CN1412322A - 承载高集成度cDNA微阵列的多孔硅衬底的制备方法 - Google Patents

承载高集成度cDNA微阵列的多孔硅衬底的制备方法 Download PDF

Info

Publication number
CN1412322A
CN1412322A CN 02145348 CN02145348A CN1412322A CN 1412322 A CN1412322 A CN 1412322A CN 02145348 CN02145348 CN 02145348 CN 02145348 A CN02145348 A CN 02145348A CN 1412322 A CN1412322 A CN 1412322A
Authority
CN
China
Prior art keywords
silicon chip
microarray
cdna
porous silicon
silicon substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 02145348
Other languages
English (en)
Other versions
CN1164768C (zh
Inventor
朱自强
朱建中
陈少强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East China Normal University
Donghua University
Original Assignee
East China Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East China Normal University filed Critical East China Normal University
Priority to CNB021453489A priority Critical patent/CN1164768C/zh
Publication of CN1412322A publication Critical patent/CN1412322A/zh
Application granted granted Critical
Publication of CN1164768C publication Critical patent/CN1164768C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

一种承载高集成度cDNA微阵列的多孔硅衬底的制备方法,属基因(DNA)芯片制备技术领域,制备步骤包括:多孔硅衬底的原料;形成区域阻挡层;阳极氧化形成多孔硅;继续阳极氧化;清洗干燥制得成品,用该法制备的多孔硅衬底有分子探针的固定效率高和承载cDNA芯片微阵列的阵列密度高的优点,特别适于用来制备承载高集成度cDNA微阵列的多孔硅衬底。

Description

承载高集成度cDNA微阵列的多孔硅衬底的制备方法
                     技术领域
本发明涉及一种承载高集成度cDNA微阵列的多孔硅衬底的制备方法,属基因(DNA)芯片制备技术领域。
                     背景技术
DNA芯片是近几年在国际的高科技领域内出现的一项重大成果。DNA芯片借助微电子、微电子机械系统(MEMS)技术,将生命科学研究中的许多不连续的分析过程,如样品制备、生化反应、分析检测等移植到芯片中来进行,在连续化和微型化的情况下快速和高效地获取大量诸如基因识别、基因突变、基因测序和基因活性之类的生命信息。
cDNA芯片是DNA芯片的一大分支。制备cDNA芯片的关键是制备承载cDNA微阵列的载体。背景技术采用机器把生物分子探针的液滴点制或喷制在经聚赖氨酸修饰的固相支持物如玻璃载波片,即载体上的方法制备cDNA微阵列。背景技术有以下不足之处:cDNA微阵列固定效率不高,影响到最终产品cDNA芯片的检测灵敏度;此外,机器点制或喷制生物分子探针的液滴时,液滴在表面张力的作用下,会在玻璃载波片上的液滴点滴处向四周扩张开去,使cDNA微阵列的密度达不到高的指标,影响到cDNA微阵列的高集成度。
                     发明内容
本发明要解决的技术问题是推出一种承载高集成度cDNA微阵列的多孔硅衬底的制备方法,该衬底相当于上述的固相支持物,即载体。
本发明通过采用以下的技术方案使上述问题得到解决。现结合附图详细说明本发明所用的技术方案。一种承载高集成度cDNA微阵列的多孔硅衬底的制备方法,其特征在于,制备步骤包括:
第一步  多孔硅衬底的原料
清洁的单面抛光硅片3;
第二步  形成区域阻挡层
在硅片3的抛光面上,用金属掩模或离子注入技术形成区域阻挡层,该阻挡层具有硅片3承载高集成度cDNA微阵列的微阵列单元图案,微阵列单元处为不受金属掩模保护或无离子注入的局部区域,微阵列单元呈正方形,边长介于200nm~500μm,相邻单元间隔介于200nm~500μm;
第三步  阳极氧化形成多孔硅
把经上步处理的硅片3置于阳极氧化槽1内,阳极氧化槽1内注有腐蚀液2。腐蚀液2的配方为HF∶H2O∶C2H5OH=1~2体积∶1体积∶2~4体积。其中HF为40%分析纯氢氟酸,H2O为去离子水,C2H5OH为分析纯无水乙醇,两铂电极4间接稳流电源5,稳流电源5输出电流的电流密度为1~30mAcm-2,硅片3的抛光面与稳流电源5的负极相对,阳极氧化时间为5~30分钟,硅片3上的微阵列单元处形成多孔硅;
第四步  继续阳极氧化
用含H2O2的去离子水氧化液取代腐蚀液2,微阵列单元氧化液的配方为H2O2∶H2O=1~10体积∶100体积,继续进行阳极氧化2~6分钟,然后用去离子水将硅片3清洗干净,110℃下烘干后冷却至室温;
第五步  清洗干燥制得成品
将经上步处理的硅片3置于1%的3-氨丙基三甲氧基硅烷95%丙酮溶液中浸泡1~5分钟,取出用丙酮洗涤3~15次,110℃下烘30分钟后自然冷却至室温,至此制得成品,即承载高集成度cDNA微阵列的多孔硅衬底。
本发明的突出效果在于,本发明制备的产品最终用来作承载高集成度cDNA微阵列的载体,由于多孔硅是一种具有量子海绵形貌的纳米晶体硅,比表面(约500m2/cm3)极大,吸附能力强,将生物分子探针的液滴用机器点制或喷制在多孔硅上,可提高分子探针的固定效率。由于每个微阵列单元吸液量大,导致检测灵敏度的提高,而且上述液滴不会从液滴点滴处向四周扩张,有助于使cDNA芯片微型化和提高cDNA芯片微阵列的阵列密度。
                     附图说明
图1是形成多孔硅的装置,其中1是阳极氧化槽,2是腐蚀液,3是硅片,4是铂电极和5是稳流电源。图2是多孔硅衬底表面的cDNA微阵列的微阵列单元多孔硅点阵图案,其中30是多孔硅的微阵列单元。
图3是图2在A-A’处的剖面图。
                   具体实施方式
实施例1
按以上所述的承载高集成度cDNA微阵列的多孔硅衬底的制备方法,其特征在于,
第一步  硅片3是p型或n型单面抛光硅片;
第二步  用标准的离子注入技术形成区域阻挡层:在硅片3的抛光面上涂一层几微米厚的负光刻胶,经标准光刻步骤后将已设计好的铬掩模板的图形,即cDNA微阵列图案转移至光刻胶上,cDNA微阵列单元区有光刻胶,单元间隔区无光刻胶,将已形成光刻胶图形的硅片3进行离子注入,注入强度为1.0×106dots以上,硅片3的电阻率高,注入强度低,电阻率低,注入强度高,注入结束后,将硅片3放入过氧化氢硫酸溶液煮沸,除去光刻胶,接着将硅片3清洗干净,干燥后放入管状炉进行退火,保护气体为氩气或氮气,如硅片3为p型,注入离子为p-3或H+,经p-3离子注入的硅片3,退火时温度为8001200℃,恒温2小时,经H+离子注入的硅片3,退火时温度为300600℃,恒温1小时,如硅片3为n型,注入离子为B5+,退火时温度为800~1200℃,恒温1~24小时,退火后自然冷却至室温,至此,硅片3表面已形成区域阻挡层,cDNA微阵列的微阵列单元区的硅片上无注入离子阻挡层,单元间隔区的硅片上有注入离子阻挡层;
第三步  如硅片3为p型,抛光面应向稳流电源5的负极,如硅片3为n型,抛光面应向稳流电源5的正极,并需要光照。
其余步骤与以上所述的制备方法同。
实施例2
按实施例1所述承载高集成度cDNA微阵列的多孔硅衬底的制备方法,其特征在于,
第二步  用离子束溅射或蒸发技术形成区域阻挡层:把硅片3放入离子束溅射仪或蒸发仪,将一层100nm~1μm厚的铂或金膜溅射或蒸发在硅片3的抛光面上,经标准光刻和腐蚀后,在铂或金膜上形成所需的cDNA微阵列的微阵列单元图案,在硅片3的抛光面上形成区域阻挡层,在微阵列单元处无铂或金膜的阻挡层,在微阵列单元间隔处有铂或金膜的阻挡层。
其余步骤与以上所述的制备方法同。
实施例3  按以上实施例1或实施例2所述的承载cDNA的多孔硅衬底的制备方法,其特征在于,
第一步  硅片3是p-100型单面抛光硅片;
第二步  微阵列单元的尺寸为250×250μm,相邻单元间隔为200μm;
第三步  稳流电源5输出电流的电流密度为5mAcm-2,阳极氧化时间为5分钟;
第四步  继续进行阳极氧化时间为3分钟;
第五步  将上述处理的硅片3浸泡2分钟,洗涤10次。
实施例4  按以上实施例1或实施例2或实施例3所述的承载cDNA的多孔硅衬底的制备方法,其特征在于,第二步微阵列单元大小尺寸可20×20μm见方,单元间隔可为20μm;第三步稳流电源5输出电流密度为10mAcm-2,阳极氧化时间为20分钟。其余步骤同实施例1或实施例2或实施例3。
实施例5  按以上实施例1或实施例2或实施例3所述的承载cDNA的多孔硅衬底的制备方法,其特征在于,第二步微阵列单元大小尺寸可为200×200nm见方,单元间隔可为200nm;第三步稳流电源5输出电流密度为20mAcm-2,阳极氧化时间为30分钟。其余步骤同实施例1或实施例2或实施例3。
实施例6  按以上实施例1或实施例2或实施例3所述的承载cDNA的多孔硅衬底的制备方法,其特征在于,第三步腐蚀液2的配方为HF∶H2O∶C2H5OH=2体积∶1体积∶2体积。其余步骤同实施例1或实施例2或实施例3。
实施例7  按以上实施例1或实施例2或实施例3所述的承载cDNA的多孔硅衬底的制备方法,其特征在于,第三步腐蚀液2的配方为HF∶H2O∶C2H5OH=1体积∶1体积∶2体积。其余步骤同实施例1或实施例2或实施例3。
实施例8  按以上实施例1或实施例2或实施例3所述的承载cDNA的多孔硅衬底的制备方法,其特征在于,第三步腐蚀液2的配方为HF∶H2O∶C2H5OH=1体积∶2体积∶4体积。其余步骤同实施例1或实施例2或实施例3。
本发明的方法特别适于用来制备承载高集成度cDNA微阵列的多孔硅衬底,该方法制备的产品特别适于用来制备高集成度cDNA芯片:将生物分子探针的液滴用机器点制或喷制在多孔硅微阵列单元上。

Claims (6)

1.一种承载高集成度cDNA微阵列的多孔硅衬底的制备方法,其特征在于,制备步骤包括:
第一步  多孔硅衬底的原料
清洁的单面抛光硅片3;
第二步  形成区域阻挡层
在硅片3的抛光面上,用金属掩模或离子注入技术形成区域阻挡层,该阻挡层具有硅片3承载高集成度cDNA微阵列的微阵列单元图案,微阵列单元处为不受金属掩模保护或无离子注入的局部区域,微阵列单元呈正方形,边长介于200nm~500μm,相邻单元间隔介于200nm~500μm;
第三步  阳极氧化形成多孔硅
把经上步处理的硅片3置于阳极氧化槽1内,阳极氧化槽1内注有腐蚀液2。腐蚀液2的配方为HF∶H2O∶C2H5OH=1~2体积∶1体积∶2~4体积。其中HF为40%分析纯氢氟酸,H2O为去离子水,C2H5OH为分析纯无水乙醇,两铂电极4间接稳流电源5,稳流电源5输出电流的电流密度为1~30mAcm-2,硅片3的抛光面与稳流电源5的负极相对,阳极氧化时间为5~30分钟,硅片3上的微阵列单元处形成多孔硅;
第四步  继续阳极氧化
用含H2O2的去离子水氧化液取代腐蚀液2,微阵列单元氧化液的配方为H2O2∶H2O=1~10体积∶100体积,继续进行阳极氧化2~6分钟,然后用去离子水将硅片3清洗干净,110℃下烘干后冷却至室温;
第五步  清洗干燥制得成品
将经上步处理的硅片3置于1%的3-氨丙基三甲氧基硅烷95%丙酮溶液中浸泡1~5分钟,取出用丙酮洗涤3~15次,110℃下烘30分钟后自然冷却至室温,至此制得成品,即承载高集成度cDNA微阵列的多孔硅衬底。
2.根据权利要求1所述的承载高集成度cDNA微阵列的多孔硅衬底的制备方法,其特征在于,
第一步  硅片3是p型或n型单面抛光硅片;
第二步  用标准的离子注入技术形成区域阻挡层:在硅片3的抛光面上涂一层几微米厚的负光刻胶,经标准光刻步骤后将已设计好的铬掩模板的图形,即cDNA微阵列图案转移至光刻胶上,cDNA微阵列单元区有光刻胶,单元间隔区无光刻胶,将已形成光刻胶图形的硅片3进行离子注入,注入强度为1.0×106dots以上,硅片3的电阻率高,注入强度低,电阻率低,注入强度高,注入结束后,将硅片3放入过氧化氢硫酸溶液煮沸,除去光刻胶,接着将硅片3清洗干净,干燥后放入管状炉进行退火,保护气体为氩气或氮气,如硅片3为p型,注入离子为p-3或H+,经p-3离子注入的硅片3,退火时温度为8001200℃,恒温2小时,经H+离子注入的硅片3,退火时温度为300600℃,恒温1小时,如硅片3为n型,注入离子为B5+,退火时温度为800~1200℃,恒温1~24小时,退火后自然冷却至室温,至此,硅片3表面已形成区域阻挡层,cDNA微阵列的微阵列单元区的硅片上无注入离子阻挡层,单元间隔区的硅片上有注入离子阻挡层;
第三步  如硅片3为p型,抛光面应向稳流电源5的负极,如硅片3为n型,抛光面应向稳流电源5的正极,并需要光照。
3.根据权利要求1或2所述承载高集成度cDNA微阵列的多孔硅衬底的制备方法,其特征在于,
第二步  用离子束溅射或蒸发技术形成区域阻挡层:把硅片3放入离子束溅射仪或蒸发仪,将一层100nm~1μm厚的铂或金膜溅射或蒸发在硅片3的抛光面上,经标准光刻和腐蚀后,在铂或金膜上形成所需的cDNA微阵列的微阵列单元图案,在硅片3的抛光面上形成区域阻挡层,在微阵列单元处无铂或金膜的阻挡层,在微阵列单元间隔处有铂或金膜的阻挡层。
4.根据权利要求1、2或3所述的承载cDNA的多孔硅衬底的制备方法,其特征在于,
第一步  硅片3是p-100型单面抛光硅片;
第二步  微阵列单元的尺寸为250×250μm,相邻单元间隔为200μm;
第三步  稳流电源5输出电流的电流密度为5mAcm-2,阳极氧化时间为5分钟;
第四步  继续进行阳极氧化时间为3分钟;
第五步  将上述处理的硅片3浸泡2分钟,洗涤10次。
5.根据权利要求1、2或3所述的承载cDNA的多孔硅衬底的制备方法,其特征在于,第二步微阵列单元大小尺寸可20×20μm见方,单元间隔可为20μm;第三步稳流电源5输出电流密度为10mAcm-2,阳极氧化时间为20分钟。
6.根据权利要求1、2或3所述的承载cDNA的多孔硅衬底的制备方法,其特征在于,第二步微阵列单元大小尺寸可为200×200nm见方,单元间隔可为200nm;第三步稳流电源5输出电流密度为20mAcm-2,阳极氧化时间为30分钟。
CNB021453489A 2002-11-22 2002-11-22 承载高集成度cDNA微阵列的多孔硅衬底的制备方法 Expired - Fee Related CN1164768C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB021453489A CN1164768C (zh) 2002-11-22 2002-11-22 承载高集成度cDNA微阵列的多孔硅衬底的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB021453489A CN1164768C (zh) 2002-11-22 2002-11-22 承载高集成度cDNA微阵列的多孔硅衬底的制备方法

Publications (2)

Publication Number Publication Date
CN1412322A true CN1412322A (zh) 2003-04-23
CN1164768C CN1164768C (zh) 2004-09-01

Family

ID=4750862

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB021453489A Expired - Fee Related CN1164768C (zh) 2002-11-22 2002-11-22 承载高集成度cDNA微阵列的多孔硅衬底的制备方法

Country Status (1)

Country Link
CN (1) CN1164768C (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100391826C (zh) * 2005-09-09 2008-06-04 华东师范大学 一种硅的微通道制作方法
CN1974880B (zh) * 2006-11-16 2010-05-12 天津大学 电化学法制备多孔硅的双槽装置
CN101975506A (zh) * 2010-08-10 2011-02-16 天津中环领先材料技术有限公司 硅抛光片的慢提拉红外干燥工艺
CN108212231A (zh) * 2018-01-04 2018-06-29 张策 一种微流宏观流体控芯片及其制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100391826C (zh) * 2005-09-09 2008-06-04 华东师范大学 一种硅的微通道制作方法
CN1974880B (zh) * 2006-11-16 2010-05-12 天津大学 电化学法制备多孔硅的双槽装置
CN101975506A (zh) * 2010-08-10 2011-02-16 天津中环领先材料技术有限公司 硅抛光片的慢提拉红外干燥工艺
CN108212231A (zh) * 2018-01-04 2018-06-29 张策 一种微流宏观流体控芯片及其制备方法

Also Published As

Publication number Publication date
CN1164768C (zh) 2004-09-01

Similar Documents

Publication Publication Date Title
Guillorn et al. Individually addressable vertically aligned carbon nanofiber-based electrochemical probes
CN1125891C (zh) 多孔性阳极氧化的氧化铝膜的制备方法
US6972146B2 (en) Structure having holes and method for producing the same
CN100460327C (zh) 高度亲水氧化铝膜材料的制备方法
JP5438330B2 (ja) 質量分析法に用いられる試料ターゲットおよびその製造方法、並びに当該試料ターゲットを用いた質量分析装置
CN1349670A (zh) 燃料电池和薄膜
CN111017868B (zh) 一种阵列结构硅基点阵的制备方法及其应用
CN1966393A (zh) 具有纳米尺寸孔的多比例悬臂结构及其制备方法
US7390622B2 (en) Apparatus and methods for detecting nucleic acid in biological samples
CN101221130A (zh) 基于硅纳米孔柱阵列的表面增强拉曼散射活性基底的制备方法
CN1164768C (zh) 承载高集成度cDNA微阵列的多孔硅衬底的制备方法
JP2007508554A5 (zh)
CN100391826C (zh) 一种硅的微通道制作方法
CN115012001A (zh) 一种用于水电解气液传输的气体扩散层及其制备方法
US20210291173A1 (en) Patterned microfluidic devices and methods for manufacturing the same
CN110902646B (zh) 一种阵列结构硅基靶板及其应用
CN105347345A (zh) 一种硅微纳米结构的制备方法
CN111017867B (zh) 一种网络结构硅基点阵的制备方法及其应用
CN1289964C (zh) 一种在普通实验室条件下制作玻璃芯片的方法
CN114134528A (zh) 微米阵列电极结构、制备方法及其用途
JP2003342791A (ja) 細孔を有する構造体及びその製造方法
CN116854024B (zh) 一种基于硅片的单个或多个纳米级孔道的制备方法
KR101165860B1 (ko) 생물학적 샘플에서 핵산을 검출하는 장치 및 방법
JP7345843B2 (ja) マイクロウェル付きナノピラー構造基板、および、その製造方法
CN115888858A (zh) 一种微阵列芯片及其制备方法和应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee