CN1585167A - 一种锂离子蓄电池正极材料及其制造方法 - Google Patents

一种锂离子蓄电池正极材料及其制造方法 Download PDF

Info

Publication number
CN1585167A
CN1585167A CNA031356400A CN03135640A CN1585167A CN 1585167 A CN1585167 A CN 1585167A CN A031356400 A CNA031356400 A CN A031356400A CN 03135640 A CN03135640 A CN 03135640A CN 1585167 A CN1585167 A CN 1585167A
Authority
CN
China
Prior art keywords
compound
lithium
cobalt
manganese
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA031356400A
Other languages
English (en)
Inventor
刘兴泉
林晓静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Organic Chemicals Co Ltd of CAS
Original Assignee
Chengdu Organic Chemicals Co Ltd of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Organic Chemicals Co Ltd of CAS filed Critical Chengdu Organic Chemicals Co Ltd of CAS
Priority to CNA031356400A priority Critical patent/CN1585167A/zh
Publication of CN1585167A publication Critical patent/CN1585167A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G45/00Compounds of manganese
    • C01G45/12Manganates manganites or permanganates
    • C01G45/1221Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof
    • C01G45/1228Manganates or manganites with a manganese oxidation state of Mn(III), Mn(IV) or mixtures thereof of the type [MnO2]n-, e.g. LiMnO2, Li[MxMn1-x]O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • C01G51/44Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese
    • C01G51/50Cobaltates containing alkali metals, e.g. LiCoO2 containing manganese of the type [MnO2]n-, e.g. Li(CoxMn1-x)O2, Li(MyCoxMn1-x-y)O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/76Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by a space-group or by other symmetry indications
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/446Initial charging measures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明提供了一种锂锰镍钴复合氧化物正极材料(LixMn1-y-zNiyCozO2,0<x≤1,0≤y≤0.5,0≤z≤0.5)及其制造方法。该材料为一种黑色至灰黑色超细粉末,可被用做锂离子蓄电池的正极材料。在2.0V~4.5V和0.3~0.4mA/cm2 (~0.4C)条件下恒流充放电,首次放电容量大于120mAh/g。

Description

一种锂离子蓄电池正极材料及其制造方法
本发明涉及一种锂离子蓄电池正极材料及其制造方法,尤其涉及一种锂锰镍钴复合氧化物正极材料(LixMn1-y-zNiyCozO2,其中0<x≤1,0≤y≤0.5,0≤z≤0.5)及其制造方法。
锂离子蓄电池可用的正极材料主要有以下几种:(1)日本索尼(Sony)能源技术公司开发的锂钴氧化物,主要为LiCoO2。(2)日本NEC公司控股的加拿大莫里(Moli)公司开发的锂镍氧化物,主要为LiNiO2。(3)美国贝尔科(Bellcore)公司开发的锂锰氧化物,包括尖晶石型的LiMn2O4和层状的LiMnO2。这几种材料具有以下特点:(1)LiCoO2性能较好。但资源有限,价格高昂。对环境有污染,不耐过充放电,安全性差,不能做成方形电池。(2)LiNiO2资源较丰富,对环境污染小。但合成条件苛刻,不易得到化学计量比化合物,从而使其循环可逆性下降,而且在充电态时的热稳定性差,较易引起安全问题,不能做成方形电池。(3)LiMn2O4资源丰富,对环境友好。由于是尖晶石结构,因此具有耐过充放电,安全性好,能够做成方形电池的特点。但尖晶石型LixMn2O4的初始容量不高(一般只有120mAh/g),由于其中Mn3+的d4电子组态,导致Jahn-Teller效应明显,从而影响其循环稳定性,高温容量衰减更快。虽然许多研究者对其进行掺杂改性等修饰,但是并不能从根本上解决这些问题。(4)LiMnO2资源丰富,对环境无污染。但由于Jahn-Teller效应十分显著,导致其容量率减较快,循环寿命较短。由于仍是层状结构,因此仍有不耐过充放电,安全性较差,不能做成方形电池的缺点。层状LiMnO2属于热力学亚稳态结构,作为锂离子蓄电池正极材料,在电化学循环过程中,Mn3+在电解质中易于溶解和歧化,而且普遍存在向尖晶石相的结构畸变,从而带来容量的快速衰减。目前克服这些不足的方法有:一方面对LiMnO2表面进行涂覆修饰和包裹,使材料表面不与电解质溶液直接接触,以减少Mn3+的溶解和歧化;另一方面就是对层状LiMnO2进行阴离子和阳离子掺杂,改变锰的价态和含量,以减少Jahn-Teller畸变效应。
目前进行掺杂的阴离子有S2-[S.-H.Park,Y.-S.Lee,Y.-K.Sun,Electrochem.Commun.,2003,5:124-128]。进行掺杂的阳离子有Li+[K.M.Shaju,G.V.Subba Rao,B.V.R.Chowdari,Electrochem.Commun.,2002,4:633-638];Al3+[G.Ceder,Y.-M.Chiang,D.R.Sadoway,et al,Nature,1998,392:894-895;S.H.Park,Y.-K.Sun,J.Power Sources,2003,5285:1-5];Cr3+[B.Ammundsen,J.Paulsen,I.Davidson,et al,J.Electrochem.Soc.,2002,149:A431-436];Ni2+[Zhonghua Lu,J.R.Dahn,Chem.Mater.,2001,13:2078-2083]和Co3+[A.R.Armstrong,A.D.Robertson,P.G.Bruce,Electrochim.Acta,1999,45:285-294]等。但掺杂这些离子后,虽然对材料的性能有所改善,但都不尽理想。高温固相反应是锂离子蓄电池正极材料的传统制备方法,此法操作简单,但仍有很多缺点,如较高的反应温度和较长的反应时间,导致材料在组成、结构、粒度等方面存在较大差别。本发明采用改进的制备方法,克服了传统固相反应的缺点。
本发明的目的是:提供一种价格低廉、性能优异的锂离子蓄电池正极材料LixMn1-y-zNiyCozO2(其中0<x≤1,0≤y≤0.5,0≤z≤0.5)以及制造这种材料的方法。
本发明的目的是这样实现的。将一种含锂的化合物和含锰的化合物、含镍的化合物、含钴的化合物按比例混合,置于坩埚中,加入少量的蒸馏水不断搅拌,再加入与过渡金属等摩尔量的柠檬酸,不断搅拌,使其溶解。然后将水蒸干,120℃干燥过夜后稍加研磨。置于马弗炉中,在空气中600~900℃焙烧6~72h,即得到组成为LixMn1-y-zNiyCozO2(其中0<x≤1,0≤y≤0.5,0≤z≤0.5)的复合氧化物。
本发明的原理是:由于LiMnO2,LiNiO2和LiCoO2都为层状结构,属六方晶系。LiCoO2为α-NaFeO2型结构,空间群为R3m。Li+占据3a位,Co3+占据3b位,O2-占据6c位。掺入镍和锰后,在高温下,镍和锰取代部分钴,占据3b位,结构没有发生改变。其中锰以+4价存在,降低了Jahn-Teller畸变带来的不可逆性,而镍和钴则分别以+2价和+3价存在。一方面,由于过渡金属离子以+3价存在,使该正极材料的比容量仍可与LiCoO2的比容量相当。另一方面,由于镍和锰取代部分钴后,不仅大大降低了材料的成本,而且明显减少了环境污染。
本发明的优点是:通过改变正极材料的合成方法、掺杂少量镍原子和钴原子来取代部分锰原子,可以顺利得到具有O2型层状结构的LixMn1-y-zNiyCozO2正极材料,克服了在充放电过程中材料的不可逆相结构转变问题。
为了更好地阐明本发明的科学意义和实际价值,下面结合实施例和附图进行详细说明。
实施例1
将4.511g一水合氢氧化锂,9.567g六水合硝酸锰,9.879g六水合硝酸镍,10.096g六水合硝酸钴和24.135g柠檬酸溶于适当蒸馏水中,强力搅拌至得到澄清溶液。然后置于大蒸发皿中,在180℃烘箱中烘干。冷却后研细,置于马弗炉内400℃空气中预烧2h,然后在820℃下焙烧16h。自然冷却后,研磨成细粉,即得到黑色粉末正极材料。该材料呈O2型层状结构(见图1),空间群R3m。然后以此做正极活性材料,乙炔黑为导电剂,聚四氟乙烯(PTFE)乳液为粘接剂,三者重量比是80∶15∶5。以铝箔为集电极进行涂片,以1.0mol/L LiClO4/EC+DEC(1∶1 Vol.)为电解液,金属锂片为对电极,美国Cellgard 2400为隔膜,在充满氩气的不锈钢手套箱中装配成模拟扣式电池。然后在0.4mA/cm2(0.4C)条件下恒流充放电,充放电压截止范围为3.0~4.5V。其首次放电容量达到102.90mAh/g(见图2),效率达到74.8%。
实施例2
将4.511g一水合氢氧化锂,8.171g四水合醋酸锰,8.378g四水合醋酸镍,8.639g四水合醋酸钴和24.135g柠檬酸溶于适当蒸馏水中,强力搅拌至得到澄清溶液。后续步骤同实施例1。在充放电压截止范围为3.0~4.5V时,该材料的首次放电容量达到123.10mAh/g(见图3),效率达到79.5%。在充放电压截止范围为2.0~4.5V时,其可逆放电容量可以达到141.30mAh/g,效率达到97.8%。
实施例3
将4.48g硝酸锂,5.80g六水合硝酸锰,5.93g六水合硝酸镍和5.88g六水合硝酸钴混合后研磨均匀加入适量无水乙醇,研磨直至得到一种浆状混合物。然后在80℃时蒸发,除去无水乙醇,110℃下干燥除去水分,得到疏松的块状固体,研细后,在800℃空气气氛中焙烧30h。在2.5~4.5V电压范围内充放电,其首次放电比容量达到124.60mAh/g(见图4),效率达到85.4%。
实施例4
将8.70g六水合硝酸锰,8.90g六水合硝酸镍和8.82g六水合硝酸钴溶解于100ml蒸馏水中,缓慢滴加到400ml浓度为1.0mol/L的氢氧化锂水溶液中,并不断搅拌。反应6h后,过滤,将沉淀用蒸馏水洗涤3次。然后于150℃干燥除去水分,取出后加入3.98g研细的一水合氢氧化锂,研磨均匀,在800℃空气气氛中焙烧15h。在2.5~4.5V电压范围内恒流充放电,其首次放电容量达到128.20mAh/g(见图5),效率达到75.10%。
实施例5
本实施例考察焙烧时间的影响,结果见表1。除焙烧时间不同外,其余同实施例2。
                      表1 焙烧时间的影响
焙烧时间/h     首次放电容量/mAh·g-1  最高可逆放电容量/mAh·g-1
16                   123.1                        141.3
24                   125.3                        143.2
48                   122.6                        143.1

Claims (5)

1.一种锂(离子)蓄电池用正极材料,其特征在于该正极材料为一种掺杂金属镍或钴或它们的混合物的锂锰复合氧化物,其组成为LixMn1-y-zNiyCozO2,其中0<x≤1,0≤y≤0.5,0≤z≤0.5。该正极材料是通过以下方法合成的:将一种含锂的化合物和含锰的化合物、含镍的化合物、含钴的化合物按比例混合,置于坩埚中,加入少量的蒸馏水不断搅拌,再加入与过渡金属等摩尔量的柠檬酸,不断搅拌,使其溶解。然后将水蒸干,120-180℃干燥过夜后稍加研磨。置于马弗炉中,在空气中600~900℃焙烧6~72h,即得到组成为LixMn1-y-zNiyCozO2(其中0<x≤1,0≤y≤0.5,0≤z≤0.5)的复合氧化物。
2.根据权利要求1,含锂的化合物从硝酸锂,醋酸锂,碳酸锂和氢氧化锂中选择。
3.根据权利要求1,含锰的化合物从硝酸锰,草酸锰和醋酸锰中选择。
4.根据权利要求1,含镍的化合物从硝酸镍,醋酸镍和碳酸镍中选择。
5.根据权利要求1,含钴的化合物从硝酸钴,醋酸钴和草酸钴中选择。
CNA031356400A 2003-08-22 2003-08-22 一种锂离子蓄电池正极材料及其制造方法 Pending CN1585167A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNA031356400A CN1585167A (zh) 2003-08-22 2003-08-22 一种锂离子蓄电池正极材料及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNA031356400A CN1585167A (zh) 2003-08-22 2003-08-22 一种锂离子蓄电池正极材料及其制造方法

Publications (1)

Publication Number Publication Date
CN1585167A true CN1585167A (zh) 2005-02-23

Family

ID=34597185

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA031356400A Pending CN1585167A (zh) 2003-08-22 2003-08-22 一种锂离子蓄电池正极材料及其制造方法

Country Status (1)

Country Link
CN (1) CN1585167A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1321881C (zh) * 2005-09-23 2007-06-20 北京科技大学 一种采用低热固相反应制备锂镍锰氧化物材料的方法
CN100401558C (zh) * 2005-03-16 2008-07-09 北京大学 一种制备锂离子电池材料LiNixMn2-xO4的方法
CN100431972C (zh) * 2003-12-12 2008-11-12 日本化学工业株式会社 锂锰镍复合氧化物的制造方法
CN110230029A (zh) * 2019-06-27 2019-09-13 西安邮电大学 一种尖晶石结构锰镍氧化物薄膜的制备方法
US11183691B2 (en) 2016-12-21 2021-11-23 Lg Chem, Ltd. Metal-doped positive electrode active material for high voltage

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100431972C (zh) * 2003-12-12 2008-11-12 日本化学工业株式会社 锂锰镍复合氧化物的制造方法
CN100401558C (zh) * 2005-03-16 2008-07-09 北京大学 一种制备锂离子电池材料LiNixMn2-xO4的方法
CN1321881C (zh) * 2005-09-23 2007-06-20 北京科技大学 一种采用低热固相反应制备锂镍锰氧化物材料的方法
US11183691B2 (en) 2016-12-21 2021-11-23 Lg Chem, Ltd. Metal-doped positive electrode active material for high voltage
CN110230029A (zh) * 2019-06-27 2019-09-13 西安邮电大学 一种尖晶石结构锰镍氧化物薄膜的制备方法

Similar Documents

Publication Publication Date Title
Tang et al. Synthesis and electrochemical performance of lithium-rich cathode material Li [Li0. 2Ni0. 15Mn0. 55Co0. 1-xAlx] O2
US6623886B2 (en) Nickel-rich quaternary metal oxide materials as cathodes for lithium-ion and lithium-ion polymer batteries
JP4592931B2 (ja) リチウム二次電池用正極材料及び及びその製造方法
CN107785551B (zh) 一种相结构比例梯度渐变的富锂层状氧化物材料及制备方法
CN108448109B (zh) 一种层状富锂锰基正极材料及其制备方法
JPH11513181A (ja) 充電式リチウム電池電極
CN104218235A (zh) 一种双掺杂富锂固溶体正极复合材料及其制备方法、锂离子电池正极片和锂离子电池
CN102668178A (zh) 由两种组分的组合制成的阴极以及使用该阴极的锂二次电池
CN108091854A (zh) 一种阴阳离子复合掺杂的高电压尖晶石型锂离子电池正极材料及其制备方法
CN108899481A (zh) 一种二氧化锰的制备方法及用途
CN113611839A (zh) 一种新型混合体系富锂锰基正极片及其制备方法,锂离子电池
CN103367733A (zh) 锂离子电池正极材料及其制备方法、电池
CN103000879A (zh) 一种具有一维多孔结构的尖晶石型锂镍锰氧的制备方法
CN109360984B (zh) 一种锂离子电池层状正极材料杂化表面的制备方法
CN109659538B (zh) 基于多巴胺和磷酸锂包覆的富锂锰基氧化物材料的制备及其产品和应用
CN103259008B (zh) 一种锂离子电池三元复合正极材料及其制备方法
CN103456945A (zh) 一种低成本锂离子电池正极材料的制备方法
CN111900473B (zh) 一种用于提高正极材料性能的锂离子电池电解液及锂离子电池
CN111799465B (zh) 一种锰基锂电池电极材料的复合包覆方法
CN104425810A (zh) 一种改性的锂镍锰氧材料及其制备方法、锂离子电池
CN102544511A (zh) 铈掺杂钴酸锶与碳共同包覆磷酸亚铁锂的锂离子电池正极材料及其制备方法
CN109461917B (zh) 一种锆酸镧原位包覆高镍三元正极材料的制备方法
CN1490250A (zh) 电动车用锂离子电池正极材料新型尖晶石锰酸锂的制备方法
CN107069026A (zh) 一种有效抑制循环过程中容量/电压衰减的层状富锂锰氧化物正极材料及其制备方法和应用
CN1585167A (zh) 一种锂离子蓄电池正极材料及其制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication