CN1592568B - 具有蒸汽室的高性能冷却装置 - Google Patents

具有蒸汽室的高性能冷却装置 Download PDF

Info

Publication number
CN1592568B
CN1592568B CN2004100748589A CN200410074858A CN1592568B CN 1592568 B CN1592568 B CN 1592568B CN 2004100748589 A CN2004100748589 A CN 2004100748589A CN 200410074858 A CN200410074858 A CN 200410074858A CN 1592568 B CN1592568 B CN 1592568B
Authority
CN
China
Prior art keywords
cooling device
blade
hot body
fan
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2004100748589A
Other languages
English (en)
Other versions
CN1592568A (zh
Inventor
S·赫奇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hewlett Packard Development Co LP
Original Assignee
Hewlett Packard Development Co LP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hewlett Packard Development Co LP filed Critical Hewlett Packard Development Co LP
Publication of CN1592568A publication Critical patent/CN1592568A/zh
Application granted granted Critical
Publication of CN1592568B publication Critical patent/CN1592568B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/467Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing gases, e.g. air
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

本发明公开了一种低成本的冷却装置(10),该冷却装置包括一个热体(11)、一个热芯(40)、一个蒸汽室(41)以及密封在低压蒸汽室(41)中的相变液体(41L)。热芯(40)中的废热(HW)使相变液体(41L)沸腾,将相变液体转变成蒸汽(41V),蒸汽上升到蒸汽室(41)的接触面(14a,14b),在此蒸汽被冷却,又转变成相变液体(41L)。有若干叶片(21)和翼片(23)与热体(11)接触,在叶片(21)和翼片(23)上的气流(F)散除热体(11)上的热(HW)。因此,热体(11)被气流(F)对流冷却,利用相变液体(41L)的沸腾蒸发冷却。

Description

具有蒸汽室的高性能冷却装置
技术领域
总的来讲,本发明涉及一种具有蒸汽室的高性能冷却装置,以便将与该冷却装置连接的构件上的热除去。具体地说,本发明涉及的冷却装置包括一个具有若干翼片和叶片以及一个蒸汽室的热体,所述蒸汽室中装有低压相变液体,在用所述构件的废热将液体加热到其沸点时,该液体变成蒸汽,从而通过相变液体的沸腾以及流过翼片和叶片的空气的对流冷却使热体得到冷却。
背景技术
在电子领域中,众所周知的是将散热器与电子装置接触,从而将电子装置运行时产生的废热传递给散热器,由此冷却电子装置。随着高时钟速度装置例如微处理器(μP)、数字信号处理器(DSP)以及专用集成电路(ASIC)的出现,由这些电子装置产生的废热量以及这些电子装置的工作温度与时钟速度成正比。因此,较高的时钟速度使产生的废热增加,废热的增加又使电子装置的工作温度升高。然而,电子装置的有效运行就要求连续有效地将废热除去。
作为将上述电子装置中的废热散除的设备来讲,散热器装置的应用变得很常用。在一种典型的应用中,用一个装在PC电路板上的连接器携带一个需要被冷却的构件。将一个散热器安装在该构件上,用一个卡子或固定件将散热器与连接器连接。作为替换的是,将该散热器装到一个携带电子装置的PC电路板上,通过PC电路板上开的孔用固定件等将散热器与PC电路板连接。
要求开孔就会有一个使用固定件的缺陷,因为用于将散热器与PC电路板连接的固定件或其他金属安装件通常是导电的,所以就有可能因为PC电路板的异线和金属安装件之间的接触出现短路的危险。另外,为了防止短路,可以在孔的周围布设PC电路板异线,但这种确定异线方向又要求避免一些可能导致异线布线复杂化的区域。
通常,一个与调制解调器的高时钟速度电子装置连接的散热器使用一个被安装在散热器顶部或腔内的电风扇,所述腔由散热器的冷却翼片/叶片形成。冷却翼片增大了散热器的表面积,最大限度地将散热器的热传输到散热器周围的大气中。风扇使空气在冷却翼片的上方和周围流动,由此将冷却翼片的热传输给大气。
如上所述,随着时钟速度的连续增加,电子装置产生的废热量也增加。因此,为了对这些电子装置进行充分冷却,就需要很大的散热器和/或大功率风扇(即CFM)。散热器的尺寸增大就会使热体变大,并使可以散热的表面积变大。风扇功率的增大增加了流过冷却翼片的空气量。
这样存在的缺陷就是增加了风扇和散热器的尺寸。首先,如果散热器在垂直方向(即与PC电路板横切的方向)的尺寸增大,则散热器就会很大,在许多应用中,例如台式计算机底板的散热器就不能被装到垂直空间中。第二,如果PC电路板为垂直取向,则笨重的散热器就会使PC电路板和/或电子装置受到机械应力,使得装置或PC电路板受损。
第三,太大的散热器就会要求在散热器和底板之间有附加的垂直间隙,散热器被安装在里面应使足够的空气流进或流出风扇。第四,如果散热器在水平方向的尺寸增大,则PC电路板的用于安装其他电子装置的有效面积就受到限制。第五,当散热器是由翼片形成的圆柱形时,则因为流进和流出风扇的空气被相邻散热器堵住,所以通常不能安装多个这种彼此非常靠近的散热器,由此使冷却效率降低。
最后,为增加冷却能力而使风扇尺寸增大会引起风扇产生很大的噪声。在许多应用中,例如台式计算机的应用中,迫切需要减少噪声的产生。在需要电池供电的便携式应用中,用大功率风扇消耗过多的电能来排除废热是不能接受的。
在上述带有冷却翼片的散热器中,附加的缺陷就是将风扇安装在翼片形成的腔中。首先,因为风扇直接安装在热体上,所以散热器的绝大部分热体被风扇堵住,因此由于来自风扇的空气不能流过被堵住的部分热体,所以也就堵住了为热体散热的潜在通道。
其次,如果没有风扇,则翼片的深度一直延伸到热体的中心;但是,因风扇被安装在其直径稍大于风扇直径的腔中,所以翼片的深度和表面积会因风扇的直径而减少,腔的直径之所以要稍大于风扇的直径是为了为风扇叶片提供间隙。因此,散热器的热体必须更宽,以便补偿减少的翼片表面积。宽大的热体使散热器的尺寸、成本和重量增大。
第三,如果翼片受损,则翼片减小的深度就使该翼片容易弯曲。翼片弯曲的一个可能结果在于该翼片会接触到风扇叶片,并使叶片受损,和/或使风扇停止转动,由此伤害风扇或使风扇发生故障。第四,因为风扇被装在翼片形成的腔中,所以风扇电源线必须迂回通过翼片之间的区域。翼片的锐利边缘会切割电源线或引起短路。在任何一种情况下,都会造成风扇发生故障的后果。第五,通常用粘结剂将风扇安装到散热器上,而该粘结剂会进入风扇,使风扇出现故障。上述任何风扇故障都会使电子装置出现故障,设计的散热器用于冷却,因为由风扇产生的空气循环主要用来有效地散除电子装置上的废热。
现有的某些散热器旨在用蒸汽室来克服上述大热体或大风扇面积的缺陷,所述蒸汽室中充有低压相变液体。通常,相变液体为低沸点液体,所以,该液体随着与热体热连接的构件的废热而沸腾并转变成蒸气相。将蒸汽室压装到散热器本体中。在某些情况下,蒸汽室的外壳膨胀,使蒸汽室和散热器之间实现紧密接触。通常用金属连接方式,例如钎焊或焊接方式来对蒸汽室进行密封。
现有的具有蒸汽室的散热器的一个缺陷在于当蒸汽室偏离垂直轴时,它们的性能(即散除废热的性能)变差,由此降低了传到相变液体的热。
另一个缺陷在于在蒸汽室和散热器之间有一些微小空隙和/或大间隙,这样就使蒸汽室和散热器之间的热阻变大。因此,从蒸汽室传到散热器的热量减少。
因而就需要一种具有蒸汽室的冷却装置,这种蒸汽室允许冷却装置偏离垂直轴同时还能保持向相变液体的传热。还要求一种具有蒸汽室的冷却装置,它可以消除蒸汽室和冷却装置之间的微小空隙,因而使蒸汽室和冷却装置之间的热阻很小。
发明内容
基于上面所述的情况,此处给出本发明某些实施例的简述。在该简述中进行了一些简化,和省略,它旨在突出介绍本发明的某些方面,但不以任何方式限制本发明的范围。在该简述以后对优选实施例进行详细描述,这些实施例便于本领域技术人员的理解、制造和使用。
广义地说,本发明具体表现在一种将需进行冷却的构件上的废热散除的冷却装置。该冷却装置包括一个热体,该热体具有一个基部、一个向所述基部内延伸的腔室孔,以及一个对称地设置在热体的轴的周围的凸台。该凸台包括一接合面及一经凸台延伸到腔室孔的螺纹孔。有一个热芯与所述基部相连,该热芯有一个延伸到腔室孔中的台阶式表面,以及一个使热芯和热体与需被冷却的构件热连接的安装面。一个插头包括一个台阶表面和一个从该台阶表面延伸的加工有螺纹的颈部。将该有螺纹的颈部拧到凸台的带有螺纹的孔中。插头还有一个形成在所述螺纹颈部中的插头腔以及多个彼此分开的插头翼片,从而在相邻插头翼片之间限定出插头槽。利用插头腔、腔室孔和台阶式表面限定出一个低压蒸汽室。将相变液体在低压下密闭在该低压蒸汽室中,使相变液体与台阶式表面的一部分接触。
将多个叶片与热体连接,使这些叶片彼此分开,从而在延伸到热体的相邻叶片之间限定一个主槽。这些叶片的表面积从热体的轴开始沿径向朝外的方向增大,所述叶片包括至少一个副槽,该副槽延伸通过每一个叶片的一部分,以便在每一个叶片中限定出多个翼片。所述叶片包括一个顶面,一个形状符合空气动力学的内壁,该内壁包括从凸台延伸并在第二部分处终结的第一部分,该第二部分延伸到叶片顶面。叶片的内壁限定出一个围绕凸台的腔室。所述叶片还包括一个外壁,该外壁具有一表面轮廓从热体的基部扩展到顶面,并在这两者之间有一个平滑的弯曲部分、一个倾斜部分以及一个平滑的径向朝外部分。
构件中的废热被热传导到热芯和热体中,并利用通过腔室、主槽、副槽和插头槽的气流将热体的热量散发。还将废热传导到热芯中,并通过引起相变液体沸腾,从液态转变成汽态而将废热散发。蒸汽上升到蒸汽室中,与插头腔和腔室孔接触,在此一旦接触,蒸汽就得到冷却,又变回成液态。
本发明冷却装置的一个优点在于热芯的台阶式表面可以使冷却装置倾斜于垂直轴,而且仍然能保持向相变液体的传热,使相变液体沸腾,将该相变液体转变成汽态,由此将热芯中的废热散发出去。
通过下面结合附图对本发明的主要实施例的详细描述将会更加清楚本发明的其他方面和优点。
附图说明
图1是本发明冷却装置的外形图;
图2是本发明冷却装置的顶视外形图,表示一个延伸到腔室孔的加工有螺纹的孔;
图3a和3b分别是本发明插头的顶视外形图和底视外形图;
图3c是本发明的凸台和具有密封垫和密封材料的插头的剖视图;
图4a和4b本发明冷却装置的翼片和叶片的顶视平面图;
图4c是沿图4b的E-E截面的详细图;
图4d是表示本发明冷却装置的顶视平面图,该冷却装置包括切向取向的叶片;
图4e是气流通过本发明冷却装置的顶视平面图;
图4f是气流通过本发明冷却装置时沿图4e的A-A线作的剖视图;
图5a是本发明冷却装置的沿图4e的A-A线作的剖视图;
图5b是本发明热芯的台阶式表面的顶视平面图;
图6a和6b是本发明热芯的安装表面的底部外形图;
图7是本发明热体的腔室孔的底部外形图;
图8a和8b分别是本发明的具有弧形和斜形的台阶式表面的剖视图;
图9是本发明蒸汽室和热芯的剖视图,该热芯的安装面上具有一些突起;
图10a是表示本发明对流冷却时的剖视图;
图10b是表示本发明蒸发冷却时的剖视图;
图10c和10d的剖视图分别表示本发明冷却装置的不倾斜和倾斜蒸汽室;
图11a-11c的剖视图分别表示本发明的热芯与热体的连接;
图12a和12b是本发明的具有叶片的冷却装置的侧视图,所述叶片倾斜一定的角度;
图13是本发明的具有一个热体和一个腔室孔的冷却装置沿图4a的A-A线作的剖视图;
图14是本发明的安装在冷却装置上的风扇的侧视图;
图15的剖视图表示根据本发明在风扇、风扇叶片和冷却装置之间的不同尺寸关系;
图16是本发明空间构架的侧视图,该构架用于将风扇安装到冷却装置上;
图17是本发明的具有一个基部的冷却装置的侧视图,该基部包括一些用于保护热界面材料的凸起;
图18是根据本发明的散热系统的侧视图。
具体实施方式
在下面的详细描述中以及在各个附图中,相同的元件用相同的标号表示。
在用作描述的附图中,本发明提供的冷却装置用于对构件进行散热,所述构件与冷却装置的热芯和热体热连接。这种热连接可以是热芯和构件之间的直接接触,也可以像下面所述的那样通过在热芯和构件之间的中间材料(例如热界面材料)进行的热连接。热体的基部的一部分可以与构件直接或间接热接触。所述构件可以是任何热源,包括但不局限于,例如一个电气元件。
所述冷却装置包括一个热体,该热体包括一个基部和一个向基部内延伸的腔室孔。一个对称地设置在热体的轴的周围的凸台,该凸台包括一个接合部和一个加工有螺纹的孔,该孔从凸台延伸到腔室孔,从而由加工有螺纹的孔限定出一个从凸台到腔室孔的通孔。有一个热芯与所述基部相连,该热芯包括一个延伸到所述腔室孔中的台阶式表面和一个安装面,该安装面将所述热芯与带有构件的热体进行热连接。一个插头包括一个加工有螺纹的颈部,将该加工有螺纹的颈部拧到热体的带有螺纹的孔中,直至颈部的台阶式表面与凸台上的接合部接触。该插头还包括一个形成在所述螺纹颈部中的插头腔以及多个彼此分开的插头翼片。将插头翼片彼此分开,从而在相邻插头翼片之间限定出一个插头槽。利用插头腔、腔室孔和台阶式表面限定出一个蒸汽室。将相变液体密闭在该低压蒸汽室中,使相变液体与台阶式表面的一部分接触。
所述热体还包括多个与热体连接并分开的叶片,从而在相邻叶片之间限定一个主槽。此主槽延伸到热体。这些叶片的表面从热体的轴开始沿径向朝外的方向增大。至少有一个延伸通过每一个叶片的一部分的副槽在每一个叶片中限定出多个翼片。所述副槽也可以延伸到热体。每一个叶片还包括一个顶面,一个符合空气动力学的内壁,该内壁包括从凸台延伸的第一部分并终结在延伸到所述顶面的第二部分。叶片的内壁限定出一个围绕凸台的腔室。所述叶片的外壁包括从所述基部扩展到顶面的表面外形,并在所述基部和顶面之间有一个平滑的弯曲部分、一个倾斜部分以及一个平滑的径向朝外部分。
构件中的废热利用通过腔室、叶片的主槽、翼片的副槽和插头翼片中的插头槽的气流从热体中散发出去。此外,通过使与台阶式表面接触的相变液体从液态转变成汽态(也就是废热使相变液体沸腾)而将热芯中的废热散发。
进入腔室的气流形成对冷却装置进行散热的三维气流。首先,气流作为对叶片、翼片和插头翼片进行散热的排气离开主槽和副槽的基部。其次,排气在腔室中形成低压区,使得通过大部分副槽和主槽顶部的进气进入腔室,由此将翼片和叶片的热量散除。第三,低压区使得气流沿内壁的第一和第二部分的表面流动,从而在通过凸台时,这种表面流动使凸台受潮,从而排出热体的热量。这种气流可以是进入腔室的正气流,也可以是流出腔室的负气流。
在图1-5a中,用于对构件(未示出)散热的冷却装置10包括一个热体11,一个基部17,一个向所述基部17内延伸的腔室孔14a,一个凸台13和一个接合部13L。该凸台13对称地位于热体11的轴Z的周围。一个加工有螺纹的孔13b通过凸台13延伸到腔室孔14a,从而该刻有螺纹的孔13b在凸台13和腔室孔14a之间限定出一个通孔。一个热芯40与基部17相连,该热芯包括一个延伸到腔室孔14a中的台阶式表面14s和一个安装面19,该安装面使热芯40和热体11与需要冷却的构件相连。所述台阶式表面14s可以包括多个沿其部分表面的台阶14c,如图5b,8a和9所示,这些台阶终止于顶14d,如图8b所示,台阶式表面14s也可以包括多个基本沿其整个表面的台阶14c。
在图3a和3b中,所述冷却装置还包括一个插头45,该插头包括多个插头翼片42、一个台阶式表面48,一个从台阶式表面48延伸的加工有螺纹的颈部49,这些插头翼片彼此分开,以便在相邻插头翼片42之间限定出一个插头槽42s,所述加工有螺纹的颈部可以拧到加工有螺纹的孔13b中,直至台阶式表面48与凸台13的接合部13L接触。所述插头45还包括一个形成在所述加工有螺纹的颈部49中的插头腔14b。在图5a和9中,所述腔室孔14a和台阶式表面14s限定出一个蒸汽室41。在图10b、10c和10d中,将相变液体41L密闭在低压蒸汽室41中,所述液体与部分台阶式表面14s接触。作为一个例子,先将热芯40与基部17相连,然后通过加工有螺纹的孔13b灌注相变液体41L而对蒸汽室41充装相变液体41L,再将插头45的加工有螺纹的颈部拧到刻有螺纹的孔13b中来密闭蒸汽室41,这样就可以使蒸汽室41得到密封。作为另一个例子,先将插头45拧到加工有螺纹的孔13b中,然后通过基部17灌注相变液体41L而对蒸汽室41充装相变液体41L,再将热芯40封装到基部17上来密闭蒸汽室41,这样就可以使蒸汽室41得到密封。密封过程可以在真空下(即低于大气压的压力)进行,以便将相变液体41L密闭在低压蒸汽室中。
所需的真空度应与用途有关,真空度也取决于为相变液体41L选择的材料以及所用真空泵的功率。作为一个例子,需要散除的废热量以及相变液体从液态(41L)转变成汽态(41V)的温度确定所需的真空度。通常,为实现从液态(41L)转变成汽态(41V)的相变所需要的温度越低,则冷却装置10的性能越好。可以用一个标准蒸汽压力表来确定满足相变所需的真空度。例如,当将水(H2O)用作相变液体41L时,蒸汽室41中的真空度约为9.59Kpa压力,在45℃附近产生从液态41L到汽态41V的相变。
在图3c所示的本发明的一个实施例中,为了确保对蒸汽室41的密封,防止相变液体41L出现任何泄漏,可以在加工有螺纹的孔13中和/或加工有螺纹的颈部49上使用密封材料44s。应注意的是,为了说明密封材料44s和密封垫44g与冷却装置10的这些元件之间的相互位置,图3c中仅示出了部分凸台13和插头45。密封材料44s改进了孔和颈部(13b,49)的螺纹之间的密封性能,由此对螺纹之间的潜在泄漏路径进行了密封。
例如,密封材料44s可以由ANABOND
Figure G200410074858901D00081
或LOCTITE
Figure G200410074858901D00082
制成。可以用一个分配器、一把刷子将密封材料44s涂覆到孔和颈部(13b,49)的螺纹上,也可以将加工有螺纹的颈部49浸泡到密封材料44s中。在涂覆了密封材料44s以后,将加工有螺纹的颈部拧到加工有螺纹的孔13b中。也可以将密封材料44s涂覆到台阶式表面48上。
在本发明的另一个实施例中,密封材料44s使插头45与热体11隔热。因为插头45的隔热,所以通过插头翼片42(见图10a)的气流使插头45的温度比热体11的温度低。因此,与插头腔14b接触的蒸汽41V得到有效冷却,并按照比插头45与热体11之间没有隔热时的速度更快的速度冷凝成液态41L。可以选择用于密封材料44s的材料,以便提供理想的绝热特性。
对插头45与热体11进行绝热的合适密封材料44s包括但不限于RTV密封材料、HiTac带和密封材料、以及基于环氧树脂的FRP型密封材料。通常,任何不导热的密封材料都可以使用,这些材料用于将插头45与热体11隔热。
在本发明的另一个实施例中,为了保证蒸汽室41的密封,防止相变液体41L出现任何泄漏,就在接合部13L和台阶式表面48之间装一个密封垫44g。该密封垫44g封住了接合部13L和台阶式表面48之间的潜在泄漏路径。在将插头45拧到加工有螺纹的孔13b中以前,将密封垫44g装在接合部13L上或台阶式表面48上。密封垫可以是大小合适的金属垫或切割成合适形状的密封垫材料。
密封垫44g的合适材料包括但不限于HiTac密封垫、RF1密封垫和橡胶密封垫。橡胶密封垫最好由不导热的材料制成。在将密封垫装到加工有螺纹的颈部49上以后,可以将插头上紧,例如扭矩约为21.0英寸-磅。
在图13中,有多个叶片21与热体11接触,这些叶片21彼此分开,从而在相邻叶片21之间限定出一个主槽P(见图4a,4c和4d)。如虚线箭头r所示,这些叶片21的表面积沿径向向外的方向从轴Z开始增大。如虚线箭头Y所示,至少部分叶片21有一个沿Z轴方向增大的表面。
主槽P最好延伸到热体11,所述主槽P包括沿热体11的第一弧形面21a。第一弧形面21a终止于一个平面H-H(见图13)。最好各叶片21彼此等距离分开。通过将主槽P延伸到热体11,通过主槽P的气流就会润湿(即流过)热体11(即空气流过热体11),从而为其散热。第一弧形面21a可以是半径约为38毫米-45毫米的弧面。
冷却装置10的第一个优点在于没有在热体11上安装产生气流的风扇(未示出)。因此,叶片21可以向深处延伸一直进入热体11(如箭头e所示),叶片21的深度为有效散除废热提供了很大的表面积,并将热体11暴露在润湿凸台13的气流中(见图4e和4f),从而可以将热体11的附加废热散除。
叶片21还包括一个顶面29,一个符合空气动力学的内壁26,该内壁包括一个从凸台13延伸的第一部份25,第一部份终止在延伸到顶面29的第二部分27处。如虚线b所示,第一部份25与凸台13的弧型(见图13)或斜坡形(见图4f)结合,并如虚线c所示,第一部份25与第二部分27结合。如虚线d所示,第二部分27与顶面29结合。内壁26还可以包括一些附加部分,所以本发明并不限于第一和第二部分(25,27)。内壁26限定出一个围绕凸台13的腔室30。
在本发明的一个实施例中,如图13和4c所示,内壁26的第一部份25是一个倾斜面,内壁26的第二部分27是一个凹的弧面。从空气动力学的角度来看,倾斜面和凹的弧面与进入腔室30中的气流相互影响,使得空气沿内壁26的第一和第二部分(25,27)流动,润湿凸台13,为热体11散热,这将在下面结合图4e和4f进行描述。
如图13所示,第一部份25相对于轴Z的倾斜角度为ψ。该角度ψ的大小约为15度-75度.如果叶片21相对于一个绕轴Z的圆为切向取向(这将在下面结合图4d进行讨论)则第一部份25相对于凸台13为切向取向。角度ψ主要根据风扇(未示出)的输出(每分钟立方英尺(CFM)改变。
在图13中,叶片21还包括一个外壁32,该外壁的表面形状是从热体11的底部11a向顶面29扩大,叶片还包括平滑弯曲部分33、倾斜部分35和平滑径向朝外部分37。倾斜部分35与Z轴大体平行,该倾斜部分35也可以倾斜一个角度λ。
在图4a-4c中,所述叶片21包括至少一个副槽S,该副槽延伸通过每一个叶片21的一部分,从而在每一个叶片21中限定出多个翼片23(示出两个)。通过将每一个叶片21的至少一部分分裂成多个翼片23,就增加了用于散热的有效表面积,副槽S为翼片23之间提供了附加空气流动通路,从而进一步增加了废热的散除。
在本发明的另一个实施例中,副槽S延伸到热体11,该副槽S包括沿着热体11的第二弧形23a(见图13的虚线)。该第二弧形23a终止于平面H-H。通过将副槽S延伸到热体11,通过翼片23的气流润湿热体11,从而为其散热。所述第二弧形23a可以是半径约为31毫米-38毫米的弧形。
上述半径(即弧形21a和23a的半径)的参考中心点位于冷却装置10的外面,中心的实际位置取决于弧形的半径。但是,半径的中心位置至少约在冷却装置10外的5毫米处,从而适合于一个切割工具,该工具用于制造冷却装置10的机械加工。半径的中心位置受机加工的限制,机加工时用切割轮来形成叶片21和翼片23。如果可以铸造或冲锻叶片21和翼片23,则会减少弧形半径,半径的中心位置就处在冷却装置10内。通过减少叶片21的数量就可以将冷却装置10改成铸造或冲锻加工。
在图10a和10b中,利用对流冷却效应和蒸发冷却效应将构件50中的废热HW散除掉。在图10a中,废热HW被热传导到热体11和热芯40中。废热HW被热传导到叶片21、翼片23和插头翼片42中。通过腔室30、主槽P、副槽S和插头槽42s的气流将热体11中的废热HW散除掉。在图10b中,废热H被热传导到热芯40中,使相变液体41L沸腾,从液态(也是41L)转变成汽态41V。相变液体41L的沸腾将热芯40中的废热散除。如果蒸汽41V上升到蒸汽室41中,则蒸汽41V与形成蒸汽室41的一部分的表面(14a,14b)接触。由于上述热体11的对流冷却,所以这些表面(14a,14b)所处的温度要比蒸汽41V的温度低。因此,当蒸汽接触表面(14a,14b)时,蒸汽41V冷凝41C(即蒸汽41V被冷下来),转变成液态41L。只要废热HW的量(例如瓦特或温度)足以使相变液体41L沸腾,该相变液体41L就不停地进行沸腾、蒸发和冷凝循环。
在图8a和8b中,热芯40的台阶式表面14s的形状(即表面形状)包括弧形(图8a)或斜坡形(图8b和图9),但不限于这些形状。在图10c和10d中,本发明的一个优点在于当冷却装置10从图10c的基本水平位置倾斜到图10d所示的非水平位置时,台阶式表面14s使相变液体41L与台阶式表面14s的绝大部分保持接触,在非水平位置时,轴Z与轴Z’成角度Δ。结果,在图10d所示的情况下,相变液体41L与台阶式表面14s的绝大部分保持接触,不断沸腾转变成汽态41V。
相变液体41L最好是低沸点液体,因此从构件50散出的废热HW多到足以使相变液体41L沸腾和蒸发41V。作为相变液体41L的合适物质包括水(H2O)、碳氟化合物、四氟化碳、介电流体和乙烯,但并不限于此。介电流体的例子包括FC16,但不限于此。
上面列出的每一种液体都能根据蒸汽室41中的压力在不同的温度下实现从液态41L到汽态41V的相变。例如,当蒸汽室41中的压力约为84.6Kpa时水在95℃左右沸腾,而在蒸汽室41中的压力约为9.6Kpa时水在45℃左右沸腾。作为另一个例子,对于水来讲,当蒸汽室41中的压力约为4.25Kpa时在30℃左右得到相同的结果。John Wiley &Sons
Figure G200410074858901D00121
公开的蒸汽表是计算各种液体在真空下的沸点的很好的参考资料。
在图12a和12b中,叶片21可以相对于轴Z倾斜一个角度。在图12a中,叶片21倾斜的角度β是在直线21c和轴Z之间测出的。沿翼片23的主槽P测量直线21c。角度β的倾斜约为0度到25度之间,但不限于此.。在图12b中,叶片21相对于轴Z倾斜的角度为直线21d和轴Z之间测得的第一角度δ1及直线21e和轴Z之间测得的第二角度δ2。沿翼片23的径向朝外的光滑部分37测量第一角δ1。第一角度δ1的倾斜约为0度到25度之间,但不限于此。沿翼片23的光滑弯曲部分33测量第二角δ2。第二角度δ2的倾斜约为5度到18度之间,但不限于此。如上所述,因为叶片21限定出翼片23,所以翼片23和叶片21就有倾斜角度(β,δ1,δ2)。
在图4d中,叶片21相对于其中心为Z轴(用“+”表示)的圆Ct相切(用虚线表示),该圆有预定直径。在图4d中,叶片21的切向取向的例子用多个切线为t的叶片21表示,所述切线通过主槽P,并相切地通过圆Ct的圆周。一条通过Z轴(用“+”表示)的直线M和一条也与圆Ct的圆周相切的平行线N之间限定出半径R。圆Ct的预定直径是半径R的两倍(即Ct=2*R)。预定直径约为3.0毫米到12.0毫米之间,但不限于此。
在图2,4a,4c,4d,12b和13中,叶片21的顶面29的至少一部分包括大体为平面的部分29a(如虚线所示)。如图4d所示,大体为平面的部分29a覆盖整个顶面29。顶面29的大体为平面的部分29a的一个好处在于可以将风扇安装在该大体为平面的部分29a上。
在图4f,5a,6a和6b中,将热芯40的安装面19表示成与热体11的基部17基本齐平。但是,该安装面19不一定与基部17齐平。例如,该安装面19可以从基部17插入,也可以将该安装面19延伸到基部17的外面。在图5a和6a中,基部17有一个可以让热芯40插入的孔17a。但如图6b所示,热芯40可以横跨基部17的整个宽度,使孔17a与热芯40的外缘重合。
在图7中,腔室孔14a可以沿朝着加工有螺纹的孔13b的方向逐渐变窄。如图7所示,该锥形孔14a的形状可以包括弧形,如图4f,13和15所示,可以包括斜坡形,也可以是斜坡形和弧形的组合。
在图14和15中,将风扇70装在顶面29的大体为平面的部分29a上。风扇70产生的气流(见图4f的标号F)沿虚线箭头af所示的方向进入冷却装置10的腔室30中。用一个屏蔽罩73围住具有多个风扇叶片77的电机套79。该电机套可转动地装在一个定子71上,风扇叶片77可以沿箭头rr的方向转动。几个穿过罩73的孔75用于接收固定件89。气流F也可以沿与箭头af相反的方向流动,使风扇70沿从基部17到顶边29的方向吸气,使空气通过冷却装置10,所述的该方向与沿箭头af所示的从顶边29到基部17将空气吸进腔室30的方向相反。
将一个具有一个框架81和多个安装固定器83的安装环80紧靠在径向朝外的光滑部分37的表面37a上。37a处的径向朝外的光滑部分37的直径大于安装环80的框架81的内径,使框架81能够与径向朝外的光滑部分37紧密接触,不会滑出叶片,翼片(21,23)处在基部17的方向上,这是因为叶片和翼片(21,23)的直径在该方向较窄。
如图14所示,安装固定器83接收固定件89以及一个可选择的固定件87,从而将风扇70牢固地与顶面29接触。固定件(87,89)像所示的那样为螺母和螺栓或其他形式的固定件。当风扇70与安装环80连接时,风扇70的转轴B最好与冷却装置10的轴Z共线。安装环80的合适材料的例子包括但不限于金属、塑料或陶瓷。可以通过机加工、铸造法、模塑法或压模铸法制造安装环80。
虽然上面的讨论集中在固定件作为将安装环80与风扇70进行连接的连接设备,但本发明的结构并只不限于固定件。例如,在风扇上的闭锁件可以与安装环80上的互补形闭锁形状配合。因为安装环80可以通过注塑方法形成,所以存在许多将风扇70安装到安装环80上的可能性,固定件只是这些可能性中的一个例子。
在图14中,将所示的风扇70装在顶面29的大体为平面的部分29a上。为描述起见,只示出一组通过通孔75和安装固定器83的固定件(87,89)。风扇70的电源线72的布置不一定要使电源线72通过叶片或翼片(21,23),或者不一定与它们接触。尽管只示出了两根线(+和-),但电源线72可以包括附加线,例如一根或多根用于与一个电路相连的线,该电路控制风扇70(例如风扇70的开或关、控制风扇转速),也可以确定风扇70运行是否正常。
虽然图14中仅示出了一个风扇70,但也可以通过对齐的孔75将两个或更多的风扇70一个叠置在另一个的上面,从而可以通过各孔75将一个更长的固定件89插到安装环80的安装固定器83中。因此,本发明冷却装置10的其它优点在于可以用多个风扇70来产生进入腔室30中的气流F。使用多于一个风扇70可以在一个或多个风扇出现故障时用于备用冷却。反之,以前的风扇帮助散热器,在这些散热器中,将风扇安装在由翼片形成的空腔中,这样就很难在空腔中安装一个以上的风扇。此外,因为在腔室30中没有安装风扇70,所以因将风扇70安装在顶面29上而不会出现因电源导线72通过叶片21出现的危险。
将风扇70安装在顶面上的一个附加优点在于如果一个或多个叶片和翼片(21,23)出现故障,则叶片77不会与受损的叶片或翼片(21,23)接触,这是因为风扇叶片77不在腔室30中;所以,避免了叶片77或风扇70的潜在伤害。在图4a,4b,4d和4e中,在翼片23中可以形成一个切31。该切31的形状可以补偿罩73上的转位接头(未示出)互补,从而在将风扇70安装到顶面29上时,转位接头与切口31配合。切31可以用来保证风扇70相对于冷却装置10有合适的取向,和/或防止罩73和冷却装置10之间的相对移动。
在图15中,如上述图4d所示的叶片21的切向取向可以通过两个因数确定。第一个因数是从接合部13L的顶到顶面29的高h1。例如当高h1约为7.5毫米时,叶片21与直径约为6.5毫米的一个圆Ct相切。另一方面,第二个因数是从接合部13L的顶到风扇叶片77的底76的高h2。例如,当高h2约为2.0毫米-8.5毫米时,圆Ct的直径可以约为3.0毫米-12.0毫米。上面的仅是例子,高(h1,h2)并不限于上面所述的范围。如上所述,风扇叶片77不在腔室30中,而是在叶片和翼片(21,23)的顶面29上,所以风扇叶片77不会与叶片和翼片(21,23)接触。
如上所述,可以将叶片21相对于Z轴的倾斜角(β,δ1和δ2)设定成与图15所示的风扇叶片77的倾角θ基本相等或非常近似。另一方面,可以将角(β,δ1和δ2)设定成使它们在倾角θ的预定范围内。例如,倾角θ可以为15.0度左右,β角可以为17.0度左右,或者是倾角θ可以为12.0度左右,δ1角可以为10.0度左右,δ2角可以为8.0度左右。
本发明冷却装置10的另一个优点在于叶片21的切向取向和内壁26的第一和第二形状符合空气动力学的部分(25,27)为气流F提供了小阻力路径,从而减小了气流的冲击噪声。另外,因为小阻力路径,所以风扇70可以是噪声较小的小RPM风扇,这种风扇的运行功率小于大RPM(转/分钟)风扇的运行功率。
图15中的冷却装置10的横截面图还示出了凸台13、第二部分27、第一弧形表面21a和第二弧形表面23a的半径。
凸台13的弧形可以有半径rB,该半径一部分取决于凸台13所要求的热质量。例如,对于约为50克的热质量来讲,凸台13的弧形半径rB约为2.5毫米。rB的实际值与其应用有关,上面的值仅是例子。本发明不限于上面给出的例子。
此外,第一和第二弧形表面(21a,23a)的半径分别为rV和rF。例如rV可以为38毫米左右到45毫米左右,rF可以为31毫米左右到38毫米左右。内壁26的第二部分27的半径为rC。半径rC例如可以为20.0毫米左右。RV,rC,rF和rB的实际值与其应用有关,上面的值仅是例子。本发明不限于上面给出的例子。
上述半径可以由为形成冷却装置10所用的机加工方法确定。这些半径的参考点不一定以冷却装置10的某一点为基准。可以通过锻造法形成半径rB和rC。它们也可以用机械加工或用模铸法生产。在用坯料锻造了冷却装置10以后,可以通过机加工形成半径半径rV和rF
在本发明的一个实施例中,如图16所示,用一个空间构架90将一个没有罩(即没有图14和15的罩73)的风扇74装在冷却装置10的顶面29上。风扇74的定子71与空间构架90相连,多个臂91跨过顶面29的宽度,臂91端部的爪93将空间构架90固定到冷却装置10上,大概在径向朝外的光滑部分37的表面37a上,因此,风扇74的轮毂79和叶片77位于腔室30上,这样就可以使气流像上面描述的那样从风扇74流到腔室30中。此外,来自风扇74的电线72从冷却装置10的翼片和叶片(21,23)向外引,并且被引向风扇叶片77的外面。空间构架90可以与定子71形成在一起,或者空间构架90可以由金属或塑料制成,最好用塑料制成,因为它是不导电的。空间构架90使风扇74位于腔室30的上面,所以风扇叶片77不在腔室30内,因而不会与叶片或翼片(21,23)接触。
在图15中,冷却装置10的基部17包括至少两个向该基部17的外面延伸的突起22。在图17中,将一个热界面材料24与热芯40的安装面19接触,该热界面材料位于突起22之间。当安装面19与构件50接触时,突起22使热界面材料24不会受到损伤。突起22还可以防止热界面材料在制造、运输和/或装卸时受到损伤。热界面材料24与构件50的构件表面51接触,热界面材料24为将构件表面51的废热传导到热芯40和热体11中(见图10a)提供热导路径,该构件表面需与安装面19连接。在将冷却装置10安装到构件50上时,突起22防止热界面材料24受到挤压、变形等的损伤。
突起22向基部17外面延伸的距离为dp。该距离dp取决于用途,其中还包括与热界面材料24的厚度有关。该距离dp可以约为0.2毫米到1.0毫米左右。安装面19最好是基本平的表面(也就是说它基本是平面),安装面19与Z轴基本垂直(即约90度,见图16的α角)
另外热界面材料24对安装面19和构件表面51之间的细微缝隙(即间隙)进行密封,由此改进构件50到冷却装置10的传热。热界面材料24的合适材料包括导热胶、导热脂、硅酮、石蜡、相变材料、石墨、镀铝箔以及碳纤维,但并不限于此。例如热界面材料24可以是印制或粘贴到热芯40安装面19上的网。
在本发明的另一个实施例中,如图8a,8b和9所示,热芯40的安装面19可以包括上述的向该安装面19外延伸一个距离为dp的突起22,如上所述,该突起22用于防止热界面材料24受损。最好基部17或安装面19上有突起22。
在图18中,散热系统100包括上述冷却装置10、一个与上述顶面29相连的风扇70、一个要用冷却装置10冷却的构件50,以及一个底部安装件300。构件50的构件表面51与安装面19接触。另一方面,如上面结合图10a所述的那样,热界面材料24可以在构件表面51和安装面19之间的中间。
在任何一种情况下,不是通过构件表面51与安装面19之间的直接接触就是通过热界面材料24经构件表面51将废热热传导到安装面19中。底部安装件300使安装面19和构件表面51彼此接触,从而使构件50的废热被热传递到冷却装置10中。
在图4f中,热芯40的安装面19包括向该安装面19外延伸的突起22以及位于突起22之间的中间的热界面材料24,这在上面已经作了描述。另外,在图17中,基部17可以包括向该基部17外延伸的突起22,热界面材料24可以与安装面19接触,如上所述,将热界面材料设置在突起22之间的中间。
在本发明的另一个实施例中,构件50由一个支承单元99支撑。该支承单元包括一个插座、一个基底和一个PC板,但并不限于此,可以用电子技术领域公知的方法将该插座安装到PC板上。例如所述构件可以是被插到该插座中的微处理器,而该插座被焊在PC板上。使底部安装件300可拆卸地与支承单元99相连。
另一方面,支承单元可以是上面焊有或电连接有构件50的PC板。虽然本发明描述的冷却装置10是用于散除电子构件的废热的,但冷却装置10和冷却系统并不仅限于冷却电子设备。因此,构件50可以是任何要求为其除热的发热装置。为此,支承单元99不一定是PC板或插座。支承单元99可以是用于支撑构件50的衬底。构件50可以与衬底电连接,也可以不与其电连接。
在图18中,底部安装件300是一个底板,就像用于将散热器安装到PC板上的底板。底部安装件300中形成的多个孔300a和支承单元99中形成的多个孔99a接收固定件(87,89),这些固定件可拆卸地将底部安装件300与支承单元99连接。尽管示出的是螺母和螺栓,但其他固定件和固定方法也可以用于将底部安装件300与支承单元99连接。
如上结合图16所述,系统100可以包括一个无罩风扇74。该无罩风扇74包括一个用于支撑风扇74和将该无罩风扇74设置在顶面附近的空间构架90,以便使气流af进入腔室30中。如上所述,空间构架90包括多个臂91和在臂91上的爪93,这些臂跨过顶面29的宽度,这些爪将空间构架90固定到外壁32的径向朝外的光滑部分37上.
热体11、基部17和叶片21最好均质形成。可以用挤压法形成热体11、基部17和叶片21。热体11可以用各种导热材料构成,这些材料包括但不限于铜(Cu)、铜合金、电解铜、铝(Al)、铝合金、陶瓷、金(Au)、金合金和硅(Si)衬底。冷却装置10的典型材料是铝1060或铝6063。例如,可以由挤压杆或锻造的硬壳均质地形成热体11、基部17和叶片21。
同样,热芯40可以用各种材料构成,这些材料包括但不限于铜(Cu)、铜合金、银(Ag)、银合金、硅(Si)、金(Au)、金合金、石墨、碳纤维材料和碳纤维强化材料。
热体11和热芯40最好彼此间固定连接。但为了防止相变液体41L从蒸汽室41中漏出,热体11和热芯40之间的连接要进行防漏。可用包括但不限于钎焊、焊接、摩擦搅动焊接的连接方法来固定地连接热体11和热芯40。
在图11a到11c中,用虚线40d示出了将热芯40安装到热体基部17上的各种不同形态的例子。在图11a中,直接将热芯40安装到基部17上。在图11b中,将热芯40插到基部17的孔17a中(见图6a)。在图17c中,直接将热芯40安装到基部17上;但是,热芯40的形状补偿基部17的形状17c,这些补偿形状(17c,40c)便于热芯40与基部17的配合。
冷却装置10可以用不同的方法制成,这些方法包括但不限于下面所列出的方法。首先,可以用挤压杆完整地机加工冷却装置10。第二,用模铸法、锻压法或挤压法形成冷却装置10的内外壁(26,32)中的一个或两者都可以用该法形成,紧接着用机加工方法形成基部17、安装面19和突起22。然后用切割轮分别形成叶片21和翼片23的主槽P和副槽S,紧接着清理毛刺和除油。第三,冲锻包括叶片21和翼片23的冷却装置10。第四,压模铸包括叶片21和翼片23的完整冷却装置10。
用与上面冷却装置10的相同方法可以制造插头45,热体11和插头45可以用相同或类似的材料。
例如,可以锻造热体11的螺帽形状。然后可以用车床或铣床加工基部(17,17a)、腔室孔14a、加工有螺纹的孔13b和接合部13L。再对加工有螺纹的孔13b加工螺纹。可以用一个开槽锯形成叶片和翼片(21,31)。可以将底部安装件300压装到热体11的基部(17,17a)中,然后将其卷边到热体上,从而使其经受住在将冷却装置10装到构件50上时产生的连接负荷。可以用低温焊接法将热芯40焊接到基部17上,从而形成蒸汽室41,此后对蒸汽室41进行清洗,再将相变液体41L充装到该蒸汽室41中。然后将冷却装置10放在一个真空室中,用密封材料44s涂覆插头45,并将密封垫44g装在加工有螺纹的颈部49上。接着,用约21英寸-磅的力矩拧紧插头45,以便密封蒸汽室41。最好将冷却装置在真空室中保持约5分钟或更长的时间,以便使密封材料44s凝固。在凝固以后就可以将冷却装置10从真空室中取出,再将相变液体41L密封在低压真空室41中。
在所制造出的冷却装置10的典型模型中,热体11的顶面29的直径为7毫米,底面11a的直径为60毫米。基部17的直径为52毫米,距离底面11a的高度为6.5毫米。冷却装置10从安装面19到顶面29的总高度约为49毫米。热体11从安装面19到凸台13的顶的总高度约为25毫米。光滑弯曲部分33的半径约为20毫米,倾斜部分35的直径约为65毫米。
另外,对于风扇70,也就是型号为EFB0612VHB的Delta
Figure G200410074858901D00191
风扇来讲,其长、宽和高为60毫米×60毫米×15毫米,如图14所示,将该风扇装在冷却装置10上。然后将冷却装置10装在一个由PGA478连接器承载的处理器上,而该连接器被焊在一个母板上。处理器的顶面约为33毫米x 33毫米,输出的热量约为36瓦特。在30℃的环境温度下,在本章节中描述的冷却装置10能够将处理器的壳体温度保持在45℃。基于上面的温度,热量为70瓦特时15℃的温差造成冷却装置10的估计热阻为:
0.2143℃/瓦特;(15℃/70瓦特=0.2143℃/瓦特)。
虽然描述了本发明的几个实施例,但是本发明不限于上面描述的具体形式或零件的安排。本发明仅由权利要求书限定。

Claims (21)

1.一种从构件(50)散热的冷却装置(10),该冷却装置包括:
热体(11),该热体具有基部(17)、向所述基部(17)内延伸的腔室孔(14a)、以及对称地设置在热体(11)的轴(Z)的周围的凸台(13),该凸台有接合部(13L)和一个经凸台(13)延伸到腔室孔(14a)的加工有螺纹的孔(13b);
与所述基部(17)相连的热芯,该热芯有延伸到腔室孔(14a)中的台阶式表面(14s)以及用于使热芯(40)和热体(11)与构件(50)热连接的安装面(19);
插头(45),该插头包括:多个彼此分开的插头翼片(42),从而在相邻插头翼片之间限定出插头槽(42s);台阶表面(48);从该台阶表面(48)延伸的加工有螺纹的颈部(49),该加工有螺纹的颈部拧到带有螺纹的孔(13b)中,直至台阶表面(48)接触接合部(13L);以及形成在所述加工有螺纹的颈部(49)中的插头腔(14b);
由所述插头腔(14b)、腔室孔(14a)和台阶表面(14s)限定出的低压蒸汽室(41);
与台阶表面的一部分接触、并在低压下被密封在低压蒸汽室(41)中的相变液体(41L);
多个与热体(11)连接的叶片(21),这些叶片彼此分开,从而在延伸到热体(11)的相邻叶片之间限定主槽(P),这些叶片(21)的表面积从热体(11)的轴(Z)开始沿径向朝外的方向(r)增大,所述叶片(21)包括至少一个副槽(S),该副槽延伸通过每一个叶片(21)的一部分,以便在每一个叶片中限定出多个翼片(23);
所述叶片(21)包括:顶面(29);形状符合空气动力学的内壁(26),该内壁包括从凸台(13)延伸的第一部分(25),该第一部分终止在延伸到顶面(29)的第二部分(27)处;叶片(21)的内壁(26),它限定出一个围绕凸台(13)的腔室(30);外壁(32),外壁的表面从基部(17)到顶面(29)变宽,在顶面和基部之间有平滑的弯曲部分(33)、倾斜部分(35)以及平滑的径向朝外部分(37);
其中,从构件(50)散热(Hw)是通过将热(Hw)热传导到使相变液体(41L)沸腾并从液态转变为汽态(41V)的热芯中,且通过经过腔室(30)、主槽(P)、副槽(S)和插头槽(42s)的气流(F)进行的。
2.根据权利要求1的冷却装置(10),其中热体(11)由选自下面的一组材料制成:铝、铝合金、铜、铜合金、电解铜、金、金合金、硅衬底和陶瓷材料。
3.根据权利要求1的冷却装置(10),其中热芯(40)由选自下面的一组材料制成:铜、铜合金、银、银合金、硅、金、金合金、石墨、碳纤维材料和碳纤维强化材料。
4.根据权利要求1的冷却装置(10),该冷却装置还包括与安装面(19)接触的热界面材料(24)。
5.根据权利要求1的冷却装置(10),该冷却装置还包括至少一个与所述顶面(29)相邻并位于腔室(30)上方的风扇(70),从而由该风扇(70)产生的气流(af)形成通过腔室(30)的气流(F)。
6.根据权利要求5的冷却装置(10),该冷却装置还包括紧靠平滑的径向朝外部分(37)并含有多个安装固定器(83)的安装环(80),所述安装固定器接收固定件(89,87),固定件使风扇(70)与安装环(80)接触,以便风扇(70)固定地与顶面(29)连接。
7.根据权利要求6的冷却装置(10),其中所述顶面(29)的至少一部分是基本平的部分(29a),当风扇(70)与顶面(29)连接时,该风扇(70)处在基本平的部分(29a)上。
8.根据权利要求1的冷却装置(10),该冷却装置还包括与加工有螺纹的孔(13b)和加工有螺纹的颈部(49)接触的密封材料,用于密封低压蒸汽室(41)中的相变液体(41L)。
9.根据权利要求8的冷却装置(10),其中密封材料(44s)将插头(45)与热体(11)隔热。
10.根据权利要求1的冷却装置(10),该冷却装置还包括位于接合部(13L)和台阶表面(48)之间的密封垫(44g),用于密封低压蒸汽室(41)中的相变液体(41L)。
11.根据权利要求1的冷却装置(10),其中相变液体(41L)是选自下组中的材料:水、碳氟化合物、四氟化碳、电介质流体和乙烯。
12.根据权利要求1的冷却装置(10),其中台阶表面(14s)的形状选自下组:弧形和斜面形中的一个。
13.根据权利要求1的冷却装置(10),其中叶片(21)相对于一个绕热体(11)的轴(Z)的圆(Ct)的预定直径为切向取向(t)。
14.根据权利要求13的冷却装置(10),其中预定直径约为3.0毫米到12.0毫米。
15.根据权利要求1的冷却装置(10),其中叶片(21)相对于热体(11)的轴(Z)倾斜一个角度(β)。
16.根据权利要求15的冷却装置(10),其中叶片(21)的倾斜角(β)约为5.0度到25.0度。
17.根据权利要求15的冷却装置(10),其中叶片(21)的倾斜角(β)包括约10.0度到约25.0度的第一角(δ1)和约5.0度到约18.0度的第二角(δ2),所述第一角(δ1)是沿平滑的径向朝外部分(37)测得的,所述第二角(δ2)是沿平滑的弯曲部分(33)测得的。
18.根据权利要求1的冷却装置(10),其中热芯(40)的形状选自下组:弧形和斜面形中的一个。
19.根据权利要求1的冷却装置(10),其中热体(11)、基部(17)和叶片(21)被均质形成。
20.根据权利要求1的冷却装置(10),其中主槽(P)还包括沿热体(11)的第一弧形(21a),该第一弧形(21a)是半径约为38.0毫米到约45.0毫米的弧的一部分。
21.根据权利要求1的冷却装置(10),其中副槽(S)延伸到热体(11),该副槽(S)还包括沿热体(11)的第二弧形(23a),第二弧形(23a)是半径约为31.0毫米到约38.0毫米的弧的一部分。
CN2004100748589A 2003-08-28 2004-08-30 具有蒸汽室的高性能冷却装置 Expired - Fee Related CN1592568B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/651,129 US6789610B1 (en) 2003-08-28 2003-08-28 High performance cooling device with vapor chamber
US10/651129 2003-08-28

Publications (2)

Publication Number Publication Date
CN1592568A CN1592568A (zh) 2005-03-09
CN1592568B true CN1592568B (zh) 2010-09-08

Family

ID=32927961

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2004100748589A Expired - Fee Related CN1592568B (zh) 2003-08-28 2004-08-30 具有蒸汽室的高性能冷却装置

Country Status (5)

Country Link
US (1) US6789610B1 (zh)
EP (1) EP1511079A3 (zh)
JP (1) JP4098288B2 (zh)
CN (1) CN1592568B (zh)
TW (1) TWI312058B (zh)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI229583B (en) * 2003-08-03 2005-03-11 Hon Hai Prec Ind Co Ltd Liquid-cooled heat sink device
US7509995B2 (en) * 2004-05-06 2009-03-31 Delphi Technologies, Inc. Heat dissipation element for cooling electronic devices
JP4238776B2 (ja) * 2004-05-12 2009-03-18 パナソニック株式会社 冷却装置
US20060054311A1 (en) * 2004-09-15 2006-03-16 Andrew Douglas Delano Heat sink device with independent parts
US7028757B1 (en) 2004-10-21 2006-04-18 Hewlett-Packard Development Company, L.P. Twin fin arrayed cooling device with liquid chamber
US7296619B2 (en) * 2004-10-21 2007-11-20 Hewlett-Packard Development Company, L.P. Twin fin arrayed cooling device with heat spreader
US7164582B2 (en) * 2004-10-29 2007-01-16 Hewlett-Packard Development Company, L.P. Cooling system with submerged fan
US7443683B2 (en) * 2004-11-19 2008-10-28 Hewlett-Packard Development Company, L.P. Cooling apparatus for electronic devices
US20080149305A1 (en) * 2006-12-20 2008-06-26 Te-Chung Chen Heat Sink Structure for High Power LED Lamp
TWI357479B (en) * 2008-11-28 2012-02-01 Univ Nat Taiwan Science Tech A thermal module for light source
US20110079376A1 (en) * 2009-10-03 2011-04-07 Wolverine Tube, Inc. Cold plate with pins
US20110315356A1 (en) * 2010-06-24 2011-12-29 Celsia Technologies Taiwan, I Heat-dissipating body having radial fin assembly and heat-dissipating device having the same
EP2649311B1 (en) 2010-12-10 2018-04-18 Schwarck Structure, LLC Passive heat extraction and power generation
WO2013169774A2 (en) 2012-05-07 2013-11-14 Phononic Devices, Inc. Thermoelectric heat exchanger component including protective heat spreading lid and optimal thermal interface resistance
US20130291555A1 (en) 2012-05-07 2013-11-07 Phononic Devices, Inc. Thermoelectric refrigeration system control scheme for high efficiency performance
EP2989659B1 (en) * 2013-04-23 2019-06-12 Alexiou & Tryde Holding ApS Heat sink having a cooling structure with decreasing structure density
US20170031394A1 (en) * 2014-04-28 2017-02-02 Hewlett-Packard Development Company, L.P. A heat-dissipating device including a vapor chamber and a radial fin assembly
US10458683B2 (en) 2014-07-21 2019-10-29 Phononic, Inc. Systems and methods for mitigating heat rejection limitations of a thermoelectric module
US9593871B2 (en) 2014-07-21 2017-03-14 Phononic Devices, Inc. Systems and methods for operating a thermoelectric module to increase efficiency
US20220018607A1 (en) * 2020-07-14 2022-01-20 Raytheon Company Chimney cooler design for rugged maximum free convection heat transfer with minimum footprint
US11686536B2 (en) * 2021-02-09 2023-06-27 Raytheon Technologies Corporation Three-dimensional diffuser-fin heat sink with integrated blower
CN112803038B (zh) * 2021-04-08 2021-07-02 新乡医学院 一种生物燃料电池装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010050164A1 (en) * 1999-08-18 2001-12-13 Agilent Technologies, Inc. Cooling apparatus for electronic devices
CN1400658A (zh) * 2001-07-27 2003-03-05 惠普公司 高性能冷却装置
US20030102110A1 (en) * 2001-12-03 2003-06-05 Wagner Guy R. Cooling apparatus

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3613773A (en) * 1964-12-07 1971-10-19 Rca Corp Constant temperature output heat pipe
US4633371A (en) * 1984-09-17 1986-12-30 Amdahl Corporation Heat pipe heat exchanger for large scale integrated circuits
TW307837B (zh) * 1995-05-30 1997-06-11 Fujikura Kk
US6508300B1 (en) 2001-07-27 2003-01-21 Hewlett Packard Company Spring clip for a cooling device
USD464938S1 (en) 2001-07-27 2002-10-29 Hewlett Packard Company High performance cooling device
US6543522B1 (en) 2001-10-31 2003-04-08 Hewlett-Packard Development Company, L.P. Arrayed fin cooler
US6691770B2 (en) * 2001-12-03 2004-02-17 Agilent Technologies, Inc. Cooling apparatus
TW540985U (en) * 2002-07-16 2003-07-01 Delta Electronics Inc Improved heat sink
US6588498B1 (en) * 2002-07-18 2003-07-08 Delphi Technologies, Inc. Thermosiphon for electronics cooling with high performance boiling and condensing surfaces
US6631756B1 (en) * 2002-09-10 2003-10-14 Hewlett-Packard Development Company, L.P. High performance passive cooling device with ducting
TW557350B (en) * 2003-01-06 2003-10-11 Jiun-Guang Luo One-way airstream hollow cavity energy transferring device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010050164A1 (en) * 1999-08-18 2001-12-13 Agilent Technologies, Inc. Cooling apparatus for electronic devices
CN1400658A (zh) * 2001-07-27 2003-03-05 惠普公司 高性能冷却装置
US20030102110A1 (en) * 2001-12-03 2003-06-05 Wagner Guy R. Cooling apparatus

Also Published As

Publication number Publication date
TW200508560A (en) 2005-03-01
TWI312058B (en) 2009-07-11
JP2005079579A (ja) 2005-03-24
EP1511079A2 (en) 2005-03-02
JP4098288B2 (ja) 2008-06-11
CN1592568A (zh) 2005-03-09
EP1511079A3 (en) 2005-04-13
US6789610B1 (en) 2004-09-14

Similar Documents

Publication Publication Date Title
CN1592568B (zh) 具有蒸汽室的高性能冷却装置
US6986384B2 (en) Cooling apparatus for dissipating heat from a heat source
US20020067599A1 (en) Single piece heat sink for computer chip
US20030042005A1 (en) Thermally conductive elastomeric heat dissipation assembly with snap-in heat transfer conduit
US6631756B1 (en) High performance passive cooling device with ducting
CN1980558A (zh) 液冷式散热组合和液冷式散热装置
CN107606982B (zh) 一种石墨散热器及其整体成型方法
US7164582B2 (en) Cooling system with submerged fan
JPH07312493A (ja) ヒートシンクおよびファン付きヒートシンク装置
CN218769495U (zh) 一种提高SiC芯片可靠性的封装结构
JPH0832263A (ja) 発熱体パッケージの冷却構造
CN109637936A (zh) 一种石墨散热器的整体成型方法
JPH09213849A (ja) 液冷用ヒートシンクの冷却装置
CN211744251U (zh) 具有散热结构的矿山机电设备用电机
CN211531648U (zh) 局部封装液态金属的浸没式散热冷板
JPH08195453A (ja) 放熱板
CN111245144A (zh) 一种高效的三相异步电机
TWI355230B (en) Liquid-cooled assemblage and liquid-cooled device
JP3056876U (ja) ファン放熱構造
CN210239828U (zh) 一种用于摩托车发动机的快速散热装置
CN216250698U (zh) 一种异性电路板及元器件插件封装
CN218124463U (zh) 一种用于干湿两用型吸尘器电机内部结构散热结构
CN212079754U (zh) 一种新型平衡盘
EP0862210A2 (en) Heat dissipating assembly
CN216767872U (zh) 一种散热效果好的渣浆泵

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100908

Termination date: 20150830

EXPY Termination of patent right or utility model