶片的翼面
22  座
24  燕尾榫
26  压力侧
28  负压侧
30  前缘
32  后缘
34  叶根
36  叶尖
38  叶弦
40  节距截面

Claims (10)

1.一种用于对环形壳体(18)内的空气(14)进行压缩的压气机翼面(20),该翼面具有:
沿侧向相反的压力侧和负压侧(26,28),该压力侧和负压侧在弦长方向相反的前缘和后缘(30,32)处连接在一起,并从叶根(34)沿翼展延伸至叶尖(36);
在上述叶根(34)以上逐渐增大而在上述翼面的中间翼展的节距截面(40)以上则逐渐减小的扭转角;和
在上述节距截面(40)以上至上述叶尖(36)逐渐增大的相对于上述壳体(18)的两面角。
2.根据权利要求1的翼面,其特征在于,还具有一个沿上述前缘(30)的凹入的轴向投影,上述的叶根(34)和叶尖(36)沿上述前缘(30)延伸至上述节距截面(40)的前方。
3.根据权利要求2的翼面,其特征在于,上述的扭转角从上述叶根(34)至上述节距截面(40)逐渐增大,然后在上述节距截面上方逐渐减小至叶根扭转角的量。
4.根据权利要求3的翼面,其特征在于,上述的在上述节距截面(40)上方的两面角与上述叶根(34)和上述节距截面(40)之间的两面角相对。
5.根据权利要求4的翼面,其特征在于,在上述节距截面(40)以上沿上述前缘(30)的两面角大于上述节距截面(40)下方的两面角。
6.根据权利要求5的翼面,其特征在于,还具有在上述叶尖(36)的上述前缘和后缘(30,32)处的向前的气动后掠角。
7.根据权利要求6的翼面,其特征在于,还具有沿上述前缘和后缘(30,32)的从上述叶根(34)至上述节距截面(40)并至上述叶尖(36)下方的向后的气动后掠角。
8.根据权利要求6的翼面,其特征在于,上述的扭转角沿叶片前缘(30)逐渐变化,而使上述前缘沿负压侧(28)的翼展弯曲成凹入形。
9.根据权利要求6的翼面,其特征在于,上述的两面角是单方向性地沿着上述前缘与后缘(30,32)之间的叶尖的。
10.根据权利要求6的翼面,其特征在于,上述的扭转角的最大值位于离上述叶根(34)60%~85%的翼展范围内。
CNB2004100560391A 2003-08-05 2004-08-05 逆向扭转的压气机翼面 Active CN100406679C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/634,545 US6899526B2 (en) 2003-08-05 2003-08-05 Counterstagger compressor airfoil
US10/634545 2003-08-05

Publications (2)

Publication Number Publication Date
CN1580495A CN1580495A (zh) 2005-02-16
CN100406679C true CN100406679C (zh) 2008-07-30

Family

ID=33552914

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004100560391A Active CN100406679C (zh) 2003-08-05 2004-08-05 逆向扭转的压气机翼面

Country Status (4)

Country Link
US (1) US6899526B2 (zh)
EP (1) EP1505302B1 (zh)
JP (1) JP4667787B2 (zh)
CN (1) CN100406679C (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103958833A (zh) * 2011-11-29 2014-07-30 斯奈克玛 一种特别用于整体式叶片盘的涡轮发动机叶片

Families Citing this family (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004054752A1 (de) * 2004-11-12 2006-05-18 Rolls-Royce Deutschland Ltd & Co Kg Schaufel einer Strömungsarbeitsmaschine mit erweiterter Randprofiltiefe
US7497664B2 (en) * 2005-08-16 2009-03-03 General Electric Company Methods and apparatus for reducing vibrations induced to airfoils
US7726937B2 (en) * 2006-09-12 2010-06-01 United Technologies Corporation Turbine engine compressor vanes
FR2908152B1 (fr) * 2006-11-08 2009-02-06 Snecma Sa Aube en fleche de turbomachine
US8292574B2 (en) 2006-11-30 2012-10-23 General Electric Company Advanced booster system
US8087884B2 (en) * 2006-11-30 2012-01-03 General Electric Company Advanced booster stator vane
US7967571B2 (en) * 2006-11-30 2011-06-28 General Electric Company Advanced booster rotor blade
US7806653B2 (en) * 2006-12-22 2010-10-05 General Electric Company Gas turbine engines including multi-curve stator vanes and methods of assembling the same
JP2009008014A (ja) * 2007-06-28 2009-01-15 Mitsubishi Electric Corp 軸流ファン
ITFO20080002A1 (it) * 2008-02-19 2008-05-20 Paolo Pietricola Pale rotoriche e statoriche con lean sinusoidale
EP2133573B1 (en) 2008-06-13 2011-08-17 Siemens Aktiengesellschaft Vane or blade for an axial flow compressor
US8147207B2 (en) * 2008-09-04 2012-04-03 Siemens Energy, Inc. Compressor blade having a ratio of leading edge sweep to leading edge dihedral in a range of 1:1 to 3:1 along the radially outer portion
US8480372B2 (en) * 2008-11-06 2013-07-09 General Electric Company System and method for reducing bucket tip losses
US8167567B2 (en) 2008-12-17 2012-05-01 United Technologies Corporation Gas turbine engine airfoil
US8747072B2 (en) * 2010-05-21 2014-06-10 Alstom Technology Ltd. Airfoil for a compressor blade
US8708660B2 (en) * 2010-05-21 2014-04-29 Alstom Technology Ltd Airfoil for a compressor blade
GB2483061A (en) * 2010-08-23 2012-02-29 Rolls Royce Plc A method of damping aerofoil structure vibrations
JP5703750B2 (ja) * 2010-12-28 2015-04-22 株式会社Ihi ファン動翼及びファン
US8702398B2 (en) * 2011-03-25 2014-04-22 General Electric Company High camber compressor rotor blade
US8684698B2 (en) * 2011-03-25 2014-04-01 General Electric Company Compressor airfoil with tip dihedral
FR2981118B1 (fr) 2011-10-07 2016-01-29 Snecma Disque aubage monobloc pourvu d'aubes a profil de pied adapte
US9017036B2 (en) * 2012-02-29 2015-04-28 United Technologies Corporation High order shaped curve region for an airfoil
US10633985B2 (en) * 2012-06-25 2020-04-28 General Electric Company System having blade segment with curved mounting geometry
FR2992376B1 (fr) * 2012-06-25 2016-03-04 Snecma Soufflante a calage variable par rotation differentielle des disques de soufflante
US9845683B2 (en) 2013-01-08 2017-12-19 United Technology Corporation Gas turbine engine rotor blade
WO2014141417A1 (ja) * 2013-03-14 2014-09-18 三菱電機株式会社 羽根車及びこれを用いた軸流送風機
FR3003598B1 (fr) 2013-03-20 2018-04-06 Safran Aircraft Engines Aube et angle de diedre d'aube
EP2827003B1 (de) * 2013-07-15 2019-04-10 MTU Aero Engines GmbH Gasturbinen-Verdichter-Leitgitter
FR3009588B1 (fr) * 2013-08-07 2018-01-26 Safran Aircraft Engines Aube mobile de turbomachine
US9908170B2 (en) 2014-02-03 2018-03-06 Indian Institute Of Technology, Bombay Blade for axial compressor rotor
EP3108105B1 (en) 2014-02-19 2021-05-12 Raytheon Technologies Corporation Gas turbine engine airfoil
WO2015126715A1 (en) * 2014-02-19 2015-08-27 United Technologies Corporation Gas turbine engine airfoil
US10495106B2 (en) 2014-02-19 2019-12-03 United Technologies Corporation Gas turbine engine airfoil
US10605259B2 (en) 2014-02-19 2020-03-31 United Technologies Corporation Gas turbine engine airfoil
WO2015127032A1 (en) * 2014-02-19 2015-08-27 United Technologies Corporation Gas turbine engine airfoil
US10519971B2 (en) 2014-02-19 2019-12-31 United Technologies Corporation Gas turbine engine airfoil
US9163517B2 (en) * 2014-02-19 2015-10-20 United Technologies Corporation Gas turbine engine airfoil
EP3108100B1 (en) 2014-02-19 2021-04-14 Raytheon Technologies Corporation Gas turbine engine fan blade
US10590775B2 (en) 2014-02-19 2020-03-17 United Technologies Corporation Gas turbine engine airfoil
EP3108115B8 (en) 2014-02-19 2023-11-08 RTX Corporation Turbofan engine with geared architecture and lpc blades
WO2015126837A1 (en) * 2014-02-19 2015-08-27 United Technologies Corporation Gas turbine engine airfoil
EP3108106B1 (en) 2014-02-19 2022-05-04 Raytheon Technologies Corporation Gas turbine engine airfoil
US10557477B2 (en) 2014-02-19 2020-02-11 United Technologies Corporation Gas turbine engine airfoil
US9599064B2 (en) 2014-02-19 2017-03-21 United Technologies Corporation Gas turbine engine airfoil
US20170175759A1 (en) * 2014-02-19 2017-06-22 United Technologies Corporation Gas turbine engine airfoil
US9567858B2 (en) 2014-02-19 2017-02-14 United Technologies Corporation Gas turbine engine airfoil
WO2015126793A1 (en) 2014-02-19 2015-08-27 United Technologies Corporation Gas turbine engine airfoil
WO2015175044A2 (en) 2014-02-19 2015-11-19 United Technologies Corporation Gas turbine engine airfoil
US10570915B2 (en) 2014-02-19 2020-02-25 United Technologies Corporation Gas turbine engine airfoil
WO2015126454A1 (en) 2014-02-19 2015-08-27 United Technologies Corporation Gas turbine engine airfoil
WO2015175043A2 (en) 2014-02-19 2015-11-19 United Technologies Corporation Gas turbine engine airfoil
EP3108114B1 (en) 2014-02-19 2021-12-08 Raytheon Technologies Corporation Gas turbine engine airfoil
US10385866B2 (en) 2014-02-19 2019-08-20 United Technologies Corporation Gas turbine engine airfoil
EP3108122B1 (en) 2014-02-19 2023-09-20 Raytheon Technologies Corporation Turbofan engine with geared architecture and lpc airfoils
WO2015153411A1 (en) * 2014-04-02 2015-10-08 United Technologies Corporation Gas turbine engine airfoil
JP6468414B2 (ja) * 2014-08-12 2019-02-13 株式会社Ihi 圧縮機静翼、軸流圧縮機、及びガスタービン
US9765795B2 (en) 2014-08-27 2017-09-19 Pratt & Whitney Canada Corp. Compressor rotor airfoil
CN106574505B (zh) 2014-08-29 2018-06-19 西门子公司 用于燃气涡轮发动机的受控会聚压缩机流动路径
EP3051142B1 (de) 2015-01-28 2017-10-11 MTU Aero Engines GmbH Gasturbinen-axialverdichter
EP3081751B1 (en) 2015-04-14 2020-10-21 Ansaldo Energia Switzerland AG Cooled airfoil and method for manufacturing said airfoil
JP6421091B2 (ja) * 2015-07-30 2018-11-07 三菱日立パワーシステムズ株式会社 軸流圧縮機、それを備えたガスタービン、及び軸流圧縮機の静翼
ES2717801T3 (es) * 2015-10-26 2019-06-25 MTU Aero Engines AG Alabe móvil
GB201519946D0 (en) 2015-11-12 2015-12-30 Rolls Royce Plc Compressor
GB2544735B (en) * 2015-11-23 2018-02-07 Rolls Royce Plc Vanes of a gas turbine engine
US10221859B2 (en) * 2016-02-08 2019-03-05 General Electric Company Turbine engine compressor blade
RU167312U1 (ru) * 2016-03-24 2017-01-10 Федеральное государственное унитарное предприятие "Центральный институт авиационного моторостроения им. П.И. Баранова" Лопатка рабочего колеса высокооборотного осевого компрессора
DE102016115868A1 (de) * 2016-08-26 2018-03-01 Rolls-Royce Deutschland Ltd & Co Kg Strömungsarbeitsmaschine mit hohem Ausnutzungsgrad
WO2019012102A1 (en) * 2017-07-14 2019-01-17 Siemens Aktiengesellschaft COMPRESSOR BLADE AND AXIAL COMPRESSOR COMPRISING SAID BLADE
US20190106989A1 (en) * 2017-10-09 2019-04-11 United Technologies Corporation Gas turbine engine airfoil
EP3502482B1 (en) * 2017-12-20 2020-08-26 Ansaldo Energia Switzerland AG Compressor blade with modified stagger angle spanwise distribution
JP6953322B2 (ja) * 2018-02-01 2021-10-27 本田技研工業株式会社 ファンブレードの形状決定方法
US11454120B2 (en) 2018-12-07 2022-09-27 General Electric Company Turbine airfoil profile
JP2021025489A (ja) * 2019-08-07 2021-02-22 株式会社Ihi 軸流式のファン及び圧縮機の動翼
DE102019220493A1 (de) 2019-12-20 2021-06-24 MTU Aero Engines AG Gasturbinenschaufel
US11286779B2 (en) * 2020-06-03 2022-03-29 Honeywell International Inc. Characteristic distribution for rotor blade of booster rotor
CN112032105B (zh) * 2020-11-05 2021-01-29 中国航发上海商用航空发动机制造有限责任公司 转子叶尖间隙控制方法及利用该方法制造的转子叶片
US11643932B2 (en) 2021-04-30 2023-05-09 General Electric Company Compressor rotor blade airfoils
US11519273B1 (en) 2021-04-30 2022-12-06 General Electric Company Compressor rotor blade airfoils
CN115263803A (zh) * 2021-04-30 2022-11-01 通用电气公司 压缩机转子叶片翼型件
EP4083388A1 (en) * 2021-04-30 2022-11-02 General Electric Company Compressor rotor blade airfoil
US11414996B1 (en) * 2021-04-30 2022-08-16 General Electric Company Compressor rotor blade airfoils
US11401816B1 (en) * 2021-04-30 2022-08-02 General Electric Company Compressor rotor blade airfoils

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5397215A (en) * 1993-06-14 1995-03-14 United Technologies Corporation Flow directing assembly for the compression section of a rotary machine
US6071077A (en) * 1996-04-09 2000-06-06 Rolls-Royce Plc Swept fan blade
US6079948A (en) * 1996-09-30 2000-06-27 Kabushiki Kaisha Toshiba Blade for axial fluid machine having projecting portion at the tip and root of the blade
CN1299003A (zh) * 1999-12-06 2001-06-13 通用电气公司 双弯曲压气机叶型

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2415847A (en) 1943-05-08 1947-02-18 Westinghouse Electric Corp Compressor apparatus
JPS5264008A (en) * 1975-11-21 1977-05-27 Le Metarichiesukii Zabuodo Im Axiallflow turboocompressors
US4682935A (en) 1983-12-12 1987-07-28 General Electric Company Bowed turbine blade
US4585395A (en) 1983-12-12 1986-04-29 General Electric Company Gas turbine engine blade
JP2590514B2 (ja) * 1987-03-13 1997-03-12 日本電装株式会社 送風ファン
US5088892A (en) 1990-02-07 1992-02-18 United Technologies Corporation Bowed airfoil for the compression section of a rotary machine
JP2753382B2 (ja) 1990-09-17 1998-05-20 株式会社日立製作所 軸流タービン静翼装置及び軸流タービン
US5167489A (en) 1991-04-15 1992-12-01 General Electric Company Forward swept rotor blade
JPH08284887A (ja) * 1995-04-11 1996-10-29 Toyo Radiator Co Ltd ファン
US5642985A (en) * 1995-11-17 1997-07-01 United Technologies Corporation Swept turbomachinery blade
GB9607316D0 (en) * 1996-04-09 1996-06-12 Rolls Royce Plc Swept fan blade
JPH10196303A (ja) * 1997-01-16 1998-07-28 Mitsubishi Heavy Ind Ltd 高性能翼
US6290465B1 (en) * 1999-07-30 2001-09-18 General Electric Company Rotor blade
US6299412B1 (en) 1999-12-06 2001-10-09 General Electric Company Bowed compressor airfoil

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5397215A (en) * 1993-06-14 1995-03-14 United Technologies Corporation Flow directing assembly for the compression section of a rotary machine
US6071077A (en) * 1996-04-09 2000-06-06 Rolls-Royce Plc Swept fan blade
US6079948A (en) * 1996-09-30 2000-06-27 Kabushiki Kaisha Toshiba Blade for axial fluid machine having projecting portion at the tip and root of the blade
CN1299003A (zh) * 1999-12-06 2001-06-13 通用电气公司 双弯曲压气机叶型

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103958833A (zh) * 2011-11-29 2014-07-30 斯奈克玛 一种特别用于整体式叶片盘的涡轮发动机叶片
CN103958833B (zh) * 2011-11-29 2016-03-02 斯奈克玛 一种特别用于整体式叶片盘的涡轮发动机叶片

Also Published As

Publication number Publication date
CN1580495A (zh) 2005-02-16
US6899526B2 (en) 2005-05-31
EP1505302B1 (en) 2013-01-09
EP1505302A1 (en) 2005-02-09
JP2005054798A (ja) 2005-03-03
US20050031454A1 (en) 2005-02-10
JP4667787B2 (ja) 2011-04-13

Similar Documents

Publication Publication Date Title
CN100406679C (zh) 逆向扭转的压气机翼面
CA2613601C (en) A turbine assembly for a gas turbine engine and method of manufacturing the same
US6471474B1 (en) Method and apparatus for reducing rotor assembly circumferential rim stress
US7874794B2 (en) Blade row for a rotary machine and method of fabricating same
US8951008B2 (en) Compressor blade and production and use of a compressor blade
EP1939398B1 (en) Stator vane with lean and sweep
EP2820279B1 (en) Turbomachine blade
US6994524B2 (en) Hollow fan blade for gas turbine engine
CA2613766C (en) Gas turbine engines including lean stator vanes and methods of assembling the same
JP4665916B2 (ja) ガスタービンの第1段動翼
CN101037960A (zh) 高压力比后部风扇
US20070128042A1 (en) Hollow fan blade for gas turbine engine
CN107060891A (zh) 用于涡轮翼型件的填角优化
CN100489277C (zh) 燃气涡轮的转子叶片
PL198629B1 (pl) Łopatka sprężarki, zwłaszcza do silnika turbogazowego
KR20010062118A (ko) 이중 절곡형 압축기 에어포일
US20060280610A1 (en) Turbine blade and method of fabricating same
CN107035435A (zh) 结合分流器的压缩机
US10815786B2 (en) Hybrid rotor blades for turbine engines
US6558121B2 (en) Method and apparatus for turbine blade contoured platform
CN102639817A (zh) 涡轮动叶片及涡轮机
EP1426555A2 (en) Method and apparatus for reducing flow across compressor airfoil tips
CN107084001A (zh) 用于燃气涡轮发动机的翼型件
CN102678603A (zh) 涡轮机组件的翼片芯形状
US10731471B2 (en) Hybrid rotor blades for turbine engines

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant