CN1473265B - 生产纯化的补血铁-糖复合物的方法及产品的生产 - Google Patents

生产纯化的补血铁-糖复合物的方法及产品的生产 Download PDF

Info

Publication number
CN1473265B
CN1473265B CN018184006A CN01818400A CN1473265B CN 1473265 B CN1473265 B CN 1473265B CN 018184006 A CN018184006 A CN 018184006A CN 01818400 A CN01818400 A CN 01818400A CN 1473265 B CN1473265 B CN 1473265B
Authority
CN
China
Prior art keywords
iron
ahs
complex
hematinic
active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN018184006A
Other languages
English (en)
Other versions
CN1473265A (zh
Inventor
R·A·贝克
R·A·马蒂尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chromaceutical Advanced Technologies Inc
Original Assignee
Chromaceutical Advanced Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chromaceutical Advanced Technologies Inc filed Critical Chromaceutical Advanced Technologies Inc
Publication of CN1473265A publication Critical patent/CN1473265A/zh
Application granted granted Critical
Publication of CN1473265B publication Critical patent/CN1473265B/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/28Compounds containing heavy metals
    • A61K31/295Iron group metal compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7016Disaccharides, e.g. lactose, lactulose
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • A61K33/26Iron; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/06Antianaemics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/10Composition for standardization, calibration, simulation, stabilization, preparation or preservation; processes of use in preparation for chemical testing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/14Heterocyclic carbon compound [i.e., O, S, N, Se, Te, as only ring hetero atom]
    • Y10T436/142222Hetero-O [e.g., ascorbic acid, etc.]
    • Y10T436/143333Saccharide [e.g., DNA, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/25Chemistry: analytical and immunological testing including sample preparation
    • Y10T436/25125Digestion or removing interfering materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/25Chemistry: analytical and immunological testing including sample preparation
    • Y10T436/25375Liberation or purification of sample or separation of material from a sample [e.g., filtering, centrifuging, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/25Chemistry: analytical and immunological testing including sample preparation
    • Y10T436/25375Liberation or purification of sample or separation of material from a sample [e.g., filtering, centrifuging, etc.]
    • Y10T436/255Liberation or purification of sample or separation of material from a sample [e.g., filtering, centrifuging, etc.] including use of a solid sorbent, semipermeable membrane, or liquid extraction

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Molecular Biology (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Hematology (AREA)
  • Diabetes (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Medicinal Preparation (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Saccharide Compounds (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

一种分离和纯化存在于铁-糖复合物中的补血活性物质的方法,该铁-糖复合物包含有蔗糖的葡糖酸铁钠复合物、氢氧化铁蔗糖复合物、和糖酸铁复合物以及其它具有类似形式和功能的复合物,该方法基于铁-糖复合物与一种或多种赋形剂的分离,较佳的,冻干。铁-糖复合物的分离允许对它作分析性定量测定;进一步浓缩和纯化成为一种新的和有用的产品;重新设计配方制备新的和有用的药物制剂;和/或冻干。分离具有补血功能的铁-糖复合物包括其冻干形式,的能力,还提供了制备分析性物质的方法以检验和验证其药物完整性、患者的安全性和临床功效,以及分析性监测整个补血剂生产过程的标准化和质量控制视察以及监测中所用标准品的建立。

Description

生产纯化的补血铁-糖复合物的方法及产品的生产
发明背景
本发明涉及包括可肠胃外给药补血药物的具有治疗活性的含铁物质。对于本发明的目的而言,“补血”指化合物或组合物中含有一种形式的铁,该铁能够增加哺乳动物,具体是人的血液中血色素含量。虽然这种化合物在特性上广泛地认为是包括葡聚糖的铁-碳水化合物复合物,但本发明涉及称作铁-糖复合物(iron-saccharidic)的同属亚类,并包括含有蔗糖的葡糖酸铁钠复合物(SFGCS)、氢氧化铁-蔗糖复合物(FHSC)和/或其它在特性上为铁糖的复合物。对于本发明的目的而言,这种活性含铁种类一般指铁-糖复合物或补血活性物质(AHS)。在相关的领域的各类文献中,术语“复合物”可能具有其它的含义。在一个方面,术语复合物可用于描述两个或多个离子之间相结合形成相对低分子量的非-聚合性组合物,该组合物在给定的一组条件下单独存在。这种类型的复合物称作“初级复合物”。使用该术语的另一方式是描述多个初级复合物结合或附聚形成大的高分子,或“次级复合物”。对于本发明的目的而言,后者附聚物本文也称作高分子。对于本发明的目的而言,这种高分子或次级复合物被鉴定为“聚复合物”并简单地称作复合物。具有上述特征的一个例子,葡糖酸亚铁是一种含有二价铁离子和葡糖酸阴离子的组合物。一个二价铁离子和两个葡糖酸阴离子形成较低分子量(约450道尔顿)的初级复合物,当这类初级复合物溶解于水性培养基时不会聚集形成高分子。因此葡糖酸亚铁是一种不属于本发明术语“复合物”范畴的组合物。然而葡糖酸铁却属于本文所用术语的组合物,因为三价铁离子和葡糖酸阴离子的初级复合物附聚形成大的高分子(可具有大约100,000到600,000道尔顿或更高的分子量)。下面描述了商业购得具有治疗活性铁离子化合物的一些实施例。对于本发明的目的而言,术语“赋形剂”指不具有补血活性的成分,包括合成反应副产物和未反应的起始物质、降解副产物、稀释剂等,存在于铁-糖复合物等具有治疗活性的含铁物质的混合物中。
缺铁性贫血症是一种血液疾病,可服用含铁的各种治疗制剂进行治疗。这些制剂包括如硫酸亚铁、葡糖酸亚铁、延胡索酸亚铁、乳清酸亚铁和其它的简单铁盐。如果口服给予这些物质不能改善铁的缺乏,更高水平的治疗包括铁的肠胃外给药。取决于患者的临床状况,肠胃外给予聚葡聚糖或葡聚糖结合的铁可作为有效的治疗性铁输送载体。可采用肌肉内注射或静脉内途径给予这些铁葡聚糖;这种产品的商品化样品包括那些具有“Imferon”和“INFeD”商品名的产品。需要肠胃外给予铁的各种临床疾病显示了铁葡聚糖的实用补血价值。铁葡聚糖的应用经受了其合成、生产过程中和过敏患者反应的特异性考查。这些作用可能显示为严重的过敏反应,过敏症状或轻微的瞬时痒感症状。这种过敏性作用或其它不良作用是否是由于患者个体对于活性成分或对于肠胃外给药溶液中的副产物、杂质或降解产物具有敏感性尚没确定。
作为铁葡聚糖的替代物,本文把铁-糖复合物看作是非葡聚糖补血剂。铁葡聚糖包含聚合的单糖残基,而本发明的铁-糖复合物特征是基本上没有这种聚合单糖。铁-糖复合物可从市售获得,例如,商品名为Ferrlecit,它被鉴定为含有蔗糖的葡糖酸铁钠复合物(SFGCS)。生产商声明该产品的结构式为[NaFe2O3(C6H11O7)(C12H22O11)5]n,其中n约为200,并具有350,000±23,000道尔顿的表观分子量。然而,注意到根据刚才引用的公开结构式,该结构式的分子量应明显较高,为417,600(虽然,如公开的那样,该结构式难以精确解释)。另外,市售的补血性组合物是包含20%蔗糖的水溶液,wt./vol.(195mg.mL)。化学名称表明药理学上给予的这种形式的治疗性铁(Fe),是氧化铁形式Fe(III),而不是还原的亚铁形式Fe(II)。由于Fe(III)氧化状态的改变,有人提出葡糖酸(五羟己酸,C6H12O7)以配位复合物或配体形式也存在于蔗糖溶液中。对于本发明的目的而言,应理解葡糖酸化学物质不论是否与Fe(III)组成配体复合物,都不能排除其能与其它存在的糖类如蔗糖发生相互作用。因此,使用术语铁-糖复合物时应理解为表示存在一种非特异性和不精确的结构,在这一结构中离子化的葡糖酸和蔗糖分子通过各种结合性相互反应微弱地结合,产生了可掺入Fe(III)的一种分子构架。本文描述的本发明另一种非葡聚糖补血性组合物为氢氧化铁-蔗糖复合物(FHSC)。可市场上购得商品名为“Venofer”的该肠胃外给药补血剂。对于SFGCS,该描述名称提示一种三价铁形式Fe(III)存在于与蔗糖或某些蔗糖衍生物形成的立体复合物中。因此,本发明的非-葡聚糖、铁-糖复合物包括SFGCS、FHSC及其混合物。对于本发明的目的而言,这些铁输送载体包括含铁的结构性复合物,命名为补血活性物质(AHS)。
对于本发明的目的,术语AHS可与铁-糖复合物、糖铁输送载体和糖酸铁相互交换使用。术语“糖酸盐”或“糖类的”用于一般描述铁原子与另一种分子或其具有鉴定结构为-CH(OH)-C(O)-的蔗糖基团的聚合物的相互作用。蔗糖基团最简单出现在某分子的标准Fischer分子投影模型中的两个末端位置,分别为(-CH(OH)-CHO)或(-CHO-CH2OH)的醛基或酮基。
该术语形式的描述也见于Zapsalis,C.和R.A.Beck,1985,“食品化学和营养生化”(“Food Chemistry and Nutritional Biochemistry”),第6章,John Wiley和Sons,第315-321页(在允许的范围内本文引用作为参考)。分子中产生这种基团及其最初的氧化或还原产物认为是单糖,该单糖含有碳原子和与水有相同比例的氢和氧。例如,已知的醛糖如葡萄糖,以葡糖酸作为其最初的氧化产物,而葡萄糖醇也称作山梨糖醇作为最初的还原产物。由葡萄糖模型为代表的起始单糖及其可能的反应产物保留了氧化或还原形式的特征性糖基团的证据。虽然存在这些结构变化,但二者仍被看作是单糖和碳水化合物。在实际应用的术语中,蔗糖基团的氧化型式显示了一个羧基,该羧基在适宜的pH条件下按照其独特的离子化常数和pKa值离子化。当离子化时,氧化的糖基称作“糖酸盐”,或一般称为糖酸,其在氧化的糖基保留了可离子化的质子。如果糖基的离子化羧基与阳离子如钠结合,就形成了糖酸盐。例如,葡萄糖氧化产生葡糖酸,该糖酸的钠盐是葡糖酸钠。类似的,亚铁阳离子(FeII)与葡糖酸的羧基静电性结合,形成葡糖酸亚铁。单糖亦即醛糖通常经过氧化产生其糖酸等价物或者,当它们电离时,单糖形式可与所选化合价为+1到+3的阳离子反应。甘油醛是最简单的结构,它显示出这种醛基,而二羟基丙酮作为相应的酮基的例子。这种结构实际上延伸了6个碳原子,解释了两种碳水化合物分类法的描述性基础,一种形式是醛糖而另一种是酮糖。醛糖和酮糖分别由单糖如葡萄糖或果糖为代表。源自单糖的许多可能的分子内和分子间的反应产物,包括称作葡糖酸的葡萄糖氧化产物,致力使铁与糖形成复合物从而产生了AHS。对于本发明的目的而言,认为AHS是一种化学上比同属主要化合物含有蔗糖的葡糖酸铁钠复合物(SFGCS)或氢氧化铁-葡萄糖复合物(FHSC)更复杂的补血铁复合物的体现,因此,包括铁-糖复合物或糖-铁输送载体或糖-铁这些名称可AHS互换使用。因此,补血剂合成过程中分子内或分子间反应或单糖与铁反应所致的结合可同时产生具有补血特性的多种结构性物质,这些包含在本发明中。
为了输送高达100mg Fe(III)/2.0mL的注射液体,通常提供铁葡聚糖,而铁-糖复合物可提供商品化的单一剂量50-120mg的Fe(III)/5.0mL。在制备时,许多这些铁-糖复合物产品含有10-40%(w/v)非-补血性赋形剂以及合成反应副产物。
而在美国药典(United State Pharmacopoeia(USP))或National Formulary(NF)的保护下,一些补血剂具有已确定的简明状态,铁-糖复合物没有公认的简明参考品、标准化的分子身分特征或文献记录的补血活性物质独特的分子特异性。这表明在诸如SFGCS或FHSC等非-葡聚糖补血剂中的铁-输送载体事先没有被充分地纯化,并与生产中的赋形剂分离以赋予其详细的特征。因此,还没有开发出一种基准参考标准品或一种能够将所需特笥的补血剂与其它特性不确定的物质区分开来的不含赋形剂的质量分析控制标准品。自从1975年USP和NF合并产生药物的USP-NF简明准则以来,已为3800多种药物开发出标准的身分和分析方法,而35%的市售药物仍未包括在USP-NF中。补血药物如SFGCS和FHSC属于后者范畴。该问题最近发表于“Raising the Bar for Quality Drugs”,第26-33页,Chemical and EngineeringNews,American Chemical Society,2001年3月19日。在特异性抗原引起的免疫和过敏反应的情况下,分子特异性和组成差异的精密分界线可以将一种补血活性分子结构和赋形剂的不良作用水平,与可引起这种不良反应另一种补血剂分开。因此,需要鉴定的特征是记录一种补血剂安全和效果不同于其他补血剂的特征,其中对于铁-输送载体、代表合成时试剂过量的赋形剂或补血剂合成反应的副产物知之其少。另外,没有用现代化分析仪器获得长期详细的样品档案或数据,这种分析仪器能有意义地分析即使是最安全的肠胃外给药的铁-糖复合物的化学物质。而且,没有鉴定到补血剂正常生产条件的变化和投放市场的补血剂化学结构可鉴定的变化而致其随后效果不佳之间的相互关系。本发明的方法将涉及这些问题。
本发明还提供了用于指纹分析和特性分析SFGCS、FHSC和其它铁-糖复合物以及辨别竞争性产物和个别产物所显示的结构转化之间的不同的常规方法的分析基础。
特性分析AHS的需要也反映在生产过程的质量控制需求中,特别是当吸热状态和加热转移可能影响最终产物的质量时。不彩何种专利特主行合成方法、在一些市售的非-葡聚糖产物中可能有热-驱动或Strecker反应而形成的副产物,表明在生产过程中补血产品的形成至少受到一些可控制的热-输入影响。如果加工温度不需要低于约50℃,这种赋形剂将不产生。此后,产品的质量在某种程度上,涉及加热转移的速率和热暴露的持续时间。当产品对热加工条件特别敏感时,对赋形剂分布图的知识还可提供对于活性药物学物质的产品质量的了解。换句话说,监测药剂的安全有效性也可通过控制投入市场药物中存在的赋形剂的性质和稳定性来显示。
对包括AHS及其共存的赋形剂的铁-糖复合物的分析研究,受到低浓度、分子相互作用、分析信号的重叠等因素所阻碍。对于SFGCS和FHSC,分析难题包括高浓度的亲水性赋形剂、过量反应物和反应后的副产物,AHS没有预先分离或报告它们的个别特性等等。药物的参考标准需要遵守实施方案,常规上采用分析性辨别方法来达到此目的,并且可能要证实和验证。对这此方法持续的需要和本发明的应用有利于遵守该协议以及证实生产的持续性和产品的稳定性。
发明综述
一种监测含有至少一种补血活性物质的铁-糖复合物产品的方法,其中进行这种监测的时间选自:(a)在该复合物的生产过程中;(b)该复合物生产过程完成时;(c)复合物生产后;该方法包括将至少一种补血活性物质的分析性反应与相应于至少一个物质的标准品进行比较。例如可以通过纯化溶于稀释液通常是水的含有铁-糖复合物的补血剂组合物,得到这种标准品,该复合物含有至少一种补血活性物质和至少一种赋形剂。纯化方法包括:(1)将至少一种补血活性物质与至少一种赋形剂分离和任选地,(2)冻干至少一种补血活性物质。例如,通过使用层析柱可完成这种分离。可将各种先进和有力的分析方法应用于该纯化的标准品,因此可监视生产过程和产品的稳定性,以及促进新的和改良的补血剂的开发。并且,本发明提供了一种铁-糖复合物,该复合物选自含有蔗糖的氢氧化铁、含有蔗糖的葡糖酸铁钠复合物和糖酸铁复合物,该复合物基本上没有赋形剂。生产后,基本上没有赋形剂的复合物含在肠胃外给药的组合物中或作为冻干产品,可长期稳定贮藏,例如贮藏5年或更长。
附图的简要描述
图1显示分离或纯化AHS所获得的层析图或级分1中分离的铁-糖复合物的主要参考标准。
图2显示级分2中4种分离的赋形剂所获得的层析图,包括加入的痕量AHS或主要参考标准。
图3显示使用高压液相色谱(HPLC)将铁-糖复合物样品分离为级分1(AHS)和级分2(赋形剂)的折射指数(RI)和激光散射(LLS)分析的结果。
图4显示基于铁-糖复合物市售样品的HPLC分析的LLS和RI数据,以及表明AHS或主要参考标准的结构差异显示为补血活性物质的集合峰(AHSAP)。
图5显示基于铁-糖复合物第二种市售样品的HPLC分析的LLS和RI数据,以及表明AHS或主要参考标准的结构差异显示为补血活性物质的集合峰(AHSAP)。
图6显示基于铁-糖复合物样品的HPLC分析的LLS和RI数据,以及显示生产后时间间隔1时的铁聚集体峰(AHSAPTAM1)。
图7显示基于铁-糖复合物样品的HPLC分析的LLS和RI数据,以及显示生产后时间间隔2时的铁聚集体峰(AHSAPTAM2)。
图8显示基于铁-糖复合物样品的HPLC分析的LLS和RI数据,以及显示生产后时间间隔3时的铁聚集体峰(AHSAPTAM3)。
图9显示基于铁-糖复合物样品的HPLC分析的LLS和RI数据,以及显示生产后时间间隔4时的铁聚集体峰(AHSAPTAM4)。
图10显示分离为级分1、冻干重建的铁-糖复合物的层析和采用RI和基于LLS的HPLC对其作的分析。
详细描述
在本发明公开以前,承担肠胃外给药输送铁的AHS没能以受控制的可重复的纯度与其赋形剂适当地分离开来。赋形剂与AHS的这种混合对开发改进的补血产品和AHS的特性分析提出了难题。本文公开了改进的方法,为分析监控铁-糖复合物是否按照生产规范生产提供了机会,也为使用基准参考标准品确定贮藏稳定性指数和批间比较提供了机会。这种基准参考标准品先前是得不到的,具体是由于没有分离AHS。本发明的方法使具有治疗活性的AHS得以从共存的赋形剂中有效地分离出来并浓缩,然后如果需要再干燥或冻干。本发明提供了含有蔗糖的葡糖酸铁钠复合物、SFGCS、氢氧化铁蔗糖复合物、FHSC和糖酸铁的制备、特性和用途的信息、方法和分析细节。这些物质一般称作铁-糖复合物或补血剂。还提供了方法来建立迄今还没有的这些物质的参考标准品。本发明公开内容还为这些产品的制造和投入市场后的继续监视进行常规辨别提供了分析基础。本文公开的分析方法和其它方法通常用于铁-糖复合物,包括市售和同属的铁-糖复合物以及当前市售的行使补血功能的肠胃外给药的铁-糖复合物。
在本发明公开的方法开发之前,因为没有方法来分离、纯化和特性分析AHS但不过度影响或破坏AHS,所以得不到铁-糖复合物的标准品。然而,使用高压液相层析联合激光散射对AHS的非破坏性特性分析安全和精确地特性分析这种糖-铁复合物提供了分析方法。结合这里所讲的分离和纯化的过程,现在有了方法在指定的产品中具有更多机会为使用这种物质提供AHS参考标准品。
根据本发明,特征分析AHS中是否没有赋形剂的方法,包括将AHS和结合的赋形剂分离成为至少两个组分。因为AHS通常以非常低的浓度存在,一旦被分离,宜浓缩AHS以进行详细的分析研究。虽然AHS会降解,但可被浓缩只要在浓缩前或浓缩时从该组合物中基本上除去亲水性赋形剂。干燥(较佳地是冻干)可引起浓缩,但是也可使用其它的方法。弱电子结合相互作用如水和赋形剂之间的氢键给这种分离和干燥AHS提出了难题。当HAS投放市场时,例如以肠胃外给药形式,AHS通常存在于比不含溶质的水(如纯水)具有更低水活度(Aw)的水系统中。通常认为不含溶质的水具有接近或等于1.0的Aw值。水活度是一种参数,对应于参与物理、化学和生物反应过程的物质或组合物中存在的水的可利用度。水活度下降是水可溶性或亲水性物质特别是低分子量物质存在的结果。换句话说,相应于用于结合或溶解物质的水部分的那部分水的是不可利用的。因此,随着溶解或结合物质的数量和/或浓度增加,水活度减少。正如在食品和药物行业中最常使用的,提高水活度值将伴有化学和生物降解,因此可加入水可溶性或亲水性物质以降低Aw值。在本发明中,溶质和/或胶体,包括悬浮或分散在水性组合物中的物质,包括伴随AHS的糖赋形剂,与水相互作用,例如,它们是亲水性物质或它们形成氢键。这种物质降低了存在的水的Aw值,至使该值小于1.0。只要亲水性赋形剂存在于含AHS的水中,一部分水保持与这种赋形剂结合,就不可能满意地实现从含AHS的组合物中除去水(伴随其浓缩)。因此,将亲水性赋形剂与AHS分离使含有AHS的相或组分的Aw值提高到1.0,并有利于这些优选物质的浓缩、干燥和分析。
在含有SFGCS和FHSC的系统中溶质对水的作用直接影响这些物质的干燥(包括冻干)行为,因为它们释放的亲水性物质和赋形剂浓度的降低伴有水蒸气压力的增加以及Aw值的相应增加。表示为Aw的水活力概念,发现其在食品科学领域中有最为重要的用途(见,例如“食品科学原理”Principle of FoodScience,O.R.Fennema编,“第二部分,食物防腐的物理原理”Physical Principle ofFood Preservation,M.Karel等,237-263页,Marcel Dekker,Inc.1975,Enclyclopediaof Food Science,M.S.Peterson等编,“关于食物的水活度”Water Activity in Relationto Food”,D.H.Chou,852-857页,Avi Publ.Co.,Inc.,1978,在允许的范围内本文引用作为参考)。前提是在食物贮藏中可能发生的化学和物理过程与食物中水的数量和状态之间存在着一种关系。相同的原理可用于其中存在着水并可能受水影响的其它物质或组合物。水作为一种溶剂、稀释剂等存在于组合物中,其特征可能是游离的或未结合的或以各种程度结合于其它化合物,例如,在本发明的情况下与赋形剂或AHS结合。可使用各种方法测定水结合的程度,包括测定在低于0℃时含有组合物的水中未冻结水的量,可使用核磁共振测定,绝缘性能测定和蒸气压力测定;由于简单优选后一种方法。该方法中,水活度定义为在给定的温度下,在有水存在的组合物或化合物中,水的局部压力与纯水的蒸气压力的比。这是从Raoult法则得来的,该法则中将一种溶液中的水蒸气压力(P)与纯水(不含有溶剂)的蒸气压力(P0)相比。当比值P/P0逐渐降低小于1.0时,Aw值变小,该水的熵状态下降,其蒸气压降低,推侧是水-溶质结合相互作用增加的结果,除去水的蒸气相变得更加困难。这些条件会影响冻干的干燥过程。并且,换句话说,在复合物混合液中,化学化合物或复合物可能不完全溶解或以真正溶液的形式存在,这可能大大地偏离了理性的Roult法则公式,并且,含有组合物的成分的水活度可能不同。在多相组合物中还观察到水从Aw较高的成分转移或扩散到Aw较低的成分,可能与根据浓度驱动力所预期的相反而发生(M.Karel等,251页)。还应理解,当干燥一种复杂的组合物时,与水有不同程度相互作用(例如不同的氢键水平)的溶质可被浓缩,可能以复杂的和变化的方式影响到排除水的能力。这也是补血活性物质难以与其赋形剂充分地分离的一个重要原因,因此可能需要确定和控制适合的干燥加工条件。水可能与化合物上的特异性位点牢固结合,包括多糖的羟基,以及结合于羰基和氨基,以及其它的水可通过氢键、离子-偶极键或通过其它强相互作用而结合的位点。因此,在本发明中,水可能结合于AHS和赋形剂的特异性位点,例如作为一个单分子层。这种水可作为未冻结的水存在,除非温度大大低于0℃,此外可作为非溶剂性水存在。在本发明的组合物中,已知水与蔗糖牢固结合因此在含蔗糖的组合物中Aw降低。所以,干燥特别是冻干(下面详细描述)可能受到不利影响。
不论冻干与否,制备纯化的AHS成为一种了离物质的能力,提供了为确定这种补血产品的化学和结构特征的重要能力。通过为这种补血剂建立可验证的和可重复的参数,可以建立一个质量控制框架,例如,AHS的批间均一性。背离验证的AHS结构均一性可用作贮藏稳定性的指标和帮助鉴定生产过程中发生变化的原因-结果关系。使用现代技术分离和分析鉴定这些试剂特性的能力,具体说是激光散射技术,可帮助确定这种铁-糖复合物的属性。
对补血剂的铁-糖复合物的合成知道得很少,因为这种合成通常依赖于专利方法。类似的,对于这种组合物可得到的分析资料也很少。根据整个固体的重量/体积测定,人们认为药物学补血活性物质或补血剂中的铁-递送载体应少于5%并可低至1.0%。因此,通常应测定市售产品中在高百分比的亲水性赋形剂存在下释放的AHS的特征。低浓度的单一三价铁-递送载体伴有相对大量的赋形剂为AHS的特性测定提出了难题。另外,由于认为AHS不稳定不能分离用于分析,所以没有建立AHS的参考标准品。根据本发明描述的方法,可将AHS与其赋形剂有效分离开来,这些方法可扩展用于开发改进的补血剂本身或与其它药剂的混合物。例如,纯化的AHS可与促红细胞生成素或其它有用的药物联用。
得到不含赋形剂的AHS允许更密切地分析性监测AHS和它的药物性能。而且,当药物中赋形剂占整个固体重量的高百分比时,单独监测这种赋形剂的能力对质量控制、生产和临床性能等问题同样重要。出乎预料的临床效果可能是生产过程中发生的事先没注意到的或改动了赋形剂的分布和类型的结果。对于食品系统,由于温度对糖类的影响产生的副产品化合物可提供对加工生产步骤是否充分和受到控制的重要认识。H.-J.Kim讲述了其它产物的这类问题美国专利5,254,474,而其他人注意力集中于加热产生的乙醛在生物技术中的运用,见C.M.Smales,D.S.Pepper,和D.C.James,2000,“蔗糖存在下β-乳球蛋白变种A在模拟抗病毒热处理生物加工过程中蛋白质被修饰的机制”(Mechanisms of protein modificationduring model antiviral heat-treatment bioprocessing of beta-lactoglobulin.variant A inthe presence of sucrose),Biotechnol.Appl.Biochem.,10月,32(Pt.2)109-119。检测药物生产中与加热对糖影响有连系的化合物也是重要的,其中加热是合成中的一个因素。的确若鉴定到复合物如FHSC和SFGCS中仅有微量的赋形剂和分布可以证实所用的合成条件是适当的。
本发明提供了将补血剂包括SFGCS、FHSC和糖酸铁分离成为至少两个不同组分的方法。另外,该方法通常适用于这样的产物,该产物中,铁是作为铁-糖复合物或铁递送载体提供的,其中铁与碳水化合物的带负电荷羧基结合而存在。补血剂的一个组分,本文称作级分1,含有铁-糖复合物或铁-递送补血活性物质,AHS。另一组分,本文称作级分2,含有在最初组合物(如,合成的或投放市场的)中与AHS共存的基本上全部赋形剂的混合物,级分2中的赋形剂可以是,例如,亲水性有机物或离子化合物。
液体级分1或2中的溶质或悬浮或分散的成分,可用于详细的分析研究或特征鉴定目的,并可进一步浓缩或在新产品开发中作为起始物质使用。本发明公开说明了这些组分的分离方法但相关的成分可以发挥分析作用以便于基准参考标准品的建立,这些标准品的特征是没有其赋形剂的含有蔗糖的葡糖酸铁钠复合物SFGCS、和氢氧化铁蔗糖复合物FHSC。并且,本发明公开了制备浓缩和冻干的和任选重组的AHS的方法。可从合成的或市售的以在水性(水)组合物中含有结合的AHS和赋形剂的补血剂开始,实现各种成分的分离,然后选择性地再分配或提取赋形剂,使它们存在于基本上分离的水相中。建立了这两个组分后,对每一组分可进行详细的分析性特征鉴定,如果需要可作进一步纯化,并浓缩以满足分析、合成或生产的目的。
补血剂是一类设计用于转运造血有用的铁的药物,级分1含有至少约75%到100%的AHS;较佳至少约80wt.%到约99.9wt.%;更佳至少约90wt.%到约99.9wt.%;最佳至少约95wt.%到约99.9wt.%的AHS;目的是肠胃道外递送。级分2含有相应的低水平AHS(例如少于0.1wt.%)和基本上最初在于补血剂组合物中的所有赋形剂。
1.将AHS与共存的赋形剂充分地分离
可将至少一种活性补血剂AHS,与存在于合成的补血剂或以铁-糖复合物为特征的市售药物中的赋形剂分离开来或基本分离开来。作为确定含有一种铁-糖复合物的补血剂组合物的几种重要的特征的结果,本发明人完成了这种分离,分离过程包括:(1)需要提高含AHS相或组分的Aw值;(2)AHS显示至少有一种可检测的铁物质,分子量为大约250,000-3,000,000道尔顿或更高;(3)生产和稳定性的变化可导致存在一种以上的可检测的含铁物质;(4)含Fe(III)物质可显示不同的形状,如激光散射测定的形状;(5)含Fe(III)的AHS具有电荷,和(6)含Fe(III)的AHS可具有可检测的氧化-还原(氧化还原作用)电位,表明三价铁Fe(III)或二价铁Fe(II)的存在。通过采用一种或多种如下方法可完成AHS与其赋形剂分离成为至少两个组分,在约6.0-8.0;较佳的约6.4-7.8,更佳的约6.6-7.6,例如6.8-7.4pH范围内具有或不具有初步的pH稳定性。
1.动电迁移,其中AHS的浓度取决于引起带电的AHS沉积于一种带电收集表面上或一种液体(该液体中存在与其赋形剂分离的带电表面)之中的直流电。
2.基于动电的膜技术,其中将一个阴极和一个阳极放入用半透性膜分开的水系统中。直流电施加于膜上由于异性电荷相吸导致带电的AHS浓缩于适当的电极上。这种AHS浓缩于一个区室内的单一电极上使亲水性赋形剂碳水化合物可通过半透性膜透析-介导移动到旁边的区室中。优选的半透性膜包括纤维素、乙酸纤维素、纤维素酯或再生纤维素。为了维持AHS停留在一个区室中,该膜优选约90,000-300,000的排斥分子量;更佳约150,000-200,000。该方法优选的条件包括使用蒸馏水、去离子水,pH为约7.5-9.8;压力为约1.0大气压;温度约2℃-50℃。亲水性赋形剂的透析去除率可通过不断更换透析液而得到改善。Ficks法则描述了该过程,F=-DA(dc/dx),其中F=总通量;D是物质在介质如水中的扩散率;A是可用于扩散的表面积和dc/dx是赋形剂通过膜的浓度梯度。
3.从共存的赋形剂浓缩AHS的毛细管电泳技术。毛细管电泳,有时称作毛细管区带电泳,依赖于将带电分析物导入融合的硅毛细管中,毛细管的大小为直径约50-75微米,长50-100厘米,并对其施用约30千伏的电压。组合物中的带电物质的不同动电迁移可通过本文所描述的各种方法进行检测和记录,包括UV-VIS,荧光和质谱分析。带电物质在毛细管中的最终的迁移位置可记录为电泳图。由于铁-糖复合物中AHS上存在大量电荷这种方法特别有用。
4.柱层析,这是一个选择性分离AHS特别优选的方法。由于AHS的不连续分子量、尺寸大小、形状和所带的电荷与共存的赋形剂相反,当液体载体或洗脱液(如水)运送它们越过和/或通过一个固体支持物时,AHS参与不同的固定相的相互作用。这样,导致这种分离具有不同的扩散或迁移率,反映了相对电荷和/或大小排阻差别,阻碍或促进这些物质洗脱通过层析系统。还可通过改变孔隙率、电荷或固定相表面上的吸附特性调节分离效果。这种层析过程可在约3℃-150℃间进行,较佳在约15℃-35℃,通常在25℃,使用水性或非水性溶剂以单一的或多重系列流程表加到柱上。可加压滴注流入和流出层析柱进行AHS的层析分离。分析柱的内部压力范围可以从低于大气压力到分析柱和固定相材料可以耐受的任何压力。高于一个大气压(0.1MPa)的操作压力是优选的,但可使用10,000磅/平方英寸(69Mpa)的压力。加入分析柱的洗脱液可包括任何溶剂或稀释剂,只要保持AHS为铁-糖复合物。这种洗脱液包括C1-C6烷醇、乙醇胺、二甲亚砜、羰基溶剂、二甲基甲酰胺、水、水性缓冲溶液和含水-糖溶液的各种混合物。使用约2.0-25重量百分比的伯醇有利于控制潜在微生物的生长。购买得到适合的固定相材料包括多孔硅、鉴定为葡聚糖的交联聚葡聚糖、交联丙烯酸脂聚合物、乙二醇和丙烯酸脂的共聚物、交联聚苯乙烯、氧化铝、琼脂糖凝胶、环式糊精和可使用的阳离子及阴离子交换填充物。柱层析分离补血剂组合物中的AHS与其赋形剂的特别优选固定相,是商业购得的各种级别(Sephadex G-10,G-15和G-25(Amersham-PharmaciaBiotech.,Piscataway,NJ)的交联聚葡聚糖或葡聚糖;商品化的验明为GMPWXL的分析柱具有13微米的颗粒直径,孔的大小为100-200埃以及有机玻璃支柱(TosohBiosep,Montgomeryville,PA)。当使用固体固定相填充柱时,孔的直径优选约30-9000埃,更优选100-8000埃。对于AHS的大量分离特别优选的是葡聚糖固定相,如使用低压层析法;有机玻璃支柱对于AHS的分析性特征鉴定是特别优选的,如使用HPLC。
本发明的方法可单独或相互结合用于分离AHS,该AHS主要或基本导致由于FHSC或SFGCS所致的药物作用。经过充分地分离层,所得纯化的AHS可用作建立主要参考标准的基础。进行该主要参考标准可提供用于监测生产和药物质量控制的标准品。如果需要,可使用本文所讲授的方法进一步纯化AHS。例如,当使用HPLC联合LLS和RI分析补血剂组合物,显示在AHS主要参考标准峰上有一个肩峰,或在AHS主要参考标准峰之前有一个峰时,可使用进一步的分离方法。如本文所述,这种肩峰或第二个峰可存在于补血剂组合物中,是背离优选生产条件的结果或该补血剂组合物贮存的结果,特别是亲水性赋形剂存在的结果。进一步的分离或纯化过程包括利用HPLC分析结果或直接从连接于LLS探测器的制备型层析柱得到的数据,进一步分离从制备型层析柱首先洗脱的物质。照这种方法,大量的或基本上全部不需要的聚集的AHS可与优选的AHS分离。当前面有一个非-AHS峰并且明显与特征性AHS主要参考标准峰分开,可将对应于这个峰的基本上都是聚集的物质与所需的AHS分离,例如,在级分1中,一个肩峰出现在主要参考标准AHS峰上,像下面所要进一步讨论的那样,分离基本上所有不需要的物质,如聚集的物质时,可能必然携带有一些优选的AHS,或者相反,不可能除去所有的聚集物质。分离和纯化的程度可以参考根据本发明的方法产生的数据进行确定。因此,除了除去基本上所有的低分子量物质即本发明补血剂组合物中存在的主要亲水性赋形剂外,对于聚集的铁复合物而言本文所讲授的方法可产生同样的基本上纯化的AHS。
使用本发明讲授的方法,可将离散的补血活性物质(AHS)与商业可得的以铁-糖复合物为特征的肠胃外给药组合物中的赋形剂分开;此分离的物质可作为“主要参考标准品”。一种从共存的赋形剂分离出AHS的方法采用低压凝胶渗透层析(GPC)。在本发明中,低压指在环境压力下操作层析柱,包括用于抽吸液体进入的附有阀门管线的填充柱和任选的其它设备中的压力包括一个或多个分析仪器或检测器中的略高于环境压力的压力。这种技术不仅可用于分析分离的物质,还可用于生产大量的AHS以制备新的肠胃外给药组合物。较佳的,柱填充物包括具有证实的分子量或大小排阻特征高于约5,000道尔顿的氯甲代氧丙环-交联聚葡聚糖;更佳的大小排阻特征高于约1,500道尔顿的是优选的。从Amersham-PharmaciaBiotech,Piscataway,NJ.购得适当的设备。并且,具有GPC特性的离子交换凝胶和亲和性层析柱也是适宜的。
该AHS通常存在于级分1中,其后洗脱的赋形剂在级分2中。既然物质以持续的方式从分析柱上洗脱,参考品组分是以分析柱洗脱的物质部分为基础,这些部分中存在着基本上所有优选的AHS或与其赋形剂充分分离的主要参考品AHS。指示这种分离的洗脱物质的一种方法是观察移动相的LLS信号已紧靠近基线值或回到基线值的位置,随后出现表明存在AHS和/或聚集AHS的第一峰或几个峰(如下文进一步讨论的)。在一个优选的方法中,一个溶剂贮罐将水-基稀释剂或溶剂通过重力或流量计加到一选定直径或长度的层析柱上,只要该柱的长度至少为直径的两倍。该层析柱可以用玻璃、不锈钢、聚碳酸酯或与该组合物和使用的稀释剂或溶剂不发生反应并能装填固定相层析载体物质(也称作层析床)的其他物质构成。层析床通常包含适合的多孔性珠粒,但层析床的其它形式也可在层析柱范围内原位制作,例如原位灌入多孔聚合物。在实施本发明的过程中,被称作移动相的水-基溶剂(或稀释剂)越过或穿过珠粒的间隙即多孔载体层析床。液体或洗脱液流出分析柱,通过管道流径一个或多个检测器,以分析液流测定其基线特征。检测器放置于适当的位置以处理从一个检测器到下一个检测器的一系列洗脱液流,或液体分流至平行的、多个检测器进行监测。这些检测器显示洗脱液流的实时流量体积特征。使用适当的检测器测定和记录水流的特性,如Ph、导电性、电化学还原电位、散射指数(RI)和其它有用的分析特性。UV-VIS吸收和散射指数是测定流动相基线特性的优选检测项目。
将铁-糖复合物,例如商业购得的肠胃外给药组合物注入引进填充柱床顶端的水流中,确保组合物中的各种组成成分分布并通过多孔性层析珠粒。不愿受理论所束缚,认为此法可对含有铁-糖复合物的大小不同的化学物质进行分离,例如可能通过筛分作用与潜在的氢键相互作用。比孔隙大的化学物质受孔隙排斥首先以相对小的洗脱体积(Ve1)流出分析柱。当样品持续流动通过层析柱时,逐渐地较小的分子被夹带入孔隙中,随后以相对较大的洗脱体积(Ve2)流出层析柱。这样,级分1补血剂中的大分子物质,例如AHS先洗脱(Ve1),而级分2中较小的赋形剂化学物质后洗脱(Ve2)。当应用于包括SFGCS、FHSC等成分的初始肠胃外给药补血剂时,这样的层析分离产生至少两种成分或组分:AHS及其赋形剂。如后面将要描述的那样,较大的副产品或降解物质也可能与AHS一起洗脱,或在AHS前洗脱。AHS的分离基本完全,所以它与起初共存的赋形剂分离,具体说是与亲水性赋形剂,包括具有不同荧光特性的那些赋形剂分离。因此,产生的AHS在高Aw的水性组分中,即级分1中,基本不含赋形剂;而基本上所有的赋形剂存在于第二级分2中,即级分2中具有低Aw状态特征。除了赋形剂的大小与层析床起相互作用之外,层析床中酸氢-基结合(AH-B)动力学可进一步提高赋形剂从层析柱洗脱的有效体积(Ve2)。酸氢-基结合相互反应见Hodge,J.E.和E.M.Osman的一般描述,1976,第三章,“食品化学”Food Chemistry,O.R.Fennema编,Marcel Dekkar,纽约,92-96页;和ZapsalisC.和R.A.Beck,1985,“食品化学和营养生化”Food Chemistry and NutritionalBiochemistry,第10章,John Wiley和Sons,588-591页(在允许的范围内引入作为参考)。对于本发明的目的而言,术语“基本不含”当用于指分离的AHS时,基本上不含赋形剂意思是指,含有AHS的组分包括自层析柱洗脱的AHS大于约75wt.%;通常大于约85wt.%;较佳大于约95wt.%;更佳大于约98wt.%;更更佳大于约99wt.%和最佳大于约99wt.%直至低于或等于约100wt.%(换句话说,可存在痕量的赋形剂,洗脱的AHS的量不包括微量的或痕量的可能滞留于层析柱、管道、检测器中的或加工过程中损失的AHS)。相应地,这种赋形剂最初存在于灌注层析柱的组合物中、或可能在加工过程中产生,包含在后来的赋形剂组分即级分2中,其数量等于从100wt.%减去上述值。例如,如果AHS组分含有大于约99.0wt.%的AHS,存在的赋形剂的量则小于约0.1wt.%。
与赋形剂相比,在层析洗脱液流中存在的AHS可使用激光散射进行观察,如上文所述。另外,AHS和赋形剂的洗脱图谱可使用一种或多种不同类型的检测仪检测,该检测仪输出的信号同时记录了洗脱液流。在一个优选的方法中,使用一个检测仪,该检测仪对所用的UV-VIS吸收检测器的波长(λ)敏感,另外一个检测仪是浓度敏感折射指数(RI)检测仪。从这些检测仪独立输出的双重信号经处理并分别记录为共同横坐标(x-轴)和两个独立的纵坐标(y-轴)以累积的洗脱体积(如毫升)单位或份(i)表示,如前所述。该方法可鉴定那里是含有基本上所有的AHS的所谓的级分1结束处,和那里是含有基本上所有的赋形剂的级分2开始处。实验证据证明各组分可被及时地充分分离,因此可得到基本上不含赋形剂的AHS。
根据Beer-Lambert法则,吸光率与特异性光-吸收物质的浓度有关。一种光吸收物质的吸光率(A)表达为:
A=εbc       公式5这里c是光吸收物质的浓度(摩尔/升(M/L));b是通过光吸收物质的光程(厘米(cm));和ε是称为摩尔消光系数的比例常数。在给定的光波长下,一种光吸收物质的该比例常数是唯一的。该基本法则解释了这样一个事实,在一个特定的波长(λ)下一种光吸收物质的吸光率可转变成其摩尔浓度的定量测定。因此,一种分析物在指定的波长下其吸光率的正增长对应于其摩尔浓度的增长。为了监测SFGCS或FHSC层析洗脱液中的AHS,435nm是优选的,因为铁-糖复合物在此波长具有高的消光系数,即6.590log10。对于使用层析分离制备基本上不含赋形剂的AHS,将A430nm值相对于层析柱洗脱液体积制表。这可转化为层析洗脱图谱,其中A430nm纵坐标(y轴)值和洗脱液体积(x轴)相互对应作图。正如所讨论的,较大的AHS在较小的赋形剂之前从层析柱洗脱。只要吸光率的变化(ΔA)对应于洗脱液体积(ΔV)的变化或ΔA/ΔV相一致,显示在不含溶质的基线洗脱信号上方成正比值(+ΔA/ΔV),洗脱液中AHS的浓度增加。对于负比值(-ΔA/ΔV)反之亦然。当ΔA/ΔV的比值从(+)转变为(-)时,AHS的层析洗脱达到最大,形成“层析峰”。从上述这一点起,层析图谱持续显示负比值(-ΔA/ΔV)洗脱液中AHS的浓度下降。只要A430nm逐渐地下降并且A430nm值接近0.0A值,这对于AHS浓度是真实的。当该测定信号显示AHS洗脱结束,浓度敏感的RI检测器开始对洗脱液中亲水性物质或其它赋形剂量的增加作出反应。如上所述,比值RI的正(+)变化对应于体积的变化(+ΔRI/ΔV),信号显示赋形剂浓度增加。在收集的洗脱液中ΔA/ΔV仍显示负比值(-ΔA/ΔV)逐渐地接近0.0A值,RI-检测器开始显示+ΔRI/ΔV斜率,这标志级分1基本结束和级分2有效开始的实际分界线。级分1含有在高Aw环境中的AHS,级分2含有在低Aw环境中的亲水性或其它赋形剂。以这种方式确定洗脱图谱。
确定分离时级分1基本结束和级分2有效开始的洗脱分界线,还可通过在430nm处测定层析柱洗脱液中AHS的透光百分比来确定。用于这一目的的合适仪器是由Hunter Associates Laboratory,Inc,Reston,VA生产的“ColorQuest XE”系统。当AHS存在于洗脱液中该洗脱液的透光度增加渐渐地接近0百分比,可显示AHS已充分分离或洗脱结束。洗脱液水流的RI-反应随后增加,标志含有赋形剂的洗脱液开始流出。在另一个实施例中,级分1基本结束和级分2有效开始之间的界线可通过测定洗脱液流的A620nm蒽酮基的吸光率确定。既然AHS和赋形剂具有显著的葡萄糖当量(DE)吸光度,可检测的A620nm DE-值在级分1和级分2之间是极小的。强调说明这种分析概念的原理见R.Dreywood所描述,“碳水化合物材料的定性测定”Qualitative Teat for Carbohydrate Material,Indus.和Eng.Chem.,Anal.编,18:499(1946);J.E.Hodge和B.T.Hofreiter,“还原糖和碳水化合物的测定”Determinationof Reducing Suger and Carbohydrates,”Methods Carbohydrate Chem.,1:384-394(1962);以及最近由C.Zapsalis和R.A.Beck,描述的,“食品化学和营养生化”FoodChemistry and Nutritional Biochemistry,第6章,John Wiley和Sons,353-354页,(每一公开内容在允许的范围内本发明引用作为参考)。
本发明的方法可允许大批量地制备任何类型的铁糖复合物中的AHS(例如,从大于约500毫克到大于或等于1.0克;或者大约1.0克到约10克或更多;大约1.0克到100克或更多;大约1.0克到1千克或更多;例如,如果需要,可使用本方法生产数百或甚至数千千克)或少量的AHS分析样品(大约5.0到500.0毫克)。由于AHS是这些肠胃外给药组合物中复合性铁的优选组分,分离AHS的能力形成制备主要参考标准品的基础。级分1的分离允许进一步进行详细的化学和/或结构分析;在本文的其它地方描述了这种方法。然而可进一步浓缩分离的AHS级分1,以及赋形剂级分2用于详细的研究。
本发明还适合于小量生产AHS(从至少约1.0毫克到少于5毫克),较佳的使用高压(或高效)液相层析(HPLC)。可采用适当的层析固相载体从其赋形剂分离出AHS。这导致AHS转移到层析柱中显示高Aw,接近1.0值的液流中。赋形剂时转移到低Aw的液流中,其Aw值低于含有AHS的液相。该方法的操作原则与上述低压层析方法类似,但是HPLC方法的固定相柱床材料更精细,可承受约5,000-10,000磅/平方英寸的压力(约35-69MPa)。这导致从层析柱流出的洗脱液流速较慢,但可为高水压所抵消。可采用依赖于吸附-解吸附分析物分离现象的硅-基固定相相层床从赋形剂分离出AHS。然而这种硅-基分离效果难以控制并需要精确地制备含叠氮化物的水性移动相;因此,它们会遇到较大的分析误差。另外,从硅-基床上脱落的颗粒使LLS的检测器的使用复杂化或可能妨碍LLS检测器的使用效果。因此,聚合的HPLC分析柱,如Tosoh Biosep,Montgomeryville,PA生产的GMPWXL品牌,使用了优于硅-基层析柱的优选水性移动相。这种HPLC分析,例如,商品投放形式的铁-糖复合物要求先通过例如Anotop25品牌的无机膜(Whatman,Maidstone)进行0.02微米过滤。
2.特征鉴定AHS主要参考标准品和共存的赋形剂的方法。
铁的分析揭示用于补血目的的超过约90%的铁存在于上述命名为级分1的高Aw组分中,通常从至少约75wt.%到少于约150wt.%;较佳的大约80wt.%到约99wt.%;例如大约90wt.%到约99.9wt.%;大约95wt.%到约99wt.%;赋形剂存在于命名为级分2的低Aw组分中。级分1中的铁原子可通过原子吸收光谱(AAS)作定量测定但仅通过AAS作铁定量不能确定本发明产物的补血功能。
本发明的非葡聚糖补血剂的相关特征鉴定是基于它递送生理上可耐受的或良性来源的三价铁Fe(III)的能力,较佳的是通过肠胃外方式递送。该三价铁组合物是肠胃外可接受的,它类似缔合胶体的特性。缔合胶体是由于弱化学结合力形成的可逆性化学结合,其中数百个分子或离子聚集形成大小约1-2000纳米或更大的胶体结构。这种三价铁离子胶体与糖化合物相互反应,除了由激光散射(LLS)鉴定的光活性外,在电场中显示定向移动。本文中相关的LLS特性与Tyndall作用有关,其中入射光束(I0)通过胶体,从对应于其原来途径的90°角穿出。如果光与淀粉、蛋白质或其它胶体等大分子相互作用当入射光的波长接近分子的大小时才发生光散射。当散射的波长相互作用互相抵消,两个波长的光相互加强或者产生结构性干扰时,光散射可发生破坏性干扰。LLS数据的数学评价使各种胶体的大小和形状得到评价。例如,大小可按照单分子的分子量或多分子或离子聚集物的分子量进行估计。在两种情况下分子量的表达代表了这种结构中所有原子的原子量之和。大多数聚集物或分子(如聚合物)的结构差异是这样的,它们以不同分子重量的频数分布存在,典型地表达为平均分子量分布(MWD)。除了大小,胶体的形状可能具有重要的意义。例如,如果它的形状为细杆状结构、随机盘绕结构或球形结构,它与其它分子或结构的相互作用可能不同。可采用LLS,包括多角度激光散射(MALLS)或低角度激光散射(LALLS),-HPLC集成检测仪分析与一种或多种方法联用,来评价铁-糖复合物。对于本发明的目的,应理解涉及的LLS包括MALLS,后者是一种优选的检测器类型。本文使用LLS测定提供了一种特征鉴定正常的铁-糖复合物的优越的和较佳的分析方法,换句话说,提供经适当控制合成产生的优选的AHS,或者显示衰退或降解产物的证据的方法。已经报道了用于特征鉴定大分子结构和缔合胶体的基本数学关系式和联有激光散射和拆射指数检测器的HPLC的操作方法(见P.Wyatt,大分子的光散射和独立特征,Light scattering and absolutecharacterization of macromolecules,Analytica Chimica Acta.(1993)272:1-40;在允许的范围内引用作为参考)。如本文所讨论的,这种技术可用于含有AHS的铁-糖复合物。
LLS数据的获得对于鉴定糖-铁复合物中的AHS特别有用,特别是当需要基准分析参考标准品时。LLS数据可从一批分离的样品获得或者LLS数据可使用持续加工含有AHS的材料随后进行层析分离的洗脱液流的在线分析得到。换言之,一旦产生糖结合三价铁复合物并仅用LLS或联合本文公开的其它方法进行检测,可对该类药物的分子量和形态常规验证生产连续性作批与批比较。通过使用与LLS加强HPLC的操作软件整合的LLS算法,可利用AHS的粒子大小和形状特点监视AHS的生产过程、AHS产品的质量和AHS的稳定性。具体地说,如本文所讲授的,所谓的正常AHS(如,初级参考标准品材料或优选的AHS)的粒子大小和空间特征和所谓的异常AHS(如降解或聚集的AHS)的结构可由ASTRA(Wyatt TechnologyCorp.,Santa Barbara,CA)操作软件产生的标准Debye图测定。这种应用的详细描述见P.Wyatt,大分子的光散射和独立特征,Light scattering and absolute characterizationof macromolecules,Analytica Chimica Acta.(1993)272:1-40;在允许的范围内引用作为参考。观察到优选的AHS具有通常的球形并且大小为约10纳米或更小,而降解的或聚集的AHS,如在优选的AHS前从层析柱洗脱的物质,倾向于大小超过约10纳米,例如大约10到约30纳米或更大,例如大约20到约30纳米或更大。大小和空间形状对于补血剂的生理和代谢耐受性以及它们的组织分布可能是有关的因素。因此,LLS方法的应用对于常规特征鉴定(包括生产后和贮藏过程中)和监视本发明补血剂的生产是优选的。
AHS的激光散射在绝对分子量方面提供了特征性参数。然而,由于AHS不是一种单分子物质,其行为表现为一种缔合胶体,采用绝对分子量是特别优选的。这种基于LLS-的分子量测定优于其它提供所谓相对分子量的分子量评估方法。AHS的相对分子量测定不依赖于由大小和形状决定的光与AHS的物理相互作用作基础琮估计其分子量。而是,相对分子量测定依赖于大小排阻层析(SEC)(有时称为凝胶渗透层析GPC)的标准方法。下面互换使用SEC和GPC。在GPC分析中,大分子或聚集物如AHS的有效大小(不是其分子量)决定了其洗脱体积以及何时从校准的层析柱中流出。因此,将AHS通过GPC柱的洗脱和转移,的相对位置与预期的AHS分子量的上方或下方的窄带中的一系列校准标准品相比较,提供了确定含铁复合物相对分子量的基础。运用这一概念,当AHS从柱上洗脱时可使用浓度敏感检测器如散射指数(RI)检测器检测AHS和它的校准标准品。作为浓度敏感检测器,RI-测定依赖于浓度(c)增加或减少的分析物(例如溶质)当分别流经RI-检测器小室时光折射指数(n)的变化。在均等的时间间隔中,这种折射和浓度变化的比值记录为dn/dc值。每个dn/dc值对于一具体的分析物或溶质是唯一的,并且一种物质的特征性dn/dc值不是可普遍用于任何其它具体物质的推理值。对于已知校准标准品和未知分析物的洗脱可得到记录的这种dn/dc值,并可在精确的时间间隔中记录。在一次液相层析的总洗脱图谱中每个dn/dc的测定被称作一份(i)。份的数目,其洗脱时间或洗脱体积可用于说明该份。一份的洗脱时间乘以层析柱洗脱液流速得到洗脱体积。关于体积或数量的份数记录与这种数据记录概念的通常意义不同。因此,对整个GPC测定过程的dn/dc(纵坐标)对份数(横坐标)作图,得到未知物质和校准标准品的洗脱图谱,这些物质可能相互完全无关,它们还具有适用于仪器监测的可检测的dn/dc质量。
因为标准GPC步骤不识别所有的大分子或胶体结构共有的显著的物理相互作用,存在于SFGCS、FHSC或其它类似的补血剂中的AHS的GPC分子量评估可能易于产生分析误差。而且,以RI为基础的GPC方法不能特征鉴定AHS的形状和拓扑特征,包括例如结构性分支。而且,使用RI-依赖的GPC方法作相对分子量评估也易遭遇数据变化,对微小的分析误差敏感和对高密度缔合胶体中物质的尺寸变化完全不敏感。对于缔合胶体,特别是FHSC和SFGCS,这些特征是重要的,因为无糖聚集的铁原子可与所需的含AHS的铁-糖复合物共存。因此,认识到RI-为基础的GPC可以合理的精确性和合理的精密度提供AHS分析物的相对分子量值是重要的,但是,该方法忽略了AHS结构的其它重要特征。
根据熟知的光散射物理学原理,具有小尺寸的各向同性颗粒如大分子和胶体,可与光相互作用从而得以计算它们的绝对分子量和形状。这对于包含于FHSC和SFGCS中的AHS是真实的。不象以GPC-RI为基础的分析,一种胶体物质的绝对分子量可不依赖于任何校准曲线进行测定,而该曲线却依赖于事先建立的分级分子量标准品(M.J.Vold和R.D.Vold,1964,“胶体化学”Colloid Chemistry,Reinhold,NY;和Zapsalis,C和R.A.Beck,1985,““食品化学和营养生化”(“FoodChemistry and Nutritional Biochemistry”),第8章,John Wiley和Sons,第507-547页,Zapsalis和Beck,1985)(在允许的范围内本文引用作为参考)。使一个粒子通过依赖于入射光束的强度(Io)的角度θ,通过光散射体积的光程距离(γs)以及该颗粒的极化度(α)建立了光散射强度(Iθ)。对于非极化,其光方程如下:
Rθ(1+cos2θ)=Iθγs 2/Io=8π4/(1+cos2θ)    方程(1)术语Rθ(1+cos2θ)是Rayleigh比率的基础。对于颗粒大小比入射光波长(IO)小的非常稀的溶液该光散射测定的延伸给出如下表达式
Rθ=2π2η0 2[(η-η0)/C]2/Lλ4·CM=K*CM           方程(2)其中Rθ成为Rayleigh比率(R);η是含有微粒物质的溶液的折射率,η0是不含微粒物质的溶剂的折射率;C是溶质的每单位体积质量浓度;M分别是分子或微粒物质的分子量;L是Avagadro的编号;λ是光的波长;K*=2π2η0 2[(η-η0)/C]2/Lλ4是光常数。该表达式提供了建立Rayleigh比率(R)的基础,或当入射光的波长(λ)相当于或大于一些微粒物质的尺寸时受到微粒散射的入射光部分。因此,通过光散射现象的物理学和与基于无关物质的GPC校准曲线的非相对比较,R与诸如SFGCS、FHSC和其它铁-糖复合物中的AHS等分析物的分子量相关。不依赖于用于检测Rayleigh比率(R)的仪器检测器几何学,当入射光(IO)与微粒相互作用,一种关系成立
R=K*CM                            方程(3)与上文详述的流动洗脱液测定概念相一致,这里获得以GPC-RI为基础的系统的dn/dc值,对于每份,换言之“i”获得Rayleigh比率(R)的测定值Ri,和Rayleigh比率仅仅是每份浓度(Ci)、分子量(Mi)和光常数(K*)的乘积或,
Ri=K*CiMI                       方程(4)
光散射还使得能特征鉴定铁-糖复合物中AHS的结构一致性,其基础是一些前向角θ的散射光和在其补角180-θ(Iθ/I180-θ)的散射光之间的不对称比率。在所有可能的光散射角中,约45°和135°知道指导性参考点的作用。当建立了Iθ/I180-θ(纵坐标)对L/λ(横坐标)的图时,球形、杆形和随机盘绕的结构不对称性不难通过参考Zapsalis和Beck,1985,535页的方法测定。
如果AHS是基本分离的,例如上述的级分1,它可(a)批量生产获得或(b)以小的分析量获得,通常小的分析量见于液相层析洗脱液流中。在两种情况下,LLS方法提供了用于在该类药物中建立铁-糖复合物的常规参考标准品的优选分析方法。
使用本公开讲授的方法生产纯化的AHS或铁-糖复合物的能力,使之可以全面地分析和特征鉴定,包括确定其胶体和分子特性。用于AHS,具体是SFGCS和FHSC的适合的分析和特征鉴定方法包括紫外(UV)分光光度术、可见光(VIS)分光光度术和联合的UV-VIS分光光度术,包括光电二极管阵列(PDA)方法、红外光谱学(IR)、电子自旋共振(ESR)、脉冲极谱法、能量分散X-射线分析(EDS)、圆二色性(CD)和旋光色散(ORD)、荧光分光光度术、旋光测定、热分解和热分解质谱分析、核磁共振分光术、差示扫描热量测定(DSC)、液相色谱结合质谱分析(LG-GC)、基质辅助的激光解吸/电离质谱测定(MALDI-MS)技术,分析使用放射性同位素包括放射性铁、补血物质的抗体、毛细管电泳和诱导-偶联的等离子体光谱测定、原子吸收分析、电化学分析,以及特异性pH贮藏和稳定性研究和含糖类产品AHS的靶向糖苷-降解分析。在MALDI-MS中,激光用于电离大分子分析物并释放样品基质中的离子进入真空系统。该方法结合质谱分析用于测定多种大分子的质量。
另外,分离AHS成为至少两个部分,级分1(高Aw部分),和级分2(低Aw组分)的能力,还允许对浓缩于级分2中的赋形剂作独立分析。有差别的赋形剂指纹可用于特征鉴定AHS并用于产品鉴定和监测质量控制及保险。典型的或期望的赋形剂的产生和验证支持生产的标准化和鉴控。这改善了给予补血剂用于临床有利于患者的可能性。因为赋形剂与典型商品化肠胃外给药组合物总固体的75%以上,赋形剂的验证和分析可能是一件重要的事情。而且,因为已知加热处理糖类会产生可鉴定识别的化学标记,反映它们的加工历程,这些以及补血剂生产过程中产生的剩余反应物和副产物(为了本发明的目的,所有这些物质通常都包括于术语“赋形剂”中)可用于监测和特征鉴定补血剂和生产它们的方法。
三价铁相互作用或存在于补血剂铁-糖复合物中至少有3种可能的表现形式。首先,优选的主要药剂,即AHS,表现为一种缔合胶体并且是所需的铁-糖递送载体。其次,高分子量聚集物可由AHS产生并且它们也可被检测。第三,铁可能与合成反应步骤的剩余糖类反应物和/或副产物形成复合物而存在。这种形式的铁可见于级分2中的亲水性赋形剂。监测肠胃外给药的组合物以及级分2的(a)铁含量,(b)糖类反应物的剩余量,和(c)热依赖性合成反应副产物的证据是特别优选的。监测这类分析物特别优选的方法包括使用附有折射指数(RI)测定的液和在线洗脱液流检测相色谱分析,使用至少一种如下方法:激光散射(LLS)、电化学检测(ECD)、光电二极管阵列(PDA)为基础的UV-VIS分光光度术、红外(IR)分光术和液相色谱结合质谱分析(LC-MS)、以及任选的,上述一种或多种分析和特征鉴定方法。而RI是一种允许定量测定赋形剂糖类的浓度敏感检测仪,EDC检测器能对含金属和不含金属的具有特征性电化学氧化-还原电势的化合物反应以及,基于PDA的UV-VIS分析除低分子量复合性物质外可对加热产生的糖类衍生物进行检测。
本发明的方法还包括特征鉴定AHS及其共存的赋形剂的方法。对使用上述聚合的层析柱预先制备的含有AHS的级分1的样品使用HPLC,与HPLC洗脱液水流RI和LLS双重检测器相连,产生的结果描述于图1中。该图显示了存在于级分1中AHS(它不含赋形剂)的分离和纯化的层析特征。这种HPLC洗脱液特征对于生产含有AHS的补血剂是优选的结果,例如,一个产品以密封的玻璃安瓿中释放。图2描述了从提供级分1的同一样品中得到的级分2中4种赋形剂的层析特征。在这一实验中,将级分1的少量AHS有目的地加入级分2中,这样可观察到赋形剂对于AHS的相对位置。在图2和图3中值得注意的是RI检测器可更好地监测赋形剂,因为RI具有浓度敏感特性而LLS检测器是质量敏感的并对AHS的反应比率对赋形剂碳水化合物好。这些结果清晰地显示于图2中,其中加入了痕量的纯化AHS作为内部基准用于赋形剂洗脱过程的相对测定。在这种情况下RI没有感觉到任何纯化的AHS出现,而LLS的信号记录到作为一个分析物质AHS的存在。图3进一步描述了使用聚合的层析柱,LLS和RI-为基础的HPLC方法可用于从其赋形剂分析地分离出AHS。也就是,将AHS成分分离进入一个高Aw的流体动力体积中,而同时最初伴随AHS的共存的赋形剂基本上全部分离进入液体动力层析柱体积中,洗脱于AHS洗脱之后。这些结果与图1中的结果相一致,初级参考标准品预先被分离成为一个分开的实体,而图3显示了初始的多成分组合物(AHS和赋形剂)的分离结果。这证实本发明的方法可用于监测补血剂组合物如那些商品化生产的含有AHS和赋形剂的组合物。
可使用至少装配有LLS作为一种监测器模式的HPLC分析来监测铁糖复合物中AHS的不稳定和老化以及生产的变化性等状。另外,LLS-为基础的HPLC与一种浓度敏感检测器(如RI)连接,可用于监测AHS的标称层析峰特征中的结构性变化。这种变化可在图4中的层析图案中看到,特别是当与图1初级参考标准品或图3分离的混合物产生的变化作比较时类似的,图5显示了在另一个生产商的补血剂产品中存在一个改变的AHS峰。应注意不同的检测器可提供不同的信息,例如,LLS-层析检测器和浓度敏感的RI检测器。浓度敏感的RI-检测器能感觉和记录分析物浓度而不是它的质量,质量是由LLS-检测器独立记录的。这样,LLS-为基础的检测器可感觉到由于AHS的复合或交联而形成的质量增加的物质,它洗脱在AHS初级参考标准品之前。如图1所描述由于AHS是所需要的补血物质,而图4和图5中显示的物质代表甚至更高的分子量的副产物,该副产物被认为是由AHS产生。此新峰的出现是优选的AHS的定量消费而致。
本发明的方法可用于监测含AHS补血剂的贮藏稳定性。与大多数有机分子相似,AHS是遭遇结构性不稳定,因此它可降解或转化(即使在用于补血剂的密封的玻璃递送安瓿中)产生新的物质。AHS的这种结构性转化是依赖于时间的,也可为温度所促进。随时间的变化AHS结构转化的证据在一系列的LLS和RI-为基础的HPLC图谱中是明显的,该图谱是糖铁复合物生产后,在室温黑暗环境中于密封的玻璃递送安瓿中贮存6,12,22和25个月的监测图谱。这些产物有关的层析图谱分别对应于图6、7、8和9。当比较这些图中不对称的AHS峰与优选的和图1中AHS显示的对称的主要参考标准峰时,结构变化的证据是显然的。AHS降解显示的并由LLS检测到的新的实体,在主要参考标准或AHS之前从层析柱洗脱,这也可在图中看到。此新的实体具有非常致密的高分子量结构、概念上类似于“BBot”的特性。根据采用ASTRA-品牌软件和LLS设备通过处理光散射数据产生的Debye图可确定这些特征,参考前面所述(Wyatt Technology Corp.,SantaBarbara,CA),和1993 Analytica Chimica Acta杂志参考资料所描述的方法和计算,也参考上文。Debye图使我们得到了特异性LLS数据,该数据与均方根(rms)或回转半径(Rg)测定值结合,使得能测定分子种类或胶体的大小。对于图6-9,表示微粒直径大小rms-值给出一个等于或大于20nm的平均值。图1中AHS层析特征相应的rms-值小于或等于10nm;恰好低于LLS的实际测定限度。因此,本发明的方法可用于监测含有AHS补血剂组合物的质量和贮藏稳定性。
可监控商品化生产补血剂AHS和赋形剂的生产的过程;在生产结束时,如包装时;和生产后,如该产品被贮存。类似的,对赋形剂分离后的含AHS的铁-糖复合物组合物,这种组合物的水性组合物形式,或冻干干燥后,也可以相同的方式进行监控。对含AHS的铁-糖复合物的监测,不仅在生产过程中,而且在生产后的贮存期,例如大约1周后,中等贮存期在生产后约6个月的到长至约5年或更长的时间;延长贮存可大约1年到约5年;或大约1年到约3年。在每一个例子中,可通过其特性与主要参考标准的比较来监控AHS,作比较的特性包括上述各种分析特性,如使用HPLC联合LLS和RI得到的层析特征。
如上所述,由于最初存在的极高分子量的AHS的降解或改变产生了较小的LLS-可检测的峰,在图6-9中鉴定为AHS聚集峰(AHSAP)。根据光散射,导致这一特征性AHSAP的该物质分子量范围大约350,000到约3,000,000道尔顿或更多,但是也可用超速离心和其它方法确定该物质的高分子量。据认为AHSAP与AHS合成或生产过程中正常产生的赋形剂无关。而是AHSAP出现与一种老化的现象有关,但它也可能是显著背离优选生产条件的结果。本发明的方法可用于鉴定肠胃外给药的补血产物中AHSAP的数量耐受水平。可钭铁-糖复合物生产(AHSAPTAM)后任何时间发生和检测到的AHSAP,与暴露于确定条件的补血剂贮藏后检测到的AHSAP总量HPLC信号(AHSAPTOTAL)进行比较。通过实施例可知,贮藏期可包括任何方便的时间期限,例如约6个月到约10年或更长;或者约1年到约8年;或者约1-5年。例如,如果采用5年期限,在第五年时AHSAP5yr TOTAL将提供一种基础以确定补血剂释放后(通过其特征的测定)可接受的降解或改变的最大限度。换言之,5年过去后,AHS可能已衰变为药物学无用的铁聚集体,并且其残余成分与用于肠胃外使用的最初投放市场的铁-糖复合物的实施例明显不同。因此,定量测定任何时间的AHSAPTAM直到AHSAP5yr TOTAL,表达为发生率,[AHSAPTAM]/[AHSAP5yr TOTAL],可提供一个时间依赖性稳定性比值或指数,用于测量补血剂的质量和补血剂产品中保持完整的AHS的实际百分比率组成。目前没有这类标准化方法来定量说明铁糖复合物的老化和降解,一旦它们投放进入市场。应当理解该发生率不仅限于5年时间间隔,而是上文提及的,可采用所选择的任何便利的时间间隔。它可用于测定确定条件下铁-糖复合物的老化和稳定性,例如,当与铁而不是铁-糖复合物,例如游离的或未结合的铁或铁聚集体相比较时,50%的铁-糖复合物保持了生产时或投放进入市场时它的最初形式,因此可以测定铁-糖复合物的半衰期。当[AHSAPTAM]/[AHSAP5yr TOTAL]比值接近约0.5时,该0.5的比值可作为药物动力学指数和保证确保制品具有最初投放市场时,完整的铁-糖复合物的50%量。虽然这里用于定量测量补血剂贮存期的基础引用了含AHS的铁络合物残存量50%值,但高于50%的实用质量标准更需要;作为实际应用,大约0.5到约0.98;较佳为约0.75到约0.95;更佳为约0.80到约0.99;例如,任何介于约0.5到小于或等于约1.0的单一值(并且相应的,对于铁而不是非铁-糖复合物,AHS,该值从0.02到小于约0.5;大约0.05到约0.25;和大约0.01到约0.20;例如,任何从等于或大于约0到小于或等于约0.5的单一值)可由标准设定机构或生产商建立。这种建立的[AHSAPTAM]/[AHSAP5yr TOTAL]比值对于指导、保证或标准化这种补血剂的临床功效、性能和安全性特别有用。在本发明之前,通过使用通常应用于药物的标准品来指定铁-糖复合物的质量控制标准品,尚没有物质基础。如本文所描述,HPLC层析方法,优选包括LLS和RI-为基础的检测器的使用使这种指标得以实施。而且,分离存在于这些铁-复合物中的AHS的分离能力,加强了该方法的实际应用。
由于被称做铁-糖复合物的主要参考标准的AHS,在合成或生产后马上可能开始降解,它也可用于建立次要参考标准品。在实际应用中,次要参考标准品是基于补血活性物质衍生的铁聚集体的相对产生量与在设定条件下随着时间可能由补血活性物质释放的铁聚集体的总量作比较。校正铁聚集体的测定数据以建立这种补血活性物质完整性和稳定性的基准,因为可检测的铁聚集体的水平是消耗初级参考标准品形成的。铁-糖复合物生产后或商品投放后的[AHSAPTAM]/[AHSAP5yr TOTAL]比值对时间作图,提供了产品贮藏稳定性的指标。达到任意的或性能相关的比值,如0.5所需要的时间,基于[AHSAPTAM]/[AHSAP5yr TOTAL]的HPLC信号系数,可能是特别有用的,虽然可选择任一比值作为系数以确保补血活性物质产品的质量。不论选择怎样的比值作为最低限度的可接受的标准以监测临床功效,基于应用历史的功用和安全性将为次级参考标准品设定组成将标准。可制备这样的主要参考标准和次要参考标准品作为实用的分析标准品用于实验室内部和实验室之间的监控或生产行为的监控,以及作为产品质量指标和产品标准化的工具。
包含初级参考标准品的分离的含AHS组合物级分1,可将其干燥用于延期贮存和重建用于肠胃外使用和进一步的研究。
为了改进分析性特征鉴定的目的而干燥和/或重建的AHS可被贮存,例如,为了建立更加明确的化学标准,以及保存AHS样品用于将来的参考。分离和冻干的AHS的贮存是重要的因为铁-糖复合物合成后易于不稳定并分解,特别是当这种复合物存在于稀释液或液体特别是水性载体中时。相反,干燥的AHS可贮存一段长时间,较佳的在没有湿度的环境中,包括密封的容器中。另外,当需要使用时,干燥而稳定的复合物可方便地运输和重建,因此进一步延长其稳定性直到使用前。例如,干燥的AHS可密封在防潮的容器中如金属箔袋或玻璃容器中,和贮存于环境温度(约20℃到约25℃)或低于环境温度一段长时间。例如,生产后立即贮存干燥的复合物,例如大约1周,以及生产后约6个月的中度贮存期到长达约5年或更长的时间;延长贮存可大约1年到约5年;或大约1年到约3年。在这种生产后贮藏的过程中,可通过重建的样品与初级参考标准品的分析性特性(如使用HPLC结合LLS和RI得到的层析特征)的比较,监测AHS的稳定性。
分离的AHS(级分1),当最初制成时或在制成后任何具体的时间,可将其冻干和重建以易于贮存和运输以及用于进一步的研究。作为冻干的一个先决条件,需要如前所述,宜将作为铁-糖复合物存在的铁-递送载体或AHS,从其共存的亲水性或其它赋形剂分离。这些赋形剂包括过量的合成反应物、反应副产物、多余的葡聚糖、聚葡聚糖、糖内酯、降解的副产物和其它物质。在一个较佳的实施例中,AHS包括级分1被分离成主要参考标准物质形式。由于从共存的亲水性物质分离出AHS,其中存在AHS的组分或组合物的Aw值提高;换言之,含AHS组分的Aw值接近1.0。
冻干技术在食品加工工业中是熟知的并也用于药物的干燥。该技术通常应用于干燥潮湿的组合物,虽然干燥单独或混有水的分散或溶解于其它的稀释液或溶液中的物质或溶质是可行的,它们是易于冻干的。通常,将组合物冷冻到明显低于0℃的温度并受经受低的绝对压力,换言之,高真空环境。小心加热以使冰生华。该过程用于保护热敏物质不受热的破坏以及防止干燥过程中多孔材料的收缩,这样它们可以快速而充分地复水。本发明提供了用于分离和冻干或冻干浓缩用作肠胃外铁递送载体而生产的补血活性物质的方法。
在冻干过程中,存在于冻结组合物中的冰之间的不平衡变化状态称为产物冰,和系统压力以及温度条件。水蒸气从产物冰的分界面移去仅发生在若该不平衡状态存在和产物冰比该系统其它部分处于更高的能量水平时。设计的冻干设备应提供用于给定产物的影响和保持较佳的温度和压力差的一组控制条件,从而使产物在最短的时间内干燥。
通过最大限度的加热(可加热产品而不会导致固体变成液体),确定不平衡的限度(称做融化-反馈)。由于产品干燥从最接近于最低压力区域的表面开始,即使在冻干室压力低时也可发生这种不平衡,这个表面被称做冰分界面。该分界面上待干燥的固体组合物或微粒的排列,对蒸气从下面释放产生阻力,因此提高了生产压力和温度。为了避免融化-反馈,施加于产品的热能应密切接近,较佳地不超过蒸气离开产品的速率。影响该方法的另一个因素是施加于产物冰的热能的速度(和通过移去蒸气带走热能的速度),蒸气通过冷凝器冷却系统除去。通过保持低的冷凝温度,水蒸气变成冰粒被捕获并有效地从系统中除去,因此减少和简化了真空抽吸的需要。冻干室中的空气和其它不能冷凝的分子,以及位于产物冰和冷凝器之间的机械性障碍,对蒸气向冷凝器的移动提供了额外的阻力。
通常认为4种条件对冻干是必须的。这些加工条件如下:(1)将产品在低于其低共溶点或玻璃转变温度下冻结成固体;(2)提供能够达到比冰分界面温度低约20℃的冷凝表面,通常低于约-40℃;(3)真空系统能够抽真空达到5到约65毫米汞柱的绝对压力(约0.5到约10Pa;较佳的1到约8Pa);和,(4)将热源输入到产品中,控制在约-60℃到约+65℃,较佳约-40℃到约+65℃;更佳约-30℃到约+55℃;最佳约-25℃到约+25℃;通常使用约20℃的温度提供驱使水从固体转变为气体状态所需的热量(即,汽化热)。设计用于满足这四个条件的仪器的物理排列有很大不同,包括单个烧瓶冷冻干燥器和批量处理冷冻干燥装置。当需要精确控制冻干过程时冻干加工通常以批为基础在冻干室中进行,例如在化学和制药工业中那样。这使操作者能更加精确地控制产品升华过程中发生的事情。适当的仪器描述见,例如,U.S.6,122,836(转让给Virtis Division of S.P.Industries,Inc.,N.Y.)和本文引用的参考文献,以及Zapsalis和Beck,“食品化学和营养生化”(“Food Chemistry and NutritionalBiochemistry”),1985,第1章,23-26页(本发明在允许的范围将其全部引用作为参考)。其它适合的商业仪器和加工条件详细描述见题目为“冻干”(Freeze Drying)的章节,van Nostrand’s Scientific Encyclopedia,第8版,1338-1342页,1995(本发明在允许的范围引用作为参考)。
冻干加工的效果部分由水的三点曲线所显示,其中在温度低于0℃、压力小于4.58Torr(610.5帕斯卡)时,冰形式的固体水直接转化为气相水。有效冻干可在约10毫米到约200毫米汞柱;较佳约40到100毫米;更佳约40到80毫米的压力(空真)下进行,通常使用的压力约为60毫米除去。以(a)存在于水合物理基质中的冰或(b)冰冻单纯水溶液产生的冰存在的水分子,理想地得到一种不含水的干燥物理基质剩余物或一些所需的不含水的溶质剩余物。然而,其中存在于冰系统中的亲水性溶质、胶体、混悬物或分散的物质,如糖类赋形剂,随着冰的冻干加工它们可在冰结构中浓缩,并且溶剂和稀释剂水的体积下降。由于随着冻干加工这些物质变得更浓,这逐渐降低了结冻水系统的冰冻温度。随着该状况的继续,溶质与水相互作用的综合特性也可能提高超过共熔点,导致或引起融化-反馈现象。这与本发明的较佳的冻干方法相反,在本发明的方法中冰伴随着需要的溶质AHS保存于凝固状态,基本上不会受到含有难以去除的水的亲水性溶质所破坏,直到基本上所有的与AHS结合的水通过升华除去。
完成了优选的AHS的冻干加工后,作为其有效部分得到了高Aw组分(级分1)其含有最初存在于样品中的基本上全部的铁-糖复合物,这有利于它在平板上、容器壁或某些其它三维支架(对冻结组分保证有高的表面积与体积比)上快速形成冻结壳。冻结壳的出现越有效,冻干产品的质量越好。通常在约-160℃到约-10℃的温度下进行冰冻;较佳约-80℃到约-20℃;例如约-60℃。当AHS存在于冰结的组合物中时,其中水显示的Aw值接近1.0、压力低于约4.58Torr(610.5Pa)如所述这种导致水蒸气压力和温度增加的条件,可能导致的水蒸气压力增加和有效的升华。通过保持冻结的AHS周围的压力低于剩余的冰表面上的蒸汽压力,从冰除去水,用真空泵除去水蒸气并在冷却的表面凝缩,表面温度保持为约-120℃到约-25℃;较佳的约-80℃到约-50℃;通常为-60℃。特别是,预先分离的AHS的高Aw值有利于整个冻结产品升华前沿的迁移率。当AHS或铁-糖复合物不除去赋形剂特别是亲水性赋形剂时,冻干过程中AHS易遭受融化-反馈。换言之,亲水性物质的存在,导致水被AHS组合物中这种亲水性物质充分地结合或保留。如果使用较高的温度增加蒸气压以努力除去这种结合水,这还可能产生引起冰相溶解的不良结果,从而破坏了冻干。因此,宜在冻干前从AHS除去或分离所有的或基本上所有的亲水性赋形剂:较佳除去95%以上的最初存在的赋形剂;更佳的除去约98%;;更更佳的除去约99%;最佳除去约99.9%以上;例如,冻干前将AHS与亲水性赋形剂分离至这些赋形剂以痕量存在的程度。
为了本发明的目的,干燥的AHS剩余物含有药学上有用的铁-糖复合物。因此,分离和干燥的AHS适用于进一步的分析研究,或任选地用于重建,以满足其它研究分析和药物用途。本发明的方法通常适用于干燥AHS,将AHS中的赋形剂基本上除去,即除去约85%到至少约99%;较佳的除去约90%到至少约97%;最佳的除去约92%到至少约95%的水。应该理解最初存在于分离的AHS中的少量水可结合或强有力地结合于AHS,试图除去这些结合水可能引起降解AHS的不必要的危险。冻干后和重建的AHS样品可用于LLS和RI为基础的HPLC分析,见图10说明。该图显示的层析特征基本上与图1中的特征一致,图1中其用作初级参考标准品。而且,图1和图10中描述的分析物与图3中见到的保留有赋形剂的AHS基本上相同。
一种具有HPLC图谱的补血剂材料,该材料与图1或图10中的初级参考标准品不同的,是一种在具有罕见形态的冻干产品中还显示AHSAP的证据的补血剂。当在HPLC研究的过程中观察到AHSAP作为AHS的一部分存在时,冻干的AHS经100倍放大和更大放大的显微镜外观可能直观地描述为灯芯绒型(corduroy-type)结构。它均匀的显示三价铁的红-棕色的平行带或条痕,其间隙为窄的碳水化合物平板的透明带所填充。该三价铁红棕色的平行带具有独特的圆柱形状、相互平行、直径至少是长的平面性透明碳水化合物平板的显示厚度的2倍,这种平板反复填充于它们之间。当层析图谱的表现如同图4-9中所见,该观察到的显微镜形式具有结构分析的重要性,与HPLC光散射数据相符。当所需的新鲜制备的AHS符合铁-糖复合物的初级参考标准时,其冻干产物的形态特征性不同在于缺少圆柱形结构。
冻干产品在重建用于分析或应用前,其附腐可保存于真空或任何惰性气体中,包括,例如氮、氩和氦(以及不与冻干产物发生反应的任何气体)中。并且,因为单独的冻干加工不损害铁-糖复合物的结构,使用该方法对于保存这些补血制剂不同时间是有价值的,使得当进行冻干时在给定的时间点可以文件记录补血剂物质的存在。这提供了一种用于贮存和证明产品生产过程和质量的方法。在其它情况下,冻干可特异性地用于稳定和贮存这些补血剂组合物的主要和/或次要参考标准品。并且,适当地制备和保存的冻干AHS可安全地贮存直到需要时,几乎没有产品明显降解的风险。而且,这种形式的产品可便利地运输到地理位置遥远的地区和便于贮存直至需要,在需要时重建补血剂用于肠胃外使用不难完成。例如,根据本发明制备的冻干产品可贮存在密封的玻璃或适当保护的金属容器中,较佳地顶部复盖以基本不含湿气的惰性气体。或者,这种产品可以适合重建为一个肠胃外剂量的数量密封于金属箔囊中。制备铁-糖复合物以生产肠胃外给药的补血剂复合物用于递送铁给需要的人或动物。这些铁-糖复合物的生产通常以铁的形式,可肠胃外或温和地给予,以在需要的动物中,特别是人类中促进治疗许多临床疾病所需的造血机制。
术语“约”当用作一个变量的修饰语,或结合一个变量,其目的是表达本文公开的数字和范围是灵活的,本领域熟练的技术人员实施本发明使用温度、浓度、含量、碳的数目、特性如分子量、粘度、溶解度等,它们在范围之外或不同于单一值将得到所需的结果,也就是说,补血铁-糖复合物制品适合于冻干,从而产生高度纯化的补血铁-糖复合物以及其使用方法。而且,当表达一个值的范围,应理解,除非另外说明,本发明计划使用的其它范围包含在最广泛的范围中。
实施例
为了本发明的目的,涉及未干燥的物质或组合物中的水含量,换言之,在干燥前,以百分比给出未干燥物质或组合物的总重量。干燥物质或组合物的水含量以百分比只给出干燥物质的总重,除外所有水分。
以下是制备样品中使用的低压凝胶渗透层析的步骤,其实验结果见图1,2和10,包括制备纯化的、基本上不含赋形剂的AHS。用于AHS制备的低压凝胶渗透层析(GPC)的具体应用,采用显示分子量排阻特征大于约5,000和较佳的大于约1,500道尔顿的交联聚葡聚糖或葡聚糖。GPS的固定相是“Sephadex G-10”(Amersham-Pharmacia Biotech.,Piscataway,NJ)。一个溶剂贮罐提供HPLC级水的流动相,通过重力或流量计流入装有固定相葡聚糖的GPC柱。该柱由玻璃制成,具有2.0cm的直径和25cm的长度。根据生产商的建议制备固定相,包括葡聚糖的水合和使用前真空脱气。400ml补血剂溶液样品,包括铁-糖复合物,例如,当生产者将样品从密封的玻璃安瓿中取出后,灌注到GPC柱的顶端并使之渗透进入固定相。一旦高度着色的补血剂溶液渗透进入固定相,将HPLC级水手工加入或以1-4ml/min泵入以确保它以清晰的色带洗脱通过此柱。当特征性着色的AHS从柱上洗脱时,随着测到430mm处最小的分光光度吸收值,即标志级分1洗脱结束。寻找级分1结束和随后的组分(本文称做级分2)开始的分离点的更精细分析方法,使用蒽酮反应(Dreywood,1946前面已引用)。可确定两组分之间的洗脱分界线,因为在分离过程的整个洗脱液流中产生糖醛的碳水化合物的最低浓度出现在AHS及其吸水性赋形剂之间。实际上,采集洗脱液流的100ml样品,与蒽酮试剂反应,记录620nm的吸光度。含AHS的红-棕着色级分1基本不含亲水性和高度吸水的赋形剂,该赋形剂先前在取出时与AHS共存。从柱上洗脱的余下的液体被认作级分2。
如上所述,例如从级分1得到AHS,或从直接取自临床应用的补血剂组合物的玻璃安瓿的样品,或者从级分1的浓缩液制备的样品,包括冻干用途的重建组合物得到AHS,可通过使用HPLC-为基础的折射指数(RI)和激光散射(LLS)分析进行进一步的分析。具体说,该方法使用Waters 590泵(Waters Corporation,Milford MA)将水移动相加到7.8mm直径×30cm长的GMPWXL柱中(TosohBiosep,Montgomeryville,PA)。层析柱内载体材料由有机玻璃骨架组成,除去13微米直径大小的颗粒的聚合物珠,具有低于约100埃到约2000埃范围的各种大小孔径。层析柱洗脱液流由Wyatt miniDawn多角度光散射检测器联合Opeilab DSP干涉测量的折射仪监测(二者都购自Wyatt Technology Inc.,Santa Barbara,CA)。操纵温度将柱加热器和折射仪保持在35℃。水移动相包括200ppm叠氮钠,pH调整到6.0并在使用前进行0.02微米真空过滤和沸腾的氦喷雾。将该移动水相以1.0mL/min的流速、150磅/平方英寸的压力加入到系统中。用于测试的样品的制备需要通过一个膜过滤器进行0.02微米过滤(例如“Anotop”过滤器,Whatman,Maidstone,英格兰)。如果是补血剂组合物、铁-糖复合物或其老化成分,为了除去较大的颗粒而不阻塞,需使用0.45微米的膜过滤。如果在注入HPLC系统前颗粒没有从分析物样品中除去,HPLC的分析能力将遭到严重地破坏。样品稀释到所需的2.5%(w/w)并将80-200毫升的样品液注入HPLC系统用于分析。对于多个样品的分析,使用“Water’sautosample”,717型(Milford,MA)有利于自动化。
RI和LLS检测与HPLC联合建立了分析物的绝对分子量,该分析物产生了层析峰以及平均平方根(rms)半径值也称做回转半径(Rg)。Rms值结合绝对分子量测定提供了对光散射物质如杆状、线圈状、球型或圆盘状的了解,。AHS的分子量和特异性铁-糖复合物的形状可用于各种监测目的。
用于本发明实施例的冻干方法如下:
上述鉴定的级分1作为冻干的起始物质。使用下文描述的方法,体积小至10mL或大至100mL并含有AHS的液体不难冻干,如果样品基本上不含倾向于降低水熵及其蒸气压的糖类物质。这些液体可装在任何可承受壳冰冻的物理压力的玻璃容器中,该方法用于促进AHS的全面脱水和浓缩。对于壳冰冻优选的液体体积对容器体积之比是大约1到5,但其它比例也是可行的。当含有基本上不含赋形剂的AHS液体引入容器后,该容器以约50转/分钟的速度在低温水浴中旋转。该水浴可混合干冰和丙酮制成,或者,可使用液氮,只要温度保持至少约为-50℃或更低。容器浸没和旋转使含AHS的液体冻结在容器的壁上。这增加了表面积与含AHS的液体体积之比,从而促进水的升华。采用这一步骤的其它方法和设备变化可得到相同或类似的结果。
将含水的壳-冰冻组合物的一个或多个容器放置于冻干机的架子上。仪器如“Virtis Unitop 600L”连接于“Freezemobile 12 ES”(Gardiner,NY)可用于这一目的。该系统中保持60毫米汞柱(7.5Pa)的真空并且冷凝器的温度保持在至少约-60℃或更冷。优选的冻干循环如下:最初容器架保持在-50℃的温度2小时;温度升到25℃应超过12小时;样品在25℃再浸泡24小时。较佳的干燥产品应贮存在干燥的贮存条件下,例如在干燥的惰性气体如氩或氮的条件下。干燥的AHS可用所需的液体进行重建,于是它可方便地进入溶液并不难通过上述0.02微米膜过滤。
使用RI和LLS检测作HPLC分析显示于以下使用铁-糖复合物的10个实施例中。从1到10的各个实施例的结果对应于图1到图10。补血剂样品1-4和6-10被鉴定为含有蔗糖的葡糖酸铁钠复合物(SFGCS)的铁-糖复合物,以Ferrlecit品牌名称销售(Rhone-Poulenc Rorer,Dagenham,Essex,England生产)。实施例5及其相应的图5是氢氧化铁蔗糖复合物(FHSC),以Venofer品牌名称销售(LuitpoldPharmaceuticals,Shirley,NY生产)。用于HPLC分析的样品取自新开启的保存于室温的玻璃安瓿。另外,样品6,7,8和9在生产投放产品后6,12,22和25个月后进行分析。本文中称这些时期为“投放市场后的时间”TAM,在实施例中对应于TAM#1、TAM#2、TAM#3和TAM#4。进行1-20倍稀释制备样品,取这些稀释液的200毫升样品使用上述HPLC方法进行分析。
实施例1的测试结果显示在图1中。该结果基于使用带有RI及LLS检测的HPLC,评价级分1洗脱液中分离的AHS级分1洗脱液采用制备型低压GPC获得,并从玻璃分装安瓿中得到铁-糖复合物的样品。LLS信号和RI信号的单一清晰层析图与AHS洗脱相一致,但是在纯化的材料中没有其它的赋形剂出现。
实施例2的结果显示在图2中。该结果是基于使用带有RI和LLS检测的HPLC,用于评价级分2洗脱液中分离的AHS,该级分2洗脱液采用制备型低压GPC和实施例1中的铁糖复合物而获得。从这两个结果可以清楚地看到赋形剂和AHS被分开或分离到不同的组分中。将实施例1级分1的15毫升AHS加入到级分2的洗脱液中作为内部标准品以鉴定相对于赋形剂洗脱位置AHS的洗脱位置出现在哪里。
实施例3的结果显示在图3中。该结果是基于使用带有RI和LLS检测的HPLC,应用于实施例1中的相同补血剂样品,以使具有其特征性AHS的级分1与通常在级分2中的赋形剂充分地分开。在单一层析图上,HPLC方法可鉴别补血剂组合物的各种铁-糖复合物成分。HPLC特别适用于快速分析试验,而低压层析特别适合于作为优选的AHS的制备方法。AHS的LLS信号与观察到的RI信号相符合。
实施例4的结果显示在图4中。该结果是基于使用优选的HPLC方法检测与初始的AHS的结构偏差。以其未降解的形式,AHS作为质量基准也以“主要参考标准”表示于这些图中。使用RI和LLS的HPLC对一种补血剂组合物进行分析,该组合物直接获自其递送安瓿并含有铁-糖复合物。图示在预期的或理想的AHS峰中有不一致性。注意到出现一个新的、可观察到的层析次级峰,毗邻于AHS的主要参考标准峰。这一特征表明铁聚集体质是AHS降解的结果。使用LLS检测,层析图鉴定到第二个峰为补血活性物质聚集峰(AHSAP)。特别值得注意单独使用RI检测观察不到这个峰。
实施例5的结果显示在图5中。该结果是基于安装了RI和LLS检测器的HPLC的使用。该图形也显示了AHS中的结构性变化,或含有FHSC的补血剂主要参考标准峰。该产品的样品包括安瓿上标记生产日期为1999年12月和失效期为2002年12月。在这一实施例中,AHSAP显示在AHS峰上有一肩峰,提示与实施例4研究的样品比较有不同程度的变化。而LLS和RI层析图通常是重叠的,只有LLS信号检测到肠胃外给药的补血剂中有铁聚集体的证据。如前面的各个实施例,用于这一研究的样品直接获自临床适用的密封玻璃安瓿。
实施例6-9。对于一种AHS,不难检测到HPLC为基础的RI和LLS的洗脱图和预期的层析图的偏差,这反映了背离优选的生产条件或由于老化和不稳定AHS的降解,尽管它密封在玻璃递送安瓿中。不稳定本身反映了通常体现为理想的AHS结构一个组分的铁的聚集。
虽然带有RI检测的HPLC没能检测到铁-糖复合物的改变,但LLS检测清楚地提供了这种产品不稳定的证据。说明了作为监测含铁-糖复合物的补血产品状态的方法,本发明所具有的优点,此方法中为了测到铁聚集体形成所显示的AHS降解证据,使用了HPLC联合RI和LLS检测器。观察到HPLC层析峰,为形成的铁聚集体,表示为AHSAP。铁-糖复合物的个别样品,特别是生产超过几个月的SFGCS,贮存在室温、无光并避免已知对产品的稳定性有压力的任何移动(尽管它们密封于玻璃安瓿中)。在室温、黑暗的条件下样品老化,并且生产后6、12、22和25个月,如所描述的,打开各个安瓿,用带有RI和LLS的HPLC分析含量。没有一个贮存产品的样品达到包装材料上标明的规定有效期。具有6个月的最短的TAM值的样品被称做TAM#1,具有25个月的最长的TAM值的样品称作TAM#A。将HPLC研究的结果应用于逐渐老化的补血剂的例子的范围显示于图6-9中。图6-9层析图中具有分析兴趣的关键区域是AHS特征出现的区域,因此只显示了与RI和LLS分析图有关的特异性洗脱范围。
把从TAM#1(图6)到TAM#A(图9)视为序列中的一组,显然这些样品的RI信号显示AHS分解和铁聚集对样品的老化没有什么影响。另一方面,伴有铁聚集的AHS不稳定证据通过AHSAP肩峰或次级峰明显可见,使用LLS在所有4个实施例中都检测到。
通过这些实施例,证明优选的HPLC为基础的RI和LLS方法提供了一种能力,来验证投放市场供肠胃道外给药适用的补血剂产品中AHS的存在或通常与其共存的赋形剂的存在。除此外,该方法提供了监测、以及研究和开发基于铁-糖复合物类型的补血剂的重要的能力。可以明白这一类补血剂易于不稳定,产生与优选的或正常的AHS结合的铁聚集体。除非使用至少带有LLS监测和RI监测的HPLC,产生的铁聚集体可能不被注意地进入这些补血剂中。
如上所述,当实施本发明优选的方法时,在样品注入HPLC前,应使它通过0.02微米的Anotop牌膜滤器进行常规过滤,以避免与样品有关的操作问题。在供研究的制品中,没有证据显示AHSAP出现的铁-糖样品可能不难过滤,但是时间较长的样品即使使用0.45微米的过滤器也非常难以过滤或根本不能过滤。已观察到根据具体的和优选的方法,用于HPLC研究的样品的制备型过滤很困难,这与出现最高水平的AHSAP相一致。测定的和定量以雾沫状夹带通过膜过滤器表面的铁聚集体可提供另一种(尽管是粗略的)评价补血剂分解程度的方法。然而,肠胃外给药前对补血剂应用这种过滤方法是不实际的,并且,过滤法对于尚未进展到可过滤的铁聚集体阶段的降解的AHS没有任何效果。当样品中产生大量的铁聚集体和必须进行补血剂分析时,为了HPLC仪器的性能和保养样品过滤是必须的。而且,应该注意到如果为了HPLC分析而制备AHS,导致铁聚集体残渣或其它颗粒物质以雾沫状夹带在膜过滤器上,过滤器上聚集的定量应与HPLC分析一起考虑作为产品衰变的补充指标。当补血剂中存在很少或没有可滤过的物质而且颗粒直径小于10nm时,HPLC方法作为监测补血剂质量的优选的方法更为精确。
实施例10的结果显示于图10中。该实施例涉及对由冻干状态重建的AHS应用HPLC为基础的RI和LLS分析的优选方法。虽然以前从未报道过从铁-糖复合物分离AHC,它被冻干和重建而不分解、降解或形成铁聚集体的能力是特别不确定的。根据制备基本上不含赋形剂的AHS的低压层析方法,将取自密封玻璃安瓿的起始为2.5mL的铁-糖复合物样品液,它SFGCS分离成级分1和级分2。将含有AHS的级分1如上所述冻干。冻干一周后用HPLC级水重建为起始的体积(2.5mL)。然后从2.5mL的重建溶液中取500微升稀释到20.0mL,并将200微升的稀释液如所述注入层析柱进行HPLC为基础的RI和LLS分析。得到的层析图显示于图10中。注意到LLS和RI信号不仅重叠,与图1中观察到的层析图一致,而且还没有如图6-9中观察到的任何铁聚集体形成或AHSAP的迹象。通过这个实施例,还显示带有RI和LLS检测的HPLC可用于监测冻干AHS的质量。
实施例11进行比较对未处理和处理的补血剂的冻干的反应。将铁-糖复合物的三个样品:生产的并含有AHS的SFGCS、蔗糖和剩余的赋形剂进行冻干。所有三个样品取自投放市场的不同玻璃安瓿的同一生产批次。使用的冻干方法与实施例10中应用于补血剂的相同,但与该实施例相反,在冻干过程中使AHS保留其赋形剂。试验的目的是观察由于亲水性赋形剂的存在最终冻干产品重量是否不一致,与缺乏这种亲水性赋形剂的同一冻干产物作比较。含赋形剂的干燥的补血剂的结果小结于表A中。
表A
    样品No.    样品重量(g)  除去的水(%)   冻干重量(g)
    1     10.414     77.3     2.73
    2     10.330     79.9     2.169
    3     9.481     78.2     2.070
    平均值±标准差     10.075±0.421     78.5±1.1     2.204±0.126
表达为初始样品重量的百分比表A中使用的来自同一来源的同批次补血剂的三个额外的样品获自不同的未开启安瓿并如上述在低压层析柱中进行处理。然后每个样品的的级分1(含有AHS,但没有结合的亲水性赋形剂,包括蔗糖)如上所述进行冻干,结果小结于表B中。
表B
    样品No.   样品重量(g)   除去的水(%)   冻干重量(g)
    1     9.500     93.50     0.613
    2     7.840     93.70     0.498
    3     3.200     91.47     0.273
    平均值±标准差     6.847±2.667     92.89±0.10     0.461±0.140
表达为初始样品重量的百分比试验结果清楚显示非常高的百分含量的水从样品中除去,该样品进行了层析柱分离和相同条件的冻干。
尽管描述本发明参考了具体的实施例,应理解这些实施例仅说明本发明的原理和应用。因此应理解对于说明的实施例可进行大量的改变并且在不背离如附加的权利要求所限定的本发明的精神和范围的情况下可设想其它的安排。

Claims (35)

1.一种纯化含有非葡聚糖铁-糖复合物和稀释剂的组合物的方法,所述复合物含有至少一种补血活性物质即AHS和至少一种赋形剂,所述铁-糖复合物适合于肠胃外给药,其特征在于,该方法包括将所述至少一种AHS与所述至少一种赋形剂充分分离;其中,
(A)所述复合物选自含有蔗糖的葡糖酸铁钠复合物和氢氧化铁-蔗糖复合物;并且,
(B)所述充分分离采用选自以下的方法:
(i)将所述组合物通过层析柱,将洗脱液分成不同的组分,其中,所述AHS的分子量大于5,000道尔顿
(ii)基于动电的膜分离技术,其中,所述AHS的分子量大于90,000道尔顿;或
(iii)方法(i)与方法(ii)组合。
2.如权利要求1所述的方法,其特征在于,所述至少一种赋形剂含有非-补血活性成分。
3.如权利要求2所述的方法,其特征在于,所述至少一种非-补血活性成分选自铁-糖复合物合成反应副产物、未反应的铁-糖复合物合成起始材料、铁-糖复合物降解副产物、残余的葡聚糖、聚葡聚糖、糖内酯、溶剂和稀释剂。
4.如权利要求1所述的方法,还包括冻干所述的至少一种补血活性物质。
5.如权利要求4所述的方法,其特征在于,所述稀释剂是水,冻干包括如下步骤:
(1)含有与所述至少一种赋形剂充分分离的至少一种所述AHS和稀释剂的组合物被冻至低于其低共熔点或低于其玻璃变迁温度的温度,因此形成冰并提供冰分界面温度;
(2)冰冷凝表面能够达到的温度比所提供的所述冰分界面温度至少低20℃;
(3)所述冻结的组合物存放于一个封闭的容器中,该容器中提供能够将绝对压力抽至0.5到10Pa的真空;以及
(4)所述冻结的组合物暴露于足以使存在的冻结水升华为蒸气并冻结在所述冰冷凝表面的热源。
6.如权利要求5所述的方法,其特征在于:
(1)含有所述补血活性物质和稀释剂的所述组合物在低于其低共熔点冻结;
(2)所述冰冷凝表面的温度低于-40℃;
(3)所述真空的绝对压力1Pa到8Pa;以及
(4)所述热源被控制在-60℃到+65℃。
7.如权利要求1所述的方法,其特征在于,所述层析柱选自高压液相层析柱和大小排阻层析柱,各个柱都含有固定相。
8.如权利要求7所述的方法,其特征在于,所述大小排阻层析柱中的固定相含有交联的葡聚糖。
9.如权利要求8所述的方法,其特征在于,除了所述至少一种补血活性物质外,所述组合物还含有高分子量的铁聚集体,且所述的分离还包括鉴定所述组合物的洗脱物组成图谱,所述洗脱物图谱包括至少含有所述铁聚集体的第一洗脱液,含有至少一种补血活性物质的所述铁-糖复合物的第二洗脱液以及含有低分子量赋形剂的第三洗脱液;和将所述第一和第三洗脱液与第二洗脱液分离。
10.如权利要求9所述的方法,其特征在于,所述洗脱组成图谱采用至少一种检测器来确定,该检测器选自激光散射检测器、紫外-可见光传导检测器、用于检测一种或多种确定波长的可见光检测器和折射指数检测器。
11.一种使用权利要求1或权利要求6所述方法生产具有改良的贮存稳定性的补血剂组合物的方法。
12.一种含有75wt%以上至少一种补血活性物质的非葡聚糖铁-糖复合物,所述铁-糖复合物适合于肠胃外给药,所述至少一种补血活性物质选自含有蔗糖的氢氧化铁复合物和含有蔗糖的葡糖酸铁钠复合物。
13.如权利要求12所述的复合物,其特征在于,赋形剂含量低于5%重量百分比。
14.如权利要求13所述的复合物,其特征在于,赋形剂含量低于2%重量百分比。
15.如权利要求12所述的复合物,还含有溶剂、稀释剂或所述溶剂和稀释剂混合物。
16.如权利要求15所述的复合物,其特征在于,所述液体包括水。
17.如权利要求16所述的复合物,它适用于肠胃外给药。
18.如权利要求12所述的复合物,所述补血活性物质的分子量至少为90,000道尔顿。
19.一种含有75%以上至少一种活性补血物质且脱水的贮存稳定的非葡聚糖铁-糖复合物,所述铁-糖复合物适合于肠胃外给药,所述至少一种补血活性物质选自含有蔗糖的氢氧化铁复合物和含有蔗糖的葡糖酸铁钠复合物。
20.如权利要求19所述的复合物,其特征在于,赋形剂含量低于5%重量百分比。
21.如权利要求20所述的复合物,其特征在于,赋形剂含量低于2%重量百分比。
22.如权利要求19所述的复合物,所述补血活性物质的分子量至少为90,000道尔顿。
23.一种将如权利要求19所述含有75%以上的活性补血物质且脱水的贮存稳定的非葡聚糖铁-糖复合物和水结合而制得的重建的补血复合物。
24.一种用于在监测生产的非葡聚糖铁-糖复合物产品的方法,所述产品含有至少一种补血活性物质即AHS,其特征在于,所述监测在选自如下的一个或多个时刻进行:(a)在所述产品的生产过程中;(b)所述产品生产过程完成时;和(c)所述产品生产后,所述方法包括(1)分析所述复合物中至少一种AHS以得到所述复合物的特征性分析性反应和(2)将所述至少一种AHS的分析性反应与对应于所述至少一种物质的标准品作比较;所述标准品由权利要求1所述方法纯化得到。
25.如权利要求24所述的方法,其特征在于,所述复合物生产后的所述时间是1周到5年。
26.如权利要求24所述的方法,其特征在于,所述分析性反应采用选自以下至少一种分析方法获得,所述方法包括光散射增强的液相色谱、紫外分光光度术、可见光分光光度术、联合的紫外和可见光分光光度术、红外光谱学、电子自旋共振、脉冲极谱法、能量分散X射线分析、圆二色性和旋光色散、荧光分光光度术、旋光测定、热分解质谱分析、核磁共振分光术、差示扫描热量测定、液相色谱质谱分析、基质辅助的激光解吸/电离质谱测定、毛细管电泳、诱导-偶联的等离子体光谱测定、原子吸收分析、电化学分析、使用包括放射性铁的放射性同位素的分析、使用抗补血物质的抗体的分析、通过0.02至0.45微米的多孔膜过滤器过滤后保留固体、连接光散射和质量敏感检测的高压液相色谱。
27.如权利要求26所述的方法,其特征在于,所述分析方法选自:使用光电二极管阵列的紫外分光光度术、使用光电二极管阵列的可见光分光光度术和使用光电二极管阵列的联合的紫外和可见光分光光度术。
28.如权利要求26或27所述的方法,其特征在于,所述分析方法是光散射增强液相色谱。
29.如权利要求24所述的方法,其特征在于,所述至少一种补血活性物质采用结合光散射分析的高压液相色谱或结合光散射分析和浓度敏感检测的高压液相色谱进行监测。
30.权利要求24所述的方法,还包括在获得所述分析性反应前首先分离所述的至少一种补血活性物质的步骤,所述至少一种补血活性物质选自含有蔗糖的葡糖酸铁钠复合物和氢氧化铁蔗糖复合物。
31.如权利要求24所述的方法,其特征在于,所述监测使用选自以下的至少一种方法进行:光散射分析结合浓度敏感检测、原子吸收、X-射线分析、电化学分析、电子自旋共振、质谱分析和超离心,所述监测能够显示铁聚集体的存在。
32.如权利要求31所述的方法,其特征在于,所述铁聚集体由铁而不是铁-糖复合物组成。
33.如权利要求32所述的方法,其特征在于,所述铁聚集体具有200,000到3,000,000道尔顿的平均分子量。
34.如权利要求31所述的方法,其特征在于,所述的监测用于计算铁而不是铁-糖复合物的产生比率,其中所述产生比率小于或等于0.5。
35.一种纯化含有非葡聚糖铁-糖复合物和稀释剂的组合物的方法,其特征在于,所述复合物含有至少一种补血活性物质和至少一种赋形剂,该方法包括:
(1)将所述至少一种补血活性物质与所述至少一种赋形剂充分分离;其中,
(A)所述复合物选自含有蔗糖的葡糖酸铁钠复合物和氢氧化铁-蔗糖复合物,并且,
(B)所述充分分离采用基于动电的膜分离技术,其中,所述AHS的分子量大于90,000道尔顿;
(2)冻干所述至少一种补血活性物质,所述补血活性物质适合于肠胃外给药。
CN018184006A 2000-11-02 2001-10-31 生产纯化的补血铁-糖复合物的方法及产品的生产 Expired - Fee Related CN1473265B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US24526900P 2000-11-02 2000-11-02
US60/245,269 2000-11-02
PCT/US2001/045205 WO2002056826A2 (en) 2000-11-02 2001-10-31 Method for producing purified hematinic iron-saccharidic complex and product produced

Publications (2)

Publication Number Publication Date
CN1473265A CN1473265A (zh) 2004-02-04
CN1473265B true CN1473265B (zh) 2011-10-12

Family

ID=22925992

Family Applications (1)

Application Number Title Priority Date Filing Date
CN018184006A Expired - Fee Related CN1473265B (zh) 2000-11-02 2001-10-31 生产纯化的补血铁-糖复合物的方法及产品的生产

Country Status (12)

Country Link
US (3) US6537820B2 (zh)
EP (2) EP2275075A3 (zh)
JP (2) JP4369120B2 (zh)
CN (1) CN1473265B (zh)
AU (1) AU2002246556B2 (zh)
BR (1) BR0115100A (zh)
CA (1) CA2426799A1 (zh)
MX (1) MXPA03003952A (zh)
PL (1) PL361980A1 (zh)
RU (1) RU2259197C2 (zh)
WO (1) WO2002056826A2 (zh)
ZA (1) ZA200303284B (zh)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002246556B2 (en) * 2000-11-02 2006-06-01 Chromaceutical Advanced Technologies, Inc Method for producing purified hematinic iron-saccharidic complex and product produced
US6929954B2 (en) * 2000-11-02 2005-08-16 Chromaceutical Advanced Technologies, Inc. Method for producing purified hematinic iron-saccharidic complex and product produced
US6693211B2 (en) 2002-05-15 2004-02-17 Geneva Pharmaceuticals, Inc. Chemical process
US7169359B2 (en) * 2002-08-26 2007-01-30 Luitpold Pharmaceuticals, Inc. Bioequivalence test for iron-containing formulations
DE10249552A1 (de) 2002-10-23 2004-05-13 Vifor (International) Ag Wasserlösliche Eisen-Kohlenhydrat-Komplexe, deren Herstellung und diese enthaltende Arzneimittel
US20040092735A1 (en) * 2002-11-08 2004-05-13 Orchid Chemicals & Pharmaceuticals Limited Process for the preparation of cefuroxime sodium
US20040161852A1 (en) * 2003-02-14 2004-08-19 Anderson Christopher G. Method of assaying an Fe-Sugar complex
US7964568B2 (en) * 2003-05-30 2011-06-21 Chromaceutical Advanced Technologies, Inc. Synthesis of high molecular weight iron-saccharidic complexes
US7179939B2 (en) * 2004-03-16 2007-02-20 Navinta Llc Sodium ferric gluconate complexes and method of manufacture thereof
AU2004317858B2 (en) * 2004-03-16 2011-04-21 Navinta, Llc Iron sucrose complexes and method of manufacture thereof
WO2005111052A1 (de) * 2004-05-17 2005-11-24 Cilag Ag Verfahren zur herstellung von eisen (iii) gluconatkomlex
WO2006017263A1 (en) 2004-07-12 2006-02-16 Taro Pharmaceutical Industries Ltd. Topical gel formulation comprising organophosphate insecticide and its preparation thereof
US8158139B2 (en) * 2004-07-12 2012-04-17 Taro Pharmaceuticals North America, Inc. Topical gel formulation comprising organophosphate insecticide and preparation thereof
US20060046964A1 (en) * 2004-09-02 2006-03-02 Andre Morneau Pharmaceutical formulations and methods
CN100528237C (zh) * 2005-04-26 2009-08-19 重庆医药工业研究院有限责任公司 多核的氢氧化铁-糖复合物的制备方法
US7560445B2 (en) * 2005-07-06 2009-07-14 Taro Pharmaceuticals North America, Inc. Process for preparing malathion for pharmaceutical use
US20080132465A1 (en) * 2006-12-05 2008-06-05 Vincent Windisch Apparatus and method for isolating iron components from serum
JP5568551B2 (ja) * 2008-05-23 2014-08-06 ホスピラ・インコーポレイテツド 包装済み鉄スクロース製品
EP2384361B1 (en) * 2009-01-30 2018-05-30 Ecolab INC. Development of an aluminum hydroxycarboxylate builder
US8202830B2 (en) 2009-01-30 2012-06-19 Ecolab Usa Inc. Development of an aluminum hydroxydicarboxylate builder
US8536106B2 (en) 2010-04-14 2013-09-17 Ecolab Usa Inc. Ferric hydroxycarboxylate as a builder
JP6109733B2 (ja) * 2011-03-22 2017-04-05 積水メディカル株式会社 液体クロマトグラフィー用カラム及びヘモグロビン類の分析方法
GB201304631D0 (en) * 2013-03-14 2013-05-01 Malvern Instr Ltd Monomer detection in protein separation
CN103626807B (zh) * 2013-11-20 2017-07-07 青岛国风药业股份有限公司 一种多糖铁复合物的制备方法及其质量检测方法
US20180231511A1 (en) * 2015-08-18 2018-08-16 Shimadzu Corporation Detector for liquid chromatography
US10258647B2 (en) 2015-09-01 2019-04-16 Particle Dynamics International, Llc Iron-polysaccharide complexes and methods for the preparation thereof
CN107545077A (zh) * 2016-06-23 2018-01-05 中国石油化工股份有限公司 判断二元液液互溶性的方法及装置
EP3608615A4 (en) * 2017-04-04 2021-01-20 Nitto Denko Corporation LYOPHILIZED BODY MANUFACTURING PROCESS AND ITS MANUFACTURING DEVICE
CN109959628B (zh) * 2019-04-29 2020-08-14 中南大学 一种基于极-光谱融合的锌溶液杂质离子浓度检测方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5624668A (en) * 1995-09-29 1997-04-29 Luitpold Pharmaceuticals, Inc. Iron dextran formulations
CN1257931A (zh) * 1998-12-18 2000-06-28 吴光耀 一种可用于人体补铁的铁蛋白及其制备方法和应用

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3275514A (en) 1960-04-12 1966-09-27 Paul D Saltman Process for introduction of metals into the mammalian system
US3367834A (en) 1965-05-04 1968-02-06 Dexter Martin Method and compositions for enhancing the utilization of iron by mammals
US3686397A (en) 1970-05-18 1972-08-22 Mueller Arthur Parenteral iron preparations
US3821192A (en) * 1971-08-18 1974-06-28 Central Pharmacal Co Process for preparing an iron-saccharide complex
SE359447B (zh) 1971-10-06 1973-09-03 Astra Laekemedel Ab
US4058621A (en) 1975-02-24 1977-11-15 Peter, Strong & Company, Inc. Iron complexes and foodstuffs containing them
GB1562913A (en) 1976-06-16 1980-03-19 Fisons Ltd Fractionating fluid mixtures of dextrans
US4180567A (en) 1977-09-02 1979-12-25 Pharmachem Corporation Iron preparations and methods of making and administering the same
US4226983A (en) 1977-09-29 1980-10-07 United Kingdom Atomic Energy Authority Preparation of metal complexes
US4370476A (en) 1979-07-17 1983-01-25 Usher Thomas C Dextran polycarboxylic acids, ferric hydroxide complexes
DE3422249A1 (de) 1984-06-15 1985-12-19 Pfeifer & Langen, 5000 Köln Wasserloesliches eisendextran und verfahren zu seiner herstellung
US5746999A (en) * 1984-11-23 1998-05-05 Schering Aktiengesellschaft Magnetic particles for diagnostic purposes
US5254474A (en) 1991-02-25 1993-10-19 The United States Of America As Represented By The Secretary Of The Army Method of assessing thermal processing of food using intrinsically-created compounds
US5837716A (en) * 1995-11-13 1998-11-17 Albany Medical College Analgesic heterocyclic compounds
DE19734293A1 (de) * 1997-08-08 1999-02-11 Boehringer Mannheim Gmbh Verwendung von pharmazeutischen Kombinationspräparaten enthaltend Erythropoietin und Eisenpräparate zur Behandlung von rheumatischen Erkrankungen
US6122836A (en) 1998-05-07 2000-09-26 S.P. Industries, Inc., The Virtis Division Freeze drying apparatus and method employing vapor flow monitoring and/or vacuum pressure control
AU2002246556B2 (en) * 2000-11-02 2006-06-01 Chromaceutical Advanced Technologies, Inc Method for producing purified hematinic iron-saccharidic complex and product produced
US7695736B2 (en) 2001-04-03 2010-04-13 Pfizer Inc. Reconstitutable parenteral composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5624668A (en) * 1995-09-29 1997-04-29 Luitpold Pharmaceuticals, Inc. Iron dextran formulations
CN1257931A (zh) * 1998-12-18 2000-06-28 吴光耀 一种可用于人体补铁的铁蛋白及其制备方法和应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
chebrolu P, Rao,et al ,.solution stability of iron-saccharide complexes.bioorganic and medicinal chemistry letters2 9.1992,2(9),997-1002.
chebrolu P, Rao,et al,.solution stability of iron-saccharide complexes.bioorganic and medicinal chemistry letters2 9.1992,2(9),997-1002. *
kuppuswamy geetha, et al,.transition-metal saccharide chemistry :synthesis,spectroscopy, electrochemistry and magneticsusceptibility studies of iron(III) complexes of mono-anddisacchatides.carbohydrate research 271.1995,(271),163-175.
kuppuswamy geetha, et al,.transition-metal saccharide chemistry :synthesis,spectroscopy, electrochemistry and magneticsusceptibility studies of iron(III) complexes of mono-anddisacchatides.carbohydrate research 271.1995,(271),163-175. *

Also Published As

Publication number Publication date
US6537820B2 (en) 2003-03-25
US6773924B2 (en) 2004-08-10
US20040220141A1 (en) 2004-11-04
BR0115100A (pt) 2003-09-30
MXPA03003952A (es) 2004-09-10
CN1473265A (zh) 2004-02-04
ZA200303284B (en) 2003-11-04
JP4369120B2 (ja) 2009-11-18
AU2002246556B2 (en) 2006-06-01
EP1330226A4 (en) 2005-11-23
RU2003116134A (ru) 2005-01-10
US20020076821A1 (en) 2002-06-20
RU2259197C2 (ru) 2005-08-27
PL361980A1 (en) 2004-10-18
EP2275075A2 (en) 2011-01-19
WO2002056826A3 (en) 2003-02-06
JP2004526132A (ja) 2004-08-26
JP2009137993A (ja) 2009-06-25
EP1330226A2 (en) 2003-07-30
EP2275075A3 (en) 2011-08-10
CA2426799A1 (en) 2002-07-25
WO2002056826A2 (en) 2002-07-25
US20030153086A1 (en) 2003-08-14
US6939715B2 (en) 2005-09-06

Similar Documents

Publication Publication Date Title
CN1473265B (zh) 生产纯化的补血铁-糖复合物的方法及产品的生产
AU2002246556A1 (en) Method for producing purified hematinic iron-saccharidic complex and product produced
US8460939B2 (en) Method for producing purified hematinic iron-saccharidic complex and product produced
WO2018107975A1 (zh) 一种右丙亚胺的分析方法
Mohamed et al. 2, 6-Dichloroquinone chlorimide and 7, 7, 8, 8-tetracyanoquinodimethane reagents for the spectrophotometric determination of salbutamol in pure and dosage forms
CN108279278B (zh) 一种分离黄酮类成分的方法及其应用
Numan et al. Utility of silver nanoparticles as coloring sensor for determination of levofloxacin in its pure form and pharmaceutical formulations using spectrophotometric technique
CN112336693A (zh) 一种快速控制和评价马昔腾坦片释放的方法
TWI479150B (zh) 用於檢測硫酸化寡糖之分析方法
Ruiz-Medina et al. A flow-through optosensing device with fluorimetric transduction for rapid and sensitive determination of dipyridamole in pharmaceuticals and human plasma
EP1719496A2 (en) Method for producing purified hematinic iron-saccharidic complex and product produced
Li Studies on the interaction of cefepime hydrochloride with bovine serum albumin by fluorescence, synchronous fluorescence, three-dimensional fluorescence and circular dichroism
Siddiqui et al. Synthesis of silver nanoparticle: a new analytical approach for the quantitative assessment of adrenaline
Rind et al. Spectrophotometric determination of tranexamic acid using vanillin
Kostarnoi et al. High-performance liquid chromatography in the analysis of multicomponent pharmaceutical preparations
Ando et al. Simple and sensitive HPLC method for determination of amrubicin and amrubicinol in human plasma: application to a clinical pharmacokinetic study
Phapale et al. Analysis of pazufloxacin mesilate in human plasma and urine by LC with fluorescence and UV detection, and its application to pharmacokinetic study
Elgendy Rapid HPLC Determination of Norfloxacin, Levofloxacin, and Moxifloxacin Alone or in a Mixture
Hajare et al. Adsorption and Partition Studies of Fluconzole
Ghaith et al. A High-Resolution and Rapid HPLC Method for Etamsylate Estimation from Human Plasma Escorted by The Application to a Pharmacokinetic Study
Li et al. Determination and Pharmacokinetics of a New Diorganotin (IV) Complex Dibutyldi (4-chlorobenzohydroxamato) tin (IV) in Rat Plasma by a High Performance Liquid Chromatographic Method
Nageswara Rao et al. Precolumn o-Phthalaldehyde-N-acetyl-L-cysteine.
Elgendy et al. Results in Chemistry
Costin et al. Contribution to the Development and Validation of a High Performance Liquid Chromatography by the UV Detection Method for Isoniazid and Omeprazole Determination

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20111012

Termination date: 20121031