CN1481510A - 辐射检测以及正电子发射断层扫描 - Google Patents

辐射检测以及正电子发射断层扫描 Download PDF

Info

Publication number
CN1481510A
CN1481510A CNA018206212A CN01820621A CN1481510A CN 1481510 A CN1481510 A CN 1481510A CN A018206212 A CNA018206212 A CN A018206212A CN 01820621 A CN01820621 A CN 01820621A CN 1481510 A CN1481510 A CN 1481510A
Authority
CN
China
Prior art keywords
light
detected
radiation
electronics
snowslide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA018206212A
Other languages
English (en)
Other versions
CN1307429C (zh
Inventor
T・弗兰克
T·弗兰克
箍品
V·佩斯科夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xcounter AB
Original Assignee
Xcounter AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xcounter AB filed Critical Xcounter AB
Publication of CN1481510A publication Critical patent/CN1481510A/zh
Application granted granted Critical
Publication of CN1307429C publication Critical patent/CN1307429C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/205Measuring radiation intensity with scintillation detectors the detector being a gas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/185Measuring radiation intensity with ionisation chamber arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/29Measurement performed on radiation beams, e.g. position or section of the beam; Measurement of spatial distribution of radiation
    • G01T1/2914Measurement of spatial distribution of radiation
    • G01T1/2985In depth localisation, e.g. using positron emitters; Tomographic imaging (longitudinal and transverse section imaging; apparatus for radiation diagnosis sequentially in different planes, steroscopic radiation diagnosis)

Abstract

披露了一种辐射检测器,包括一个可以充满可电离和闪烁材料的腔体(11;51)以及一个设计为使辐射(γ;X)可以进入所述腔体的辐射入口,部分用于使所述可电离和闪烁材料电离,部分用于在其中被转换为光(hv)。该检测器还包括一个用于对所述光进行检测的光检测器(17;57),以及一个用于对由于电离而释放电子(e)进行雪崩放大并且进行检测的电子雪崩检测器(19;59)。此外,提供了用于使检测到的光与检测到的由单个辐射光子产生的电子相关的装置;以及用于根据检测到的并且经过相关的光和检测到的电子生成信号的装置。该检测器特别适合于正电子发射断层扫描(PET)。

Description

辐射检测以及正电子发射断层扫描
发明领域
本发明总体上涉及电离辐射,例如伽马射线和X射线,具体涉及正电子发射断层扫描(PET)。
更确切地说,本发明分别涉及一种新颖的检测器装置和方法,用于对辐射进行时间和空间高分辨率检测,并且分别涉及一种正电子发射断层扫描设备以及方法,用于根据从目标发射并随后在精确位置高速检测的辐射的线性投射,构造所关心的目标的图像。
相关技术描述及背景技术
PET检测器或照相机通常包括一个位于患者周围区域的多边形或圆形的辐射检测传感器环。辐射检测首先将具有短半衰期的同位素注入位于患者区域内的患者体内。该同位素被体内的目标区域吸收,并且发射正电子。在人体内,这些正电子与电子相湮灭。其结果,沿着相反的方向同时发射两条基本上是单能的伽马射线。在多数情况下,这些发射出的伽马射线离开人体并且击中辐射检测器环。
检测器环通常包括闪烁晶体内环和光检测器外环,例如,光电倍增管。闪烁晶体响应入射的γ射线而发射闪光(光子能量),即所谓闪烁光,其然后由对应的光电倍增管转换为电子信号。计算机或类似的设备记录每次闪光的位置,然后通过对闪光进行比较并且搜索同时出现并且来自相同的正电子-电子湮灭点的闪光对,绘出患者体内的辐射源。随后将记录的数据转化为PET图像。PET监视器用表示放射性等级的不同颜色来显示同位素的浓度。于是,所产生的PET图像表示出存在于患者体内的肿瘤或肿块的图像。
已知这种检测器装置具有良好的能量分辨率,但空间和时间分辨率相对较差。早期的PET检测器需要将单个光电倍增管连接到每个单独的闪烁晶体,然而现在,PET检测器允许将单个光电检测器用于几个晶体,见例如序列号为4864138、5451789和5453623的美国专利。按照这样的方式,提高了空间分辨率或者可以减少需要的光电检测器的数量。
然而,通过使用基于闪烁体的光电检测器的PET检测器得到的空间分辨率仍然相对较低。进一步提高空间分辨率需要使用大量小型光电检测器以及一个闪烁体系统,该系统仅在吸收入射辐射的闪烁体部分产生可见光子。即使能够实现,在大阵列中使用大量光电检测器或者提高器件的分辨率也将会导致非常复杂并且昂贵的设备。
此外,在希望患者承受最小量电离的医疗应用中,检测器设备对低等级辐射敏感,同时仍然能与背景辐射区分很重要。在某些应用中,基于闪烁体的检测器可能不具有足够高的灵敏度或者信噪比。
此外,检测器设备的光检测装置一般对由入射辐射产生的直接辐照敏感,在这种情况下,必须采取措施以防止入射辐射到达这样的装置。
发明内容
因此,本发明的一个目的是提供一种用于对辐射进行检测的检测器装置和方法,它同时提供很高的时间和空间分辨率。
本发明的另一个目的是分别提供一种正电子发射断层扫描(PET)设备和方法,用于根据从目标发射并随后检测的辐射的线性投射,构造所关心的目标的图像,从而提供和高速构造的图像的高空间分辨率。
本发明的另一个目的是提供这样的检测器装置、PET设备和方法,它们提供对噪声的有效抑制;由此显示出很高的信噪比。
本发明的另一个目的是提供这样的检测器装置、PET设备和方法,它们提供按照光谱分解的检测。在进行PET检测的情况下,改进的能量分辨率能够减少被错误相关的信号对的数量。
本发明的另一个目的是提供这样的检测器装置、PET设备和方法,它们可以在相当高的辐射通量下工作,并且由此提供快速检查。
本发明的另一个目的是提供这样的检测器装置、PET设备和方法,它们是有效的、准确的、可靠的、便于使用的并且是低成本的。
按照本发明,如所附权利要求书所述,利用检测器装置、PET设备和方法实现了在其它方面中的这些目的。
通过提供具有充满了闪烁材料和可电离材料的腔体的双重检测器装置,其中,由于入射辐射与材料之间的相互作用产生了光以及电子,并且其中,在各个装置的检测器中,即,分别在光检测器中和电子雪崩检测器中,分别对光和电子进行独立检测,随后,通过使分别来源于相应的同一个入射辐射光子的相应的光和电子相关,可以进行显示出光检测器和电子雪崩检测器二者的主要优点的检测。具体来说,由于已知光检测器提供高能量分辨率以及已知电子雪崩检测器提供高位置和时间分辨率,本发明的双重结构可以提供光检测器的高能量分辨率并且同时提供电子雪崩检测器的高位置和时间分辨率。这样的检测器装置特别适合在正电子发射断层扫描(PET)中使用,以抑制其它情况下被错误匹配的信号对,利用这种检测器装置可以产生降低噪声等级的图像。
根据以下对在附图中示出的本发明的优选实施例进行的详细描述,将会清楚本发明的其它特性及其优点。
附图简述
根据在下文中对本发明实施例进行的详细描述以及附图1-5,将更充分地理解本发明,对本发明实施例的详细描述以及附图1-5仅用于说明,因此不是对本发明的限制。
图1用透视图示意性地示出了按照本发明的第一实施例的辐射检测器装置。
图2用剖面图示意性地示出了图1的辐射检测器的结构。
图3用透视图示意性地示出了按照本发明的另一个范例实施例的用于正电子发射断层扫描(PET)的设备。
图4用剖面图示意性地示出了图3的PET设备。
图5用剖面图示意性地示出了按照本发明的另一个实施例的PET设备。
优选实施例详述
在以下的描述中,为了进行说明而非限制,提出了具体细节,如具体技术和应用,以便提供对本发明的透彻理解。但是,本领域技术人员应该明白,可以在脱离这些具体细节的其它实施例中实施本发明。在其它情况下,省略了对众所周知的方法和设备的说明,以使对本发明的说明不被多余的细节弄得模糊不清。
参照图1和2,它们分别利用透视图和剖面图示意性地示出了辐射检测器装置10,以下将对本发明的第一实施例进行描述。
检测器装置10包括分别大致平坦的阴极13和阳极35,以及侧壁12(在图1中为了进行说明而将其去掉一部分),它们共同形成了其中盛放可电离和闪烁材料的气密空间或腔体11。阴极13还构成了用于入射辐射的辐射进入窗口,入射辐射通常可以是伽马射线或X射线,并且通常被定向为使入射辐射大致与阴极13的平面垂直地进入装置10。
可电离和闪烁流体,它最好是也适合于电子雪崩倍增的介质,可以处在气相、液相或固相中,并且通常包括Ar、Xe、Kr或它们的混合物中的任意一种,可以从例如CO2、CH4、C2H6或isobuthane中选择少量加入其中,以提高可以实现的雪崩放大。如果使用气体或气体混合物,则可以在压力之下,最好在1-20atm的范围。如果使用固体,则最好是凝固的惰性气体。
阴极13包括可以选择由绝缘衬底34支持的导电阴极层33,阳极35包括布置在绝缘衬底40上的多个矩形、正方形或其他形状的导电焊盘39。阳极35还构成了检测器装置10的读出装置,因此导电焊盘39构成了读出元件,用于对(由于入射辐射使材料电离而产生的)加速漂向阳极35的电子进行空间分解的检测。因此,利用绝缘衬底40使导电元件39在电气上相互绝缘。
或者,提供可以布置在阳极35附近、在阴极13附近或其他位置的单独的读出装置。通常,利用绝缘材料或者类似材料使这样的读出装置与邻近的电极分开。在本发明中使用的某些读出装置的布局在我们1999年4月14日提交、序列号为9901325-2、标题为Radiationdetector,an apparatus for use in planar radiography and amethod for detecting ionizing radiation的共同未决的瑞典专利申请中进一步说明,该申请在此引用为参考。
将读出装置连接到信号处理设备(没有示出),对收集到的信号数据进行必要和/或希望的后处理。最好,利用各自的信号通道将读出元件39单独连接到信号处理电路。提供了用于显示经过处理的信号数据的信号显示单元(也没有示出)。
在阴极13和阳极35之间大致与它们平行地布置雪崩阴极37,它通常是具有多个可以穿过电子的孔38的导电片或类似部件。最好,使阴极37的孔38与阳极35的读出元件39相互对齐,从而使每个孔位于相应的读出元件之上。
在使用当中,利用电源装置(未示出)使阴极13、37和阳极35保持在选定电位。最好,将阳极35接地,而将阴极13、37固定在各自选择的电位,从而基本在阴极13与阴极37之间得到称为漂移场的弱电场,并且在阴极37与阳极35之间,也可能是围绕阴极37,得到被称为雪崩倍增场的强电场。
在我们上面提到的序列号为9901325-2的瑞典专利申请中还说明了可以用来替换雪崩阴极37的其它雪崩放大装置。
应该特别注意的是:可以在阴极13与阴极37之间布置可电离的固体材料和闪烁固体材料;并且可以在阴极37和阳极35之间布置适合于电子雪崩放大的另一种固体材料或流体材料(气体或液体)。
该检测器装置以及相应的读出装置35的尺寸可以有很大变化。在大面积的检测器中,如用于医疗成像的检测器,读出装置通常可以具有好几千个读出单元并且具有最大为2m×2m的外部尺寸。与此相反,用于其它应用的小面积检测器可以小于1mm×1mm。
此外,检测器10包括光检测器17,用于对由于入射辐射与材料之间的相互作用而在空间11中发射的闪烁光进行检测。光检测器17最好布置为检测主要与进入腔体11的入射辐射垂直发射的光,并通常包括一个光检测元件阵列17a,如光电倍增管、光电二极管、CCD元件等,用于对在腔体11中发射的光进行独立检测。
可以给每个光检测元件配备一个单独的光准直仪21,以使每个元件“看到”腔体11的不同部分。提供用于光检测元件的单独的准直仪的替换方式是将腔体11分为被光反射或吸收壁(没有示出)分开的多个腔体部分,每个壁大致与入射的伽马射线或X射线平行,从而使每个光检测元件能够检测在单独的一个腔体部分内部发射的光。
按照这样的方式,每个光检测元件能够对由于吸收入射的伽马射线或X射线的相应横向分开部分而产生的光进行检测,并且由此提供入射辐射的一维成像。
如图2所示,另一种光检测器可以包括准直仪21、光电阴极23、保护层29、充满雪崩放大介质的空间或腔体31、安装在空间31里面的雪崩放大器或场集中设备25,以及读出装置27、28,读出装置包括在绝缘衬底28上提供的并且利用单独的通道(没有示出)与信号处理器件电气连接的读出元件阵列27。这种用于检测闪烁光的检测器在我们于2000年6月5日提交、序列号为0002079-2、标题为Radiationdetection apparatus method的共同未决的瑞典专利申请中被披露并且由此被引用为参考,该检测器按照以下方式工作。
光电阴极23用于响应在腔体11中发射的并且随后撞击在光电阴极23上的光而释放光电子。最好从光电阴极23的表面23b(后表面)释放由于光撞击在光电阴极23的相对表面23a(前表面)上而产生的光电子。此外,利用分别加在光电阴极23与雪崩放大器25之间以及雪崩放大器25与读出元件27之间的适当电压,使光电子加速漂向雪崩放大器25和读出元件27。在可以包括具有小孔的电极(与腔体11中的雪崩阴极37相似)的雪崩放大器里面以及附近,使电场聚焦并且由此使电子加速并且倍增,从而释放电子雪崩(由于在电子与雪崩放大器介质之间反复碰撞)。当这些电子雪崩到达读出装置27、28时,在一个或几个读出元件27中对它们进行检测。
一般来说,光检测器17的各个光检测元件(PMT、光电二极管、读出元件等)的尺寸比雪崩电子检测器13、37、35的读出元件39的尺寸大或者大得多,因此,光检测器17的位置分辨率比雪崩电子检测器13、37、35的位置分辨率差或者差得多。
另一方面,已知光检测器具有比雪崩电子检测器更好的能量分辨率,并且在本发明中对光检测器17进行设计和优化,使其具有尽可能好的能量分辨率。因此,光检测器17的能量分辨率比电子雪崩检测器13、37、35的能量分辨率好或者好得多。
在运行中,使图1和2的检测器装置10位于要被检测的γ或X射线辐射的辐射路径中。辐射通过阴极13并且被吸收在位于腔体11中的材料中。由此发射闪烁光hv并且释放自由电子e-(见图2)。利用光检测器17对闪烁光进行检测(例如,如上所述),而按照以下的方式对自由电子进行检测。
所施加的电动势使自由电子(通过一次和二次反应由电离释放)沿着与电场线平行的方向不断漂向雪崩阴极37和阳极35。对应产生的正电荷载流子随着电场线漂向阴极13。
在雪崩阴极37,电子由于经历了更强的电场而开始加速,并且它们与材料相互作用,进一步产生电子-离子对。在电场中,这些产生的电子也被加速并且将与新材料重复地相互作用,进一步产生电子-离子对。在雪崩区域中的电子向位于雪崩区域底部的阳极35运动期间,这个过程连续不断,并且以这样的方式形成电子雪崩。
这些电子雪崩对初始释放的电子产生了极大的并且几乎无噪声的放大并且在读出元件39中感应出脉冲,由于每个读出元件具有其单独的到达信号处理器件的信号通道,因此这些经过放大的脉冲被单独检测到。然后,信号处理器件对脉冲进行处理;它可能对脉冲进行整形,并且对来自每个读出元件的脉冲进行积分或计数。相应地,正电荷载流子感应出可以在阴极13或其它地方进行检测的脉冲。
这样,通过提供二维阵列的读出元件39,得到检测器装置10,其中,可以通过入射辐射束的横向分开的部分主要从电离产生的电子被分别检测到。由此,该检测器提供二维成像。
信号处理设备,它可以是配备有适当软件的计算机,包括用于使被检测器17检测到的光与被电子雪崩检测器13、37、35检测到的、由单个辐射光子产生的并且经过雪崩放大的电子相关的相关装置。由此,在两个检测器部分中对来源于同一个入射辐射光子的信号进行识别,如果可能,则对所有信号进行识别。由于假设光检测器具有相当好的能量分辨率以及相当不好的空间和时间分辨率,而雪崩电子检测器部分与此相反,因此很清楚,入射辐射通量限制了可以对所有信号进行相关与否的范围。由此可以理解,必须在时间或者空间分解的光检测器部分中对在进行过空间和时间分解的雪崩电子检测器部分中检测到的两个入射辐射光子进行检测,以便确定在各个检测器部分中的哪些信号是由同一个入射光子造成的。
此外,信号处理设备包括用于根据两个经过相关的信号,即经过相关的检测到的光(在光检测器中的信号)和检测到的经过雪崩放大的电子(在雪崩电子检测器中的信号),生成单个信号的生成装置,其中在噪声背景中更有效地检测到产生的信号。
按照这样的方式,得到比可以利用检测器部分中的任何一个得到的各个信号中的任何一个都好的检测信号。本发明的检测器装置可以在很多不同领域中使用,如包括计算机断层造影(CT)技术、放射学、正电子发射断层扫描(PET)等的医学领域。本发明还可以适合于在无损测试、显微镜检查、以及包括例如中子检测的基础和应用研究中使用。
此外,所记录的信号携带了检测到的入射辐射光子的光谱信息,并且因此该检测器装置提供了对辐射进行能量分解的检测。在我们于2000年9月20日提交、序列号为0003356-3、标题为Adaptableenergy-resolved detection ionizing radiation的共同未决的瑞典专利申请中披露了基于双重检测器装置的、用于对辐射进行能量分解检测的类似检测器设备,因此将该申请引用为参考。
由于已知光检测器装置提供较高的能量分辨率,可以利用本发明的检测器装置提供良好的空间、时间以及光谱分辨率。
应该明白,尽管以上描述的实施例包括一个检测器,其中,使入射辐射通过其阴极进入检测器,但是在这方面没有任何限制。具体来说,可以将本发明的概念应用于平面型辐射检测器,其中,通常为平面辐射束的入射辐射进入位于阴极和阳极之间并且大致与其平行的检测器支路,并且其中,所述辐射由于电离而释放出的电子沿着大致与入射辐射的方向垂直的方向加速漂移。为了进一步详细说明这种检测器的几何结构,参见我们上面提到的序列号为9901325-2和0003356-3的瑞典专利申请。可以对这种通常包括单独光检测元件的线性阵列的光检测装置进行定向和布置,以检测沿着与电子加速漂移的方向相反或大致相反的方向发射的光,或者检测沿着与入射辐射平行的方向发射的光。关于其它细节和特性,可以按照图1-2的实施例对该装置进行设计和布置。
参照图3和4,它们分别以透视图和剖面图示出了用于正电子发射断层扫描(PET)的设备50,以下将对本发明的具体应用实施例进行简要说明。
PET设备50包括圆筒形电子雪崩检测器部分59以及布置在检测器部分59轴端的光检测器部分57。在电子雪崩检测器部分59里面,安排了可以放置患者或其一部分52的患者区域。电子雪崩检测器部分59包括透射伽马辐射的内圆筒形阴极53以及外圆筒形阳极75,在运行期间,利用电源设备(没有示出)在它们之间施加一个合适的电场。
此外,检测器部分59包括位于其轴端的机壳(没有清楚地示出,但是光检测器部分57可以在一端提供机壳),以确定一个环形的不漏出流体的空间51,可以将可电离流体和闪烁流体(或固体材料)布置在其中。可电离流体和闪烁流体最好是一种适合于电子雪崩倍增的介质,并且可以是在前面的实施例中所说明的材料或者其混合物中的任何一种。
阳极75包括多个按照圆筒形矩阵排列的单独的导电读出元件79,这些读出元件79最好是矩形的、正方形的或具有其它形状,并且彼此电气绝缘。如以下将进一步说明的,这样的读出元件79的矩阵能够提供对由于流体电离而由通过阴极53进入的伽马辐射产生的电子进行空间分解的检测。读出元件79以及阴极53可以被布置在各自的绝缘衬底(没有示出)上。
此外,光检测器57包括按照环形方式排列的多个单独的光收集元件67,以对大致沿着轴向发射的任何闪烁光进行检测。在图示的情况下,布置了16个光检测元件67,以覆盖环形空间51的轴端的全部360°圆周。最好,光检测元件是PMT、光电二极管、CCD元件或者其它快速响应的光检测元件。最好是提供高浓度分辨率测量的检测器元件。
应该注意,读出元件79的尺寸比光检测元件67的尺寸小或者小得多,如图4所示。由于读出元件79被分布在圆筒形表面上,与光检测元件67的数量相比,所提供的读出元件79的数量非常多。
辐射检测首先给位于圆筒形检测器部分59内的患者区域中的患者身体52中注射短半衰期同位素。同位素被身体内部的目标区域吸收并且发射正电子。这些正电子快速与电子相湮灭。每次这样的湮灭的结果,沿着相反的方向,即沿着相差180°的方向,同时发射两个511keV的伽马射线γ1;γ4和γ2;γ3。所发射的伽马射线离开身体,穿透圆筒形阴极35并且被在环形空间51中的可电离和闪烁流体吸收。对每条伽马射线吸收的结果,向各个方向发射闪烁光hv,并且释放自由电子e-
在各个光检测元件中的每一个光检测元件中,对从每个吸收的伽马射线γ1;γ4和γ2;γ3大致沿着轴线方向向光检测器57发射的光hv(由图3中的箭头表示)进行检测。每个光感应信号的幅值或积分值成为相应的辐射光子的能量的度量。这样,可以将不在可接受光谱范围以内的信号排除。以下说明如何以一种新颖的方式利用它。
利用所施加的电场,使由每个被吸收的伽马光子释放的电子e-漂向阳极75及其读出元件79矩阵。相应产生的正电荷载流子漂向阴极53。
如果施加在电场足够强,则使电子猛烈加速并且与流体相互作用,从而产生另外的电子-离子对。在电场中,这些产生的电子也将被加速并且与新材料反复相互作用,再产生另外的电子-离子对。在电子在雪崩区域内向阳极75运动期间,这个过程连续不断。应当注意,如果在阴极53与阳极75之间布置合适的电场集中装置,则可以促进雪崩放大。
撞击在读出元件79上的电子在其中感应电脉冲,对这些电脉冲进行检测。在一个或几个读出元件79中对由于吸收单个伽马光子而产生的电子单独进行检测。通过提供大量小且紧密放置的读出元件79,得到了良好的空间分辨率。
此时,在两个放置在不同位置的读出元件79中同时检测到两个伽马光子说明了在患者体内沿着这些元件之间的直线方向的正电子的湮灭。
计算机(没有示出)或类似设备记录这些投射中每一个的位置,然后绘出患者体内的辐射源。随后将所记录的数据转化为PET图像。PET显示器例如用表示放射性等级的不同颜色显示同位素的浓度。
应该明白,当使用这种电子雪崩检测器59时,在提高了空间和时间分辨率的同时会付出损失能量分辨率的代价。在不使检测器复杂和价格升高的情况下,在本发明的检测器中的读出元件的数量可以很高(数千个),此外可以将它们做得很小,例如在小于1毫米的面积内。
但是,由于这种检测器的能量分辨率限制,不能方便地利用能量信息抑制背景或者噪声。为了改进本发明的高分辨率PET设备对噪声的抑制,可以使用光检测器57。通过使检测到的光与检测到的由单个辐射光子对产生的并且经过雪崩放大的电子相关,能够根据所述经过相关的检测光和检测到的经过雪崩放大的电子生成一对信号,所生成的这对信号具有可以与检测到的经过雪崩放大的电子的空间和时间分辨率相当的空间和时间分辨率以及比检测到的经过雪崩放大的电子的光谱分辨率更好的能量分辨率。由于光检测器的高能量分辨率帮助抑制其它被错误匹配的信号(即排除不是预定的511keV能量的信号),对每个检测到的光以及每个检测到的电子雪崩重复进行这样的相关和信号生成,并且由此可以生成具有低噪声等级的图像。
应该明白,可以以多种方式对本发明的PET设备进行修改,不止在尺寸、形状以及布局等方面。
因此,在图5中示意性地示出了按照本发明的另一个实施例的PET设备的剖面图。这里,用三角形检测器几何结构取代在图3和4中示出的环形检测器几何结构。因此,按照相互倾斜的角度布置三个平面型双重检测器装置90,从而确定三角形的断面形状。双重检测器90面对患者区域以及位于其中的任何患者或类似物52。每个检测器90都与在图1和2中示出的检测器相似并且包括包含读出元件99的平面型矩阵的电子雪崩检测器部分以及包含光检测器元件87阵列的光检测器部分。
或者,利用更多的平面型检测器构成PET设备,例如利用四个平面型检测器来确定正方形或矩形断面的设备,或者,甚至利用更多平面型检测器来确定多边形断面的设备。
很明显,可以以多种方式对本发明进行修改,而这些修改不脱离本发明。

Claims (39)

1.一种检测器装置,用于对辐射进行检测,该检测器装置的特征在于:
一个腔体(11;51),适合于充满可电离和闪烁材料;
一个辐射入口(13;53),被布置为使辐射(γ;X)能够进入所述腔体,部分用于使所述可电离和闪烁材料电离,部分在其中转换为光(hv);
一个光检测装置(17;57),用于对某些所述光进行时间和空间分解检测;
一个电子雪崩检测装置(19;59),用于对由于使所述可电离和闪烁材料电离而释放的电子(e-)进行雪崩放大,并且用于对所述经过雪崩放大的电子进行时间和空间分解的检测;
相关装置,用于使检测到的光与检测到的由单个辐射光子产生的经过雪崩放大的电子相关;以及
生成装置,用于根据所述经过相关的检测光和检测到的经过雪崩放大的电子产生一个单个信号,其中,
所述光检测装置适合于对光进行能量分解的检测;并且
所述生成装置适合于产生具有可以与检测到的经过雪崩放大的电子的空间和时间分辨率相比的空间和时间分辨率以及可以与检测到的光的光谱分辨率相比的光谱分辨率的所述单个信号。
2.如权利要求1所述的检测器装置,其中,所述可电离和闪烁材料在液相中。
3.如权利要求1所述的检测器装置,其中,所述可电离和闪烁材料处在气相中。
4.如权利要求3所述的检测器装置,其中,所述气态材料具有超过大气压的压强。
5.如权利要求1所述的检测器装置,其中,所述可电离和闪烁材料处在固相中。
6.如权利要求1-4中的任何一项所述的检测器装置,其中,所述物质为任意与用于提高电子雪崩倍增的介质混合的闪烁介质。
7.如权利要求6所述的检测器装置,其中,所述闪烁介质是Ar、Xe、Kr或它们的混合物中的任意一种,并且所述用于提高雪崩倍增的介质是CO2、CH4、C2H6、isobuthane或者它们的混合物中的任意一种。
8.如权利要求1-7中的任何一项所述的检测器装置,其中,对所述光检测装置进行定向,以对主要沿着与进入所述腔体的所述辐射垂直的方向发射的光进行检测。
9.如权利要求8所述的检测器装置,其中,将所述腔体分为被光反射壁或吸收壁分开的多个辐射吸收体,每个所述壁大致与进入所述腔体的辐射平行。
10.如权利要求1-8中的任何一项所述的检测器装置,其中,所述光检测装置包括多个按照阵列排列的光准直仪(21)。
11.如权利要求9或10所述的检测器装置,其中,所述光检测装置包括用于对光进行所述时间和空间分解检测的光电倍增管。
12.如权利要求9或10所述的检测器装置,其中,所述光检测装置包括基于固态的检测器(57),具体为基于CCD的检测器,用于对所述光进行所述时间和空间分解检测。
13.如权利要求12所述的检测器装置,其中,所述基于固态的检测器包括多个按照阵列排列的单个的光检测元件(67),以使每个光检测元件能够对由于吸收进入腔体的所述辐射的相应横向分开部分而产生的光进行检测。
14.如权利要求1-10中的任何一项所述的检测器装置,其中,所述光检测装置包括:
一个光电阴极(23),适合于响应所述光而释放光电子;
一个电子雪崩放大器(25),适合于对所述光电子进行雪崩放大;以及
一个读出装置(27,28),适合于对所述经过雪崩放大的电子进行检测。
15.如权利要求14所述的检测器装置,其中,所述读出装置包括多个按照阵列排列的读出元件(27),以使每个读出元件能够对由于吸收进入腔体的所述辐射的相应横向分开部分而产生的并且经过雪崩放大的电子进行检测。
16.如权利要求1-15中的任何一项所述的检测器装置,其中,所述电子雪崩检测装置包括:
一个阴极(33;73)和一个阳极(35;75),可以在它们之间施加一个电场,用于使由于所述电离而释放的电子漂移;
一个电场集中装置(37),被布置在所述阴极和所述阳极之间,用于对所述释放的电子进行加速和雪崩放大;以及
一个读出装置(35;75),用于对所述经过雪崩放大的电子进行时间和空间分解的检测。
17.如权利要求16所述的检测器装置,其中,所述读出装置包括多个按照阵列排列的读出元件(39;79),以使每个读出元件能够对由于吸收进入腔体的所述辐射的相应横向分开部分而产生的并且经过雪崩放大的电子进行检测。
18.如权利要求16或17所述的检测器装置,其中,所述电场集中装置包括一个具有有多个小孔(38)的电极(37),以使电子能够穿过所述电极。
19.一种正电子发射断层扫描设备,用于根据由目标发射的辐射的线性投射构成目标(52)的三维图像,其特征体现在如权利要求1-18中的任何一项所述的,用于对由所述目标发射的辐射进行检测的检测器装置(10;90)中。
20.一种方法,用于对辐射进行检测,其特征体现在以下步骤中:
使辐射进入一个充满可电离和闪烁材料的腔体(11;51),部分用于使所述可电离和闪烁材料电离,部分用于在其中将辐射转换为光(hv);
利用一个光检测装置(17;57)对至少某些所述光进行时间和空间分解的检测;
对由于对所述可电离和闪烁材料进行电离所释放的电子(e-)进行雪崩放大,并且利用一个电子雪崩检测装置(35;75)对所述经过雪崩放大的电子进行时间和空间分解的检测;
使检测到的光(hv)与检测到的由单个辐射光子(γ,X)产生的并且经过雪崩放大的电子(e-)相关;并且
根据所述经过相关的检测到的光和检测到的经过雪崩放大的电子生成一个信号,其中
对所述至少某些所述光进行光谱分析检测;并且
生成根据所述经过相关的检测到的光和检测到的经过雪崩放大的电子生成的所述信号,以具有可以与检测到的经过雪崩放大的电子的空间和时间分辨率相比较的空间和时间分辨率,并且具有可以与检测到的光的光谱分辨率相比较的光谱分辨率。
21.如权利要求20所述的方法,其中,大致与进入所述腔体的所述辐射垂直地对所述至少某些所述光进行检测。
22.如权利要求20或21所述的方法,其中,利用按照阵列排列的多个单独的光检测元件(27;67)对由于吸收进入所述腔体的所述辐射的多个横向分开部分中的相应的一个而产生的光分别进行检测。
23.如权利要求20-22中的任何一项所述的方法,其中,通过如下步骤对至少某些所述光进行所述时间和空间分解的检测:
利用一个光电阴极(23)响应所述光从而释放光电子;
利用一个电子雪崩放大器(25)对所述光电子进行电子雪崩放大;并且
利用一个读出元件结构(27;28)对所述经过雪崩放大的电子进行检测。
24.如权利要求20-23中的任何一项所述的方法,其中,利用按照阵列排列的多个单独的检测元件(39;79;99)对由于吸收进入所述腔体的所述辐射的多个横向分开部分中的相应的一个而产生的并且经过雪崩放大的电子分别进行检测。
25.一种正电子发射断层扫描(PET)方法,用于根据从目标发射的辐射的线性投射构成目标(52)的三维图像,其特征体现在按照如权利要求20-24中的任何一项所述的方法,对从目标发射的所述辐射进行检测。
26.一种正电子发射断层扫描(PET)设备,用于构成包含正电子发射材料的目标(52)的图像,该设备的特征在于:
一个检测器装置(57,59;90),该检测器装置包括:
一个腔体(51),适合于充满可电离材料;
一个辐射入口(53),被布置为使响应所述正电子而发射的伽马辐射光子对(γ)能够进入所述腔体,用于使所述可电离材料电离;
一个电子雪崩检测装置(59),包括一个读出元件(39,79,99)矩阵,用于对由于使所述可电离材料电离而释放的电子(e-)进行雪崩放大,并且用于对所述电子雪崩进行时间分解的检测和二维空间分解的检测;
一个处理装置,被连接到所述检测器装置,所述处理装置包括:
装置,用于使检测到的由单个辐射光子对得到的一对电子雪崩匹配;
装置,用于根据所述经过匹配的电子雪崩对生成一个信号;
所述用于匹配的装置被设计为重复使每个另外检测到的电子雪崩匹配,并且所述用于生成的装置被设计为对每个另外的经过匹配的电子雪崩对生成一个相应信号;以及
重新构成装置,用于根据由所述用于生成的装置生成的所述相应信号执行重新构成处理,其中,所述重新构成装置对从在所述目标内选择的任意大数量的图像体发射的正电子的数量进行计算;以及
一个显示单元,被连接到所述处理装置,用于投射所述数量的被发射的辐射的图像。
27.如权利要求26所述的正电子发射断层扫描(PET)设备,其中:
所述腔体适合于充满闪烁材料;
所述辐射入口被设计为使响应所述正电子而发射的伽马辐射光子对能够进入所述腔体,用于被在其中转换为光(hv);
所述检测器装置还包括一个光检测器装置,用于对至少某些所述光进行时间和空间分解的检测;
所述用于使检测到的由单个辐射光子对产生的一对电子雪崩匹配的装置还适合于使检测到的由单个辐射光子对产生的光匹配;使由单个辐射光子对产生的并且经过匹配的雪崩电子对与由单个辐射光子对产生的并且经过匹配的光相关;对每个另外检测到的光重复进行使检测到的光匹配;并且对于每个另外的经过匹配的电子雪崩对和每个另外的经过匹配的光,重复进行使经过匹配的雪崩电子与由单个辐射光子对产生的并且经过匹配的光相关;并且
所述生成装置适合于根据所述经过相关的检测到的电子雪崩对和检测到的光生成一个单个的信号;并且对每个另外的经过匹配的并且经过相关的电子雪崩对和经过匹配的并且经过相关的光重复进行生成一个相应信号。
28.如权利要求27所述的正电子发射断层扫描(PET)设备,其中:
所述光检测装置适合用于对光进行能量分解检测;并且
所述生成装置适合于根据与相应的检测到的经过相关的光对应的能量生成每个相应信号。
29.如权利要求28所述的正电子发射断层扫描(PET)设备,其中,每个相应信号具有可以与相应的检测到的经过雪崩放大的电子的空间和时间分辨率相比较的空间和时间分辨率,以及可以与相应的检测到的光的光谱分辨率相比较的光谱分辨率。
30.一种正电子发射断层扫描(PET)方法,用于构成包含正电子发射材料的目标(52)的图像,该方法的特征体现在如下步骤中:
使响应所述正电子而发射的伽马辐射光子对(γ)进入一个充满可电离材料的腔体(51);
对由于使所述可电离材料电离而释放的电子(e-)进行雪崩放大,并且利用一个电子雪崩检测装置(59),即一个读出元件(39,79,99)矩阵对所述电子雪崩进行时间分解和二维空间分解的检测;
使一对检测到的由单个辐射光子对产生的电子雪崩匹配;
根据所述经过匹配的电子雪崩对生成一个信号;
对于每个另外的检测到的电子雪崩重复进行匹配的步骤;
对于每个另外的经过匹配的电子雪崩对重复进行生成一个信号的步骤;
根据所述生成的信号执行量新构成的处理,其中,对从在所述目标内选择的任意大数量的图像体的每一个发射的正电子的数量进行计算;以及
投射被发射的辐射的所述数量的图像。
31.如权利要求30所述的正电子发射断层扫描(PET)方法,其中:
所述可电离材料也是闪烁材料,从而可以在其中将响应所述正电子而发射的所述伽马辐射光子对转换为光(hv);
利用一个光检测装置对至少某些所述光进行时间和空间分解的检测;
进行匹配的步骤包括使检测到的由单个辐射光子对产生的光匹配,对于每个另外的检测到的光重复进行使检测到的光匹配;
使经过匹配的雪崩电子对与由单个辐射光子对产生的并且经过匹配的光相关,对于每个另外的经过匹配的电子雪崩对和每个另外的经过匹配的光重复进行相关;并且
根据相应的经过相关的检测到的电子雪崩对和检测到的光生成如在生成步骤中生成的相应信号。
32.如权利要求30或31所述的正电子发射断层扫描(PET)方法,其中
利用所述光检测装置对光进行能量分解的检测;并且
根据与相应的经过相关的检测到的光对应的能量生成每个相应的信号。
33.如权利要求32所述的正电子发射断层扫描(PET)方法,其中,每个相应的信号具有可以与相应的检测到的经过雪崩放大的电子的空间和时间分辨率相比较的空间和时间分辨率,以及可以与相应的检测到的光的光谱分辨率相比较的光谱分辨率。
34.一种检测器装置,用于对辐射进行检测,该检测器装置包括在其间施加了一个电压的一个阴极和一个阳极,该检测器装置的特征在于:
一个腔体,被设计为至少部分位于所述阴极和所述阳极之间,所述腔体充满可电离和闪烁材料;
一个辐射入口,被设计为使辐射能够在所述阴极和所述阳极之间并且大致与所述阴极和所述阳极平行地进入所述腔体,部分在其中转换为光,部分用于使所述可电离和闪烁材料电离,由此利用所述施加的电压使由于所述使所述可电离和闪烁材料电离而释放的电子大致与所述进入的辐射相垂直地漂移;
一个光检测装置,用于对至少某些所述光进行时间和空间分解的检测;
一个电子雪崩检测装置,用于对所述漂移的电子进行雪崩放大,并且用于对所述经过雪崩放大的电子进行时间和空间分解的检测,所述电子雪崩检测装置被定向为使所述飘移的电子在雪崩放大期间沿着大致与所述进入的辐射的方向垂直的方向加速;
相关装置,用于使检测到的光与检测到的由单个辐射光子产生的并且经过雪崩放大的电子相关;以及
生成装置,用于根据所述检测到的并且经过相关的光和检测到的经过雪崩放大的电子生成一个单独信号,其中,
所述光检测装置适合于对光进行能量分解的检测;并且
所述生成装置适合于根据所述检测到的并且经过相关的光的能量生成所述单独信号。
35.如权利要求34所述的检测器装置,其中,所述单独信号具有可以与检测到的经过雪崩放大的电子的空间和时间分辨率相比较的空间和时间分辨率,以及可以与检测到的光的光谱分辨率相比较的光谱分辨率。
36.如权利要求34或35所述的检测器装置,其中,
将所述辐射入口构成为使所述辐射为平面辐射束;
所述电子雪崩检测装置包括按照阵列排列的多个读出元件,以使每个读出元件能够对由于吸收进入腔体的所述辐射的相应横向分开部分而产生的并且经过雪崩放大的电子进行检测;以及
所述光检测装置包括按照阵列排列的多个单独的光检测元件,以使每个光检测元件能够由于吸收进入腔体的所述辐射的相应横向分开部分而产生的光进行检测。
37.一种方法,用于对辐射进行检测,该方法的特征体现在如下步骤中:
使辐射进入一个充满可电离和闪烁材料的腔体,部分用于使所述可电离和闪烁材料电离,部分用于在其中将辐射转换为光;
利用一个光检测装置对至少某些所述光进行时间和空间分解的检测;
通过在所述腔体内施加一个电场,使由于使所述可电离和闪烁材料电离而释放的电子沿着大致与所述进入的辐射的方向垂直的方向漂移;
通过在所述腔体内施加一个电场,通过使所述漂移的电子沿着大致与所述进入的辐射的方向垂直的方向加速,对漂移的电子进行雪崩放大;
利用一个电子雪崩检测装置对所述经过雪崩放大的电子进行时间和空间分解的检测;
使检测到的光与检测到的由单个辐射光子产生的并且经过雪崩放大的电子相关;并且
根据所述检测到的经过相关的光和检测到的经过雪崩放大的电子生成一个信号,其中,
对所述检测到的经过相关的光的能量进行测量;并且
根据所述检测到的经过相关的光的能量生成所述单独信号。
38.如权利要求37所述的方法,其中,
所述进入的辐射为平面辐射束;
利用包括在所述电子雪崩检测装置中的多个读出元件,对由于吸收所述平面辐射束的相应横向分开部分而产生的并且经过雪崩放大的电子分别进行检测;并且
利用包括在所述光检测装置中的多个单独的光检测元件,对由于吸收所述平面辐射束的相应横向分开部分而产生的光分别进行检测。
39.如权利要求37或38所述的方法,其中,将根据所述检测到的并且经过相关的光和检测到的经过雪崩放大的电子生成的所述信号生成为具有可以与检测到的经过雪崩放大的电子的空间和时间分辨率相比较的空间和时间分辨率,并且具有可以与检测到的光的光谱分辨率相比较的光谱分辨率。
CNB018206212A 2000-12-14 2001-11-28 辐射检测以及正电子发射断层扫描 Expired - Fee Related CN1307429C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE0004635A SE531661C2 (sv) 2000-12-14 2000-12-14 Detektering av strålning och positronemissionstomografi
SE00046359 2000-12-14

Publications (2)

Publication Number Publication Date
CN1481510A true CN1481510A (zh) 2004-03-10
CN1307429C CN1307429C (zh) 2007-03-28

Family

ID=20282234

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB018206212A Expired - Fee Related CN1307429C (zh) 2000-12-14 2001-11-28 辐射检测以及正电子发射断层扫描

Country Status (9)

Country Link
US (1) US6822240B2 (zh)
EP (1) EP1342104A1 (zh)
JP (1) JP2004515791A (zh)
KR (1) KR100875858B1 (zh)
CN (1) CN1307429C (zh)
AU (2) AU2002218600B2 (zh)
CA (1) CA2426016A1 (zh)
SE (1) SE531661C2 (zh)
WO (1) WO2002048740A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100401097C (zh) * 2003-06-16 2008-07-09 皇家飞利浦电子股份有限公司 检测事件的时间分辨记录的检测器及相关方法和成像设备
CN1948956B (zh) * 2005-10-12 2011-09-07 通用电气公司 用于入口应用的伽马辐射检测器模块
CN103126678A (zh) * 2013-02-02 2013-06-05 浙江大学 采用光学透镜作光传导的开放式pet/mr成像系统
CN104067112A (zh) * 2011-11-02 2014-09-24 庄信万丰股份有限公司 扫描方法和扫描设备
CN105158278A (zh) * 2015-09-01 2015-12-16 南京航空航天大学 通过正电子探针定位腔体内壁缺陷的无损检测系统及检测方法
WO2018040623A1 (zh) * 2016-08-31 2018-03-08 清华大学 多伽马光子同时发射药物时间符合核医学成像系统及方法
CN112639531A (zh) * 2018-09-07 2021-04-09 深圳帧观德芯科技有限公司 一种辐射检测装置

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE522428C2 (sv) * 2000-09-20 2004-02-10 Xcounter Ab Metod och anordning för anpassningsbar energiupplöst detektering av joniserande strålning
FR2837930B1 (fr) * 2002-03-26 2004-05-21 Commissariat Energie Atomique Detecteur bidimensionnel de particules ionisantes
US6770884B2 (en) * 2002-07-11 2004-08-03 Triumf High resolution 3-D position sensitive detector for gamma rays
US7038188B2 (en) * 2003-04-11 2006-05-02 Hewlett-Packard Development Company, Lp. Non-demolition photon detector that preserves input state characteristics
US7534418B2 (en) * 2004-12-10 2009-05-19 The Regents Of The University Of Michigan Imaging agents
SE530013C2 (sv) * 2006-06-07 2008-02-12 Goeran Wickman Anordning för mätning av absorberad dos i ett joniserande strålfält, samt användning av anordningen
KR101497498B1 (ko) * 2008-12-19 2015-03-03 삼성전자주식회사 방사선 신호의 투과 영상을 획득하는 방법 및 장치
WO2010078223A2 (en) 2008-12-30 2010-07-08 Saint-Gobain Ceramics & Plastics, Inc. Ceramic scintillator body and scintillation device
CN102317409B (zh) 2008-12-30 2016-01-20 圣戈本陶瓷及塑料股份有限公司 陶瓷闪烁体本体和闪烁装置
WO2010078221A2 (en) 2008-12-30 2010-07-08 Saint-Gobain Ceramics & Plastics, Inc. Scintillation device and method of producing a ceramic scintillator body
CN102326097B (zh) 2008-12-30 2014-03-12 圣戈本陶瓷及塑料股份有限公司 闪烁装置以及用于生产陶瓷闪烁体本体的方法
WO2014052454A1 (en) 2012-09-25 2014-04-03 The Regents Of The University Of Michigan Imaging agents
WO2014184682A1 (en) 2013-04-19 2014-11-20 Oslo Universitetssykehus Hf Radiolabeled gnrh antagonists as pet imaging agents
US10314551B2 (en) * 2015-06-16 2019-06-11 The Trustees Of Princeton University Detector, three-dimensional direct positron imaging unit, and method to estimate the differential of the radiation dose provided to cancer cells and healthy tissues during hadrotherapy
US10054697B1 (en) * 2017-04-11 2018-08-21 Consolidated Nuclear Security, LLC Device and method for locating a radiation emitting source via angular dependence using a single detection crystal

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4864138A (en) 1988-07-14 1989-09-05 Clayton Foundation For Research Positron emission tomography camera
US5453623A (en) 1992-05-13 1995-09-26 Board Of Regents, The University Of Texas System Positron emission tomography camera with quadrant-sharing photomultipliers and cross-coupled scintillating crystals
US5311010A (en) * 1993-02-01 1994-05-10 The United States Of America As Represented By The United States Department Of Energy Buffer for a gamma-insensitive optical sensor with gas and a buffer assembly
US5665971A (en) * 1993-04-12 1997-09-09 Massachusetts Institute Of Technology Radiation detection and tomography
US5451789A (en) 1993-07-19 1995-09-19 Board Of Regents, The University Of Texas System High performance positron camera
US5773829A (en) * 1996-11-05 1998-06-30 Iwanczyk; Jan S. Radiation imaging detector
SE513161C2 (sv) * 1997-11-03 2000-07-17 Digiray Ab En metod och en anordning för radiografi med plant strålknippe och en strålningsdetektor
US6100532A (en) 1997-03-14 2000-08-08 Triumf Detector for gamma rays
EP1007988B1 (en) * 1997-05-07 2003-07-23 The Board Of Regents, The University Of Texas System Method and apparatus to prevent pile-up when detecting the energy of incoming signals
FR2790100B1 (fr) * 1999-02-24 2001-04-13 Commissariat Energie Atomique Detecteur bidimensionnel de rayonnements ionisants et procede de fabrication de ce detecteur
SE514475C2 (sv) 1999-04-14 2001-02-26 Xcounter Ab Strålningsdetektor, en anordning för användning vid radiografi med plant strålknippe och ett förfarande för detektering av joniserande strålning
US6340819B1 (en) * 1999-08-09 2002-01-22 Bruker Axs, Inc. Readout structure and technique for electron cloud avalanche detectors
US6410919B1 (en) * 1999-11-19 2002-06-25 Wisconsin Alumni Research Foundation Positron gun for pet attenuation measurements
SE515884C2 (sv) * 1999-12-29 2001-10-22 Xcounter Ab Förfarande och anordning för radiografi samt strålningsdetektor
US6486468B1 (en) * 2000-11-27 2002-11-26 Proportional Technologies, Inc. High resolution, high pressure xenon gamma ray spectroscopy using primary and stimulated light emission

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100401097C (zh) * 2003-06-16 2008-07-09 皇家飞利浦电子股份有限公司 检测事件的时间分辨记录的检测器及相关方法和成像设备
CN1948956B (zh) * 2005-10-12 2011-09-07 通用电气公司 用于入口应用的伽马辐射检测器模块
US9897558B2 (en) 2011-11-02 2018-02-20 Johnson Matthey Public Limited Company Scanning method and apparatus
CN104067112A (zh) * 2011-11-02 2014-09-24 庄信万丰股份有限公司 扫描方法和扫描设备
US10641716B2 (en) 2011-11-02 2020-05-05 Johnson Matthey Public Limited Company Scanning method and apparatus comprising a buoyancy material for scanning a pipeline or a process vessel
US10845320B2 (en) 2011-11-02 2020-11-24 Johnson Matthey Public Limited Company Scanning method and apparatus comprising a buoyancy material for scanning an underwater pipeline or a process vessel
US11402339B2 (en) 2011-11-02 2022-08-02 Johnson Matthey Public Limited Company Scanning method and apparatus comprising a buoyancy material for scanning an underwater pipeline or a process vessel
US11474053B2 (en) 2011-11-02 2022-10-18 Johnson Matthey Public Limited Company Scanning method and apparatus comprising a buoyancy material and a remotely operated vehicle (ROV) for scanning an underwater pipeline or a process vessel
CN103126678A (zh) * 2013-02-02 2013-06-05 浙江大学 采用光学透镜作光传导的开放式pet/mr成像系统
CN105158278A (zh) * 2015-09-01 2015-12-16 南京航空航天大学 通过正电子探针定位腔体内壁缺陷的无损检测系统及检测方法
CN105158278B (zh) * 2015-09-01 2018-01-02 南京航空航天大学 通过正电子探针定位腔体内壁缺陷的无损检测系统及检测方法
WO2018040623A1 (zh) * 2016-08-31 2018-03-08 清华大学 多伽马光子同时发射药物时间符合核医学成像系统及方法
US11191510B2 (en) 2016-08-31 2021-12-07 Tsinghua University Imaging system and method based on multiple-gamma photon coincidence event
CN112639531A (zh) * 2018-09-07 2021-04-09 深圳帧观德芯科技有限公司 一种辐射检测装置

Also Published As

Publication number Publication date
JP2004515791A (ja) 2004-05-27
EP1342104A1 (en) 2003-09-10
US6822240B2 (en) 2004-11-23
SE531661C2 (sv) 2009-06-23
SE0004635D0 (sv) 2000-12-14
KR20030062411A (ko) 2003-07-25
SE0004635L (sv) 2002-06-15
AU1860002A (en) 2002-06-24
AU2002218600B2 (en) 2006-05-11
CN1307429C (zh) 2007-03-28
WO2002048740A1 (en) 2002-06-20
US20020074505A1 (en) 2002-06-20
CA2426016A1 (en) 2002-06-20
KR100875858B1 (ko) 2008-12-24

Similar Documents

Publication Publication Date Title
CN1307429C (zh) 辐射检测以及正电子发射断层扫描
KR100665144B1 (ko) 방사선 검출기 및 방사선 촬상 장치
JP5738188B2 (ja) 高エネルギー光子を検出するモジュールおよびシステム、当該システムを有するpet用環状検出器、当該検出器を有するガンマカメラおよびコンプトンカメラ
US8247780B2 (en) High density, proportional-mode, APD arrays for individual scintillator readout in PET applications
AU2002218600A1 (en) Detection of radiation and positron emission tomography
CN1886093A (zh) 断层扫描设备和方法
WO2012135725A2 (en) Methods and systems for increasing the sensitivity of simultaneous multi-isotope positron emission tomography
JP2016533477A (ja) マルチモーダルイメージング装置
JP6162595B2 (ja) 光検出器
US9383457B2 (en) Detector for detecting the traces of ionizing particles
KR100806068B1 (ko) 방사선 검출 장치 및 방법
JP2006242958A (ja) 放射線検出器,放射線検出素子及び放射線撮像装置
US9435898B2 (en) Dedicated cardiac PET
US9612344B2 (en) Positron emission tomography and single photon emission computed tomography based on intensity attenuation shadowing methods and effects
JPH11344568A (ja) 核医学診断装置
JP2019507335A (ja) 電離放射線の層状画素検出器
EP3602134B1 (en) A positron or beta particle detector
US20210278553A1 (en) Three-dimensional solid state imaging photodetector
JP2004151089A (ja) 放射線検出器,放射線検出素子及び放射線撮像装置
KR102025475B1 (ko) 마이크로패턴 검출기를 이용한 양전자단층촬영장치
Zhu et al. XEMIS2 Liquid Xenon Compton Camera for Small Animal 3γ Medical Imaging: Scintillation Light Measurement
JP2001153961A (ja) 2次元アレイ型放射線検出器
Barrio Toala Development of high resolution and efficiency detectors based on Silicon Photomultipliers (SiPMs) and continuous crystals for medical physics applications
Iguchi et al. Development of compact Compton gamma camera for non-destructive detection and location of hidden explosives with neutron induced prompt gamma-ray imaging
Starič et al. A thin multiwire proportional chamber for imaging with UV light, X-rays and gamma rays

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070328

Termination date: 20091228