CN1390149A - 避免人体脉管再狭窄的系统和器具 - Google Patents

避免人体脉管再狭窄的系统和器具 Download PDF

Info

Publication number
CN1390149A
CN1390149A CN00813982.2A CN00813982A CN1390149A CN 1390149 A CN1390149 A CN 1390149A CN 00813982 A CN00813982 A CN 00813982A CN 1390149 A CN1390149 A CN 1390149A
Authority
CN
China
Prior art keywords
acyl sphingosine
utensil
derivant
described system
acyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN00813982.2A
Other languages
English (en)
Inventor
马克·凯斯特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Penn State Research Foundation
Original Assignee
Penn State Research Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Penn State Research Foundation filed Critical Penn State Research Foundation
Publication of CN1390149A publication Critical patent/CN1390149A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • A61L29/14Materials characterised by their function or physical properties, e.g. lubricating compositions
    • A61L29/16Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/13Amines
    • A61K31/133Amines having hydroxy groups, e.g. sphingosine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/16Amides, e.g. hydroxamic acids
    • A61K31/164Amides, e.g. hydroxamic acids of a carboxylic acid with an aminoalcohol, e.g. ceramides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/20Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing organic materials
    • A61L2300/22Lipids, fatty acids, e.g. prostaglandins, oils, fats, waxes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/416Anti-neoplastic or anti-proliferative or anti-restenosis or anti-angiogenic agents, e.g. paclitaxel, sirolimus

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Materials For Medical Uses (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明涉及一种避免在对人体脉管或具有内壁面的腔室进行干涉性手术后出现的狭窄和/或再狭窄的系统,所述系统包括沿人体血管或腔室的内壁面在必要的位置插入一涂覆有抑制生长的、脂类衍生的和生物活性的物质或所述物质的衍生物的器具。

Description

避免人体脉管再狭窄的系统和器具
技术领域
本发明涉及一种避免人体脉管再狭窄的系统和器具。
背景技术
再狭窄是在对冠状动脉(PTCA)和其它血管进行的经皮透视血管成型术后保持血管开放的主要并发症。再狭窄是由如下诸多因素造成的:血管回缩、血管再成型失效、残余斑痕的负担和新内膜增生。新内膜增生是伴随随后在损伤部位细胞外基质成分的沉积的血管平滑肌(VSM)细胞移位和增生的反映。事实表明,就再狭窄而言,生长因素促使VSM细胞增生,导致内膜变厚。有近40%的患者在血管成型手术术后的六个月内其腔体狭窄有明显的发展。因此,虽然获得了血管成型手术的开始的治疗效果,但外科手术后几个月内流经受影响的血管的血流会再度受到损害。在血管经拉伸损伤后采用通常的包括血管紧张肽-转换酶抑制剂、抗凝剂和抑制素对避免和减少新内膜增生是无效的。对血管放射治疗经对动物和临床试验表明有一些疗效,但由于这种治疗使动脉要承受长期有害的作用,所以并不被认为是一种合适的治疗方案。
酰基鞘氨醇是鞘磷脂的生长抑制代谢产物,所述鞘磷脂是细胞膜的一种主要的类脂成分。具体地说,酰基鞘氨醇是一种存在于血浆膜中的络合类脂。可以通过鞘磷脂酶使鞘磷脂分解而产生酰基鞘氨醇。在发炎胞质分裂(IL-1、TNF和CD95配体)期间由于生长抑制和/或细胞死亡将导致此过程的加强。显然,酰基鞘氨醇起着生物活性剂的作用,所述酰基鞘氨醇可以居间调节血管平滑肌-生长抑制和/或通过直接活化激酶实现细胞编程死亡。可以预见,利用栓子切除导管的气囊端直接和立刻输送可穿透细胞的酰基鞘氨醇等或利用涂覆在支架上缓慢的输送酰基鞘氨醇的方式都将会减少VSM的增生,此点在血管成型术后对克服再狭窄是很明显的。
已知,酰基鞘氨醇通过激活c-连接N-端接激酶(JNK),实现对VSM增生的抑制,同时抑制体内的细胞外信号调节激酶(ERK)和蛋白质激酶B(PKB)。但对可穿透细胞的酰基鞘氨醇可以减少体内的VSM增生的可能性至今尚未通过试验证实。如在美国专利U.S.5,559,307中披露的内容,还已知可采用导管开启患病的动脉、体管或腔室,上述内容在此作为本发明的背景技术。但已有技术的治疗器其本身将导致在动脉中VSM大量的重新生长,此点将导致再度堵塞(即再狭窄)。
发明说明
本发明涉及一种在对人体血管或具有内壁的腔室进行干涉手术(例如血管或外科干涉)后避免狭窄和/或再狭窄的系统和器具,所述系统包括由沿人体血管或腔室的内壁在必要的位置上插入一涂覆有抑制生长的、类脂衍生的和生物活性的物质的器具。通过将物质直接传送给作用位置,可以避免随后的平滑肌细胞的再生长,因此可以克服由于伴随最初的外科手术干涉,例如血管成型术等对人体的处置而出现的发炎反应。
在一优选实施例中,本发明揭示了一种采用酰基鞘氨醇的处理,该处理将大大减少由于在颈动脉中的气囊血管成型而导致的新内膜的增生。经证明,酰基鞘氨醇将通过降低伴随损伤的细胞外信号调节激酶(ERK)和蛋白激酶B的磷酸化而实现对狭窄的缓解。如下所述,经证明,对可穿透细胞的酰基鞘氨醇的应用是一种缓解气囊血管成型术术后的狭窄的新疗法。
下面将对本发明做一详细的说明:
本发明涉及一种避免在对人体脉管或具有内壁的腔室进行干涉手术后避免狭窄和/或在狭窄的系统和器具,所述系统包括由沿人体血管或腔室的内壁在必要的位置上插入一涂覆有抑制生长的、类脂衍生的和生物活性的物质的器具。通过将物质直接和立即传送给作用位置,可以避免随后的平滑肌细胞的再生长,因此可以克服由于伴随最初的外科手术干涉,例如血管成型术等对人体的处置而出现的发炎反应。采用本发明的处理得以改善的器具包括,但并不限于此的是,简单的导管/简单的(一个)气囊设计、双气囊导管设计或支架。微孔导管设计、浸注式导管设计、旋转动脉粥斑切除器设计、聚合物(例如聚丙烯酸)覆层气囊设计、生物吸收覆层设计、支架膜和血管周基床都会得到增强和改善。
所述的“生长抑制”系指细胞(例如血管平滑肌细胞)不会对由受损的组织释放出的生长因子或细胞激动素作出反应。“类脂衍生”系指在膜上的类脂的新陈代谢时形成的物质。所以身体将对这些混合物反应产生最低限度的免疫和炎症。最后所述的“生物活性”系指因子将来自细胞的外侧膜的信息传导给细胞核,在此新的基因被激活或灭活,使细胞的表现型得以改变。例如抗有丝分裂的物质包括酰基鞘氨醇和酰基鞘氨醇衍生物,例如减少新陈代谢的类似的物质和形式。这些物质包括,但并不仅限于此的是,1-氯和1-苯甲酰(基)酰基鞘氨醇等SN-1位置的衍生物,所述衍生物并不会受到在此位置上的磷酸化的影响,以及在SN-2位置(酰胺键)的衍生物,例如氨基甲酸甲酯族或2-0-乙基替代物,所述物质不会受到酰基鞘氨酸酶衰变的影响。另外,也可以采用与酰基鞘氨醇类同的可穿透细胞形式的物质。例如这类可穿透细胞的酰基鞘氨醇和/或衍生物包含2-10个碳和具有在SN-2位置上的短链脂肪酸(C6酰基鞘氨醇)。
另外,抑制生长的、脂类衍生的、生物活性的物质例如可以是二甲基鞘氨醇、乙醚连接的二脂酰甘油酯、乙醚连接的磷脂酸和鞘氨醇。
有待涂覆的器具优选被进浸在包括二甲亚砜/乙醇的媒液中,在无菌的环境下进行实际的涂覆过程,使在器具上的可以保留有效量度的涂覆材料。接着对器具进行放射杀菌。可以针对由疏水的和亲水的覆层,以及可吸收的或聚合的基质的传送最佳地实现涂覆有酰基鞘氨醇的器具。
具体实施方式
图1示出一种包含有一个导管和单气囊设计的实施例,具有配合的气囊10的导管14被插入腔13内,所述腔被动脉壁12环围。用抑制生长的脂类衍生的生物活性的用于特殊处理的物质11对导管端15和气囊10进行涂覆,导致妨碍血流的被堵塞和/或变窄的血管的开放。
在另一优选实施例中,本发明涉及一种气囊导管和/或支架,用抑制生长的脂类衍生的生物活性的物质11对所述气囊导管和支架进行涂覆和涉及一种避免在对具有内壁面的人体血管或腔室进行干涉手术后出现再狭窄的系统,所述系统包括如下步骤:
(a)沿内壁面在在必要的位置插入用于减轻动脉狭窄的治疗器具(例如栓子切除术导管、支架和/或旋转动脉粥斑切除器),所述器具涂覆有抑制生长的脂类衍生的生物活性物质或所述物质的衍生物;
(b)对栓子切除术导管上的气囊充气或将支架设置在具有受损或病变组织的血管或腔室的部分上;
(c)(i)将材料(通过对气囊充气直接和立刻地或采用支架持续地)加在病变的部分上和(ii)由病变部分去除掉斑痕或碎屑和/或起着支架的作用;和
(d)对血管或腔室的病变或堵塞的部分进行处理。
这些步骤将防止受损血管平滑肌组织二次再生长,同时始终可以使伤口愈合。
旨在对气囊血管成型术术后就血管狭窄的涂覆有酰基鞘氨醇的栓子切除导管的治疗作用的评估,进行了试验。最初的研究对在作为时间的函数的气囊成型术术后兔子颈动脉中狭窄的程度进行了评定。动物分别在气囊损伤后1、2、4和6周死亡。最初在术后一周将观察到出现明显的新内膜增生并在四周时达到峰值(图2A)。假治疗的颈动脉在任何时候未有征兆表明新内膜增生。中间的血管平滑肌层也表明在气囊处理后严重的肥大损伤。根据该试验结果,对在气囊损伤后两周的酰基鞘氨醇对动态再狭窄VSM生长的作用进行了调研。图2B-E示出用苏木精和曙红染色的兔子颈动脉的冷冻切片。除了作为参照物的假处理的动脉(图2B)外,三个处理组分别包括一个载色剂处理的气囊(图2C)、一个C6-酰基鞘氨醇涂覆的气囊(图2D)和一个二氢-C6-酰基鞘氨醇(非活性、惰性的物质)涂覆的气囊(图2E)。意想不到地发现,采用C6-酰基鞘氨醇治疗可以明显地减少由于气囊血管成型术而导致的新内膜增生。定量分析表明作为减少新内膜/中间层比例(图2F)的结果酰基鞘氨醇将抑制掉因气囊引起的新内膜形成的92%。与此相比,作为C6-酰基鞘氨醇的非活性的同型物的二氢-C6-酰基鞘氨醇并不会减少气囊损伤后的再狭窄。所以需要采用生物活性的酰基鞘氨醇实现抑制作用并且采用结构类似但非活性的类脂是不能重复实现的。另外,可以推理出酰基鞘氨醇的疗效是由于生物化学作用,而不是由于亲油的特性造成的。
具体地说,在图2中示出C6-酰基鞘氨醇,而不是二氢-C6-酰基鞘氨醇起着在兔子的颈动脉的气囊成型术术后抑制新内膜增生的作用。最初的试验最佳地提出了一种在对新西兰白兔的颈动脉成型术术后导致在狭窄的方法。二十一只兔子被分成三个试验组,这三个组分别接受采用载色体处理导管、C6-酰基鞘氨醇处理导管或二氢-C6-酰基鞘氨醇处理导管的气囊成型手术试验。每只兔子接受相同的手术,剥离内皮公共颈动脉并建立细胞条件,促使出现再狭窄。右侧的公共颈动脉为假处理作为参照物,同时左侧颈动脉作为试验侧。在虚假参照物、载色体参照物或酰基鞘氨醇处理的动脉之间就组织湿重或细胞蛋白含量是没有明显的区别的。图2A示出血管成型手术术后再狭窄的时间过程,同时图2B-2E示出典型的苏木精/曙红染色的切片。左上部分的切片(图2B)示出作为参照物的虚假处理,同时右上部分的切片(图2C)示出采用DMOS/乙醇(1∶1,v/v)涂覆的气囊处理的动脉。下左部分的切片(图2D)示出采用C6-酰基鞘氨醇涂覆的气囊处理的动脉并且右下部分的切片(图2E)示出采用作为酰基鞘氨醇生物逻辑非活性的形式的二氢-C6-酰基鞘氨醇处理的动脉。这些显微照相的尺寸是200微米。图2F对再狭窄损伤的程度进行了量化。
在临床试验中不能实现有效治疗往往是由于在相应时间加在损伤部位的治疗剂量不是最佳的缘故。另外,疗效是由充气的气囊将酰基鞘氨醇传送给血管损伤部位的生物机械力的结果。所以,进行试验对气囊与颈动脉之间的酰基鞘氨醇的传送进行量化。采用作为示踪剂的[3H]C6-酰基鞘氨醇,计算得出作为5微摩尔的C6-酰基鞘氨醇溶液的凝胶体涂覆在气囊上的C6-酰基鞘氨醇为70±10毫微摩尔。图3A示出在插入和充气后在气囊上保留有12±2毫微摩尔。此点在血管成型手术过程中将实现由气囊导管大致58毫微摩尔的传送。为检测在颈动脉中对气囊的充气对实现酰基鞘氨醇的最佳的传送是否特别重要的,采用未充气的气囊进行了外科手术。覆盖在插入的但为充气的气囊上的酰基鞘氨醇为14±3毫微摩尔。将放射性类脂均匀地涂覆在处理的兔子的颈动脉上,并且用薄层色谱仪(TLC)对类脂产品进行分析(图3A)。采用充气的气囊处理时,血管成型手术术后15分钟被分离出的未被触及的酰基鞘氨醇的质量是2.7±0.4毫微摩尔并且采用未充气的气囊处理时为0.7±0.2毫微摩尔。被被切割的组织重新覆盖的酰基鞘氨醇的量度与作为气囊充气的结果传送给组织的酰基鞘氨醇的量度没有明显的区别。作为被传送的酰基鞘氨醇最初时分配给0.0365cm3腔体容积,在气囊损伤部位的酰基鞘氨醇的有效浓度的估计值为1.5毫摩尔/升。所以作为气囊充气的结果可以实现将酰基鞘氨醇的有效的可再现的对受损动脉的剂量分配。
采用位置自动方式造影的方法,以便确证在血管成型术后由气囊导管传送的[3H]C6-酰基鞘氨醇对动脉的渗透(图3B至3D)。与未被失踪的动脉(照片B)相比,在血管成型手术后15分钟[3H]C6-酰基鞘氨醇渗透过动脉的中间层(照片C)。此点将提高表明未触及的酰基鞘氨醇增多的象素密度,例如在此时间点采用经认证的C6-酰基鞘氨醇标准为放射示踪荧光光栅的89±4%。充气时的动脉的(照片C)象素密度大于非充气时的动脉的(照片D)的象素密度。当对10个随机选取的组的每平方毫米的的象素密度用提取的底数表示时,则与未充气的气囊相比,酰基鞘氨醇涂覆的充气气囊的平均染色增长4.7±0.2倍。此点再次支持了气囊充气将导致最大的传送和穿透的结论。因此涂覆类脂的气囊将把酰基鞘氨醇的治疗剂量传送给血管拉伸损伤部位的组织并表明,少量的使用可穿透细胞的酰基鞘氨醇足以完全渗透到受损动脉内并在发炎的环境下也可减少内膜增生。
同时还对采用TLC快速介入放射示踪的酰基鞘氨醇的衰变进行了评估。在15分钟血管成型术术后时间点,采用经认证的C6-酰基鞘氨醇标准,TLC分离的类脂的荧光光栅为89±4%。这相当于补偿的酰基鞘氨醇的质量为2.7±0.4毫微摩尔。在血管成型手术术后60分钟,补偿1.3±0.6毫微摩尔。因此,在1小时后作为未触及的酰基鞘氨醇仍可以补偿50%放射示踪。此点将与提高TLC分离的神经节苷脂和脑苷,但不包括鞘氨醇,相符减少酰基鞘氨醇质量。
这里要指出的是,浸注型导管的优点是,可以以个别的剂量将在BSA-载体上的酰基鞘氨醇输送给动脉伤损部位。因此可以确定采用浸注型导管通过溶液输送的酰基鞘氨醇是否与具有涂覆在气囊端的凝胶的导管输送的酰基鞘氨醇减少狭窄的效果相同。对在图4F所示的动脉双腔冲洗栓子切除术导管端的气囊充气,使其直径等于前面试验时的直径。每1分钟三次浸注10毫微摩尔C6-酰基鞘氨醇将减少血管成型术后狭窄的39%。但相同剂量的二氢-C6-酰基鞘氨醇对狭窄损伤无效。这些研究进一步支持酰基鞘氨醇涂覆的气囊导管以及动脉内侧部位-专用分配器具的新颖性和有效性。
为避免血栓的形成,患者在接受经皮的穿透腔体的冠状动脉成型术治疗之前患者必须例行接受抗凝固剂治疗。所以对抗凝固剂治疗对酰基鞘氨醇治疗效果的作用做了研究。不管是酰基鞘氨醇-还是载体处理气囊血管成型都不会导致形成血栓。在外科手术后7天皮下注射(2.5mg/kg)Lovenox(一种低分子量肝素)本身并不会减少狭窄并加强由酰基鞘氨醇导致的对狭窄的抑制作用,因而可以得出如下提示,酰基鞘氨醇处理与两种抗凝固治疗和未处理的记录的效果相同。
同时还对酰基鞘氨醇治疗对体内VSM细胞生长的作用做了研究。采用免疫组织化学技术确定平滑肌细胞-特异性的肌动蛋白抗体(图4A-4B)的VSM和采用增生细胞核抗原(PCNA)抗体(图4C-F)时的细胞生长。采用肌动蛋白的抗体时的阳性染色表明VSM是气囊损伤导致的新内膜的形成的主要成分(图4B)。该显微照片示出气囊成型术导致明显褶皱和VSM在中间层的分散。在细胞循环周期的早期的G1和S阶段中被合成PCNA,并被作为细胞增生的标志。在图4C-F中,分别针对参照气囊损伤的、经酰基鞘氨醇治疗和经二氢-酰基鞘氨醇治疗的颈动脉示出PCNA阳性染色的典型的显微照片。与参照血管(0.2%±0.1%)相比,在气囊损伤的动脉中的PCNA阳性细胞的百分比(2.8%±0.1%)得到大幅度的提高。正是C6-酰基鞘氨醇(0.6%±0.1%),而不是二氢-C6-酰基鞘氨醇可以减少在新内膜层内的,而不是颈动脉中间层内的PCNA阳性细胞的数量。该数据表明,酰基鞘氨醇通过减少在血管壁损伤后进入细胞循环周期内的VSM的百分比可以减少新内膜增生。
具体地说,在图4中示出,在血管成型术后酰基鞘氨醇处理的导管将减少表现在血管平滑肌细胞的PCNA。通过采用单细胞抗-α平滑肌抗体的免疫组织化学对平滑肌肌动蛋白的表示进行分析,并且采用用于PCNA的鼠原代单细胞IgG2a抗体对PCNA阳性细胞数量进行评估。用染色检验载片代替具有非特异性的鼠IgG的原代抗体并未显示出特异性或选择性的染色。照片A-B分别表示作为参照物和作为气囊损伤的动脉的平滑肌肌动蛋白染色,同时照片C-F分别表示作为参照物的、气囊损伤的、酰基鞘氨醇涂覆的气囊损伤的和二氢-酰基鞘氨醇涂覆的气囊损伤的颈动脉。这些显微照片的尺寸为200微米。
体内研究的数据表明酰基鞘氨醇通过抑制导致生长因素的细胞外信号调整激酶(ERP)级联并且有时通过抑制蛋白激酶B(PKB)级联可阻止细胞的生长。所以为了阐明酰基鞘氨醇避免再狭窄的机理,采用血管成型术后新鲜的颈动脉切片对ERK2和PKBα的磷酸化状态进行了研究(图5)。在气囊损伤后15分钟和24小时将增大ERK2和PKBα的磷酸化。这些激酶的不断的磷酸化很易于反映了受损动脉的连续的再成型。在酰基鞘氨醇处理后紧接着这些激酶的磷酸化状态被降低到基础活性的程度。因此,应急酰基鞘氨醇治疗将直接对激酶进行调整或调整假想的酰基鞘氨醇激活的蛋白磷酸酶,这些将实现信号路径的下调。
具体地说,如图5中所示,在兔子的颈动脉上进行酰基鞘氨醇涂覆的气囊血管成型术后将减少ERK2和PKBα的磷酸化。图片A示出采用磷酸化-特异性抗体试验时的典型的ERK-2和PKBα的韦斯特(Western)斑。采用或不采用PDGF处理的NIH3T3细胞的溶解产物分别作为阳性的和阴性的参照物。该免疫斑是采用8只动物进行相同的试验得出的典型数据。图片B-C对免疫斑数据进行了量化。
预先表明,C6-酰基鞘氨醇模拟了A7r5主动脉平滑肌细胞和鼠的肾小球膜细胞的IL-1抑制酪氨酸激酶受体-和G-蛋白受体-连接的促有丝分裂作用。酰基鞘氨醇处理与在G0G1处的阻止生长相关联并且不会在这些平滑肌细胞类似的外膜细胞中编程细胞死亡。本发明表明,与根据采用预先所述的成对物鉴别记录在对丙锭碘化物染色后采用荧光激活细胞分类的评估相同,C6-酰基鞘氨醇在原代VSM中不会有明显的编程细胞死亡,所述原代VSM是由兔子的颈动脉中分离出的。具体地说,采用5微摩尔C6-酰基鞘氨醇或双氢-C6-酰基鞘氨醇分别经24小时或40小时处理的原代兔子的VSM表明编程细胞死亡少于1%。作为参照物,采用冈田酸进行的处理(100毫微摩尔)将在24小时(52%)和40小时(69%±2%)后明显地导致编程细胞死亡。穿透细胞的酰基鞘氨醇对狭窄的疗效包括其可以防止VSM的生长,而不会导致明显地编程细胞死亡。
其它的可穿透细胞的酰基鞘氨醇衍生物也可以起着限制新内膜增生的作用。酰基鞘氨醇衍生物,其中可以用二甲基碳水化合物的部分替代酰胺结合的脂酰辅酶链,例如二甲基鞘氨醇对限制由于损伤导致的增生也是有效的。
虽然选择的酰基鞘氨醇代谢交织在粥样硬化、糖尿病和癌病中,但尚未将酰基鞘氨醇等考虑作为对增生血管病症治疗的药物。在动脉粥样硬化和糖尿病的情况下,将在消耗内源酰基鞘氨醇的同时增大乳糖-和葡萄糖-酰基鞘氨醇共轭物的浓度,并且此点将伴随VSM增生和血管收缩而减少体内酰基鞘氨醇。在耗尽内源酰基鞘氨醇的情况下,可以考虑采用外原酰基鞘氨醇等作为抗动脉血管粥样硬化的药剂。本发明表明,酰基鞘氨醇是一种非常有效的避免血管成型术后再狭窄的候选药物。本发明对治疗诸如冠状动脉、肾动脉和股动脉的狭窄也是有效的,并且具有多种应用,例如作为门腔静脉分流术或阻塞的隐静脉曲张以及用于冠状动脉搭桥术等。另外本发明还可用于糖尿病视网膜病,其中平滑肌类细胞被激活并且视网膜前端增生,导致失明。还可以将局部输送的酰基鞘氨醇用于潜在的治疗在透析后血管接口管狭窄造成的平滑肌生长障碍的治疗。另外除了将药剂涂覆在气囊导管端,通过浸注口或涂覆在支架上,可以将该抗促有丝分裂鞘脂衍生物作为传统的或阳离子脂质矢量的成分进行输送,因而可以潜在地改善基因转移的效率和定向。
所以,本发明表明,当将酰基鞘氨醇或其它的防止生长、类脂的衍生物涂覆在气囊或支架上实现局部用药时,可实现对损伤部位的平滑肌细胞生长的抑制。另外,酰基鞘氨醇或其它的防止生长、类脂衍生的、生物活性的物质可以利用浸注或微孔导管设计以实现固定的剂量的输送。浸注导管是通过与充气气囊相背的口实现物质的输送。微孔导管是通过在气囊表面上微细的孔眼实现物质的输送的。而且本发明的物质还可以通过双气囊、浸注口、导管设计,被隔离在两个充气气囊之间,实现对受损动脉壁的输送。根据本发明的一优选实施例,C6-酰基鞘氨醇,一种可穿透细胞的酰基鞘氨醇,可以抑制在血管成型部位上的平滑肌细胞的增生。另外,其它的可穿透细胞的酰基鞘氨醇衍生物也可以限制新内膜的增生。酰基鞘氨醇的衍生物,其中可以用二甲基碳水化合物的部分替代酰胺结合的脂酰辅酶链,对限制血管成型导致的损伤也是有效的。

Claims (18)

1.一种避免在对人体血管或具有一个内壁面的腔室进行干涉性手术后出现再狭窄的系统,所述系统包括沿人体血管或腔室的内壁面在必要的位置插入一涂覆有抑制生长的、脂类衍生的和生物活性的物质或所述物质的衍生物的器具。
2.按照权利要求1所述的系统,其中所述器具是导管或支架。
3.按照权利要求1所述的系统,其中所述的抑制生长的、脂类衍生的、生物活性的物质是由酰基鞘氨醇、二甲基鞘氨醇、乙醚连接的二脂酰甘油酯、乙醚连接的磷脂酸、鞘氨醇或前者的衍生物构成的组中选出的一种。
4.按照权利要求3所述的系统,另外还包括如下步骤:
(a)沿内壁面在必要的位置插入包括有抑制生长的、脂类衍生的、生物活性的物质的治疗器具;
(b)将器具设置在具有受损或病变的组织的血管或腔室的一部分内;
(c)(i)将材料加在病变的部分上和(ii)由病变部分去除掉斑痕或碎屑或起着支架的作用;和
(d)对血管或腔室的病变的部分进行处理。
5.按照权利要求4所述的系统,其中酰基鞘氨醇衍生物包含有2-10个碳的可穿透细胞的脂肪酸。
6.按照权利要求4所述的系统,其中酰基鞘氨醇的输送是通过与涂覆有酰基鞘氨醇充气的气囊相背一浸注口实现的。
7.按照权利要求4所述的系统,其中酰基鞘氨醇衍生物是C6-酰基鞘氨醇。
8.按照权利要求4所述的系统,其中所述器具减少因气囊血管成型或支撑造成的内膜增生。
9.按照权利要求4所述的系统,其中器具将酰基鞘氨醇的治疗剂量输送到血管损伤部位。
10.按照权利要求8所述的系统,所述器具通过降低血管壁受损后开始的细胞周期的血管平滑肌的百分比减少内膜增生。
11.按照权利要求10所述的系统,所述器具减少血管平滑肌细胞增生和迁移的百分比例,而不会导致的明显的编程细胞死亡。
12.一种用于避免在对具有内壁面的人体血管或腔室进行干涉性手术后出现的狭窄的系统,所述系统包括沿人体血管或腔室的内壁面的必要位置上插入一个器具,所述器具涂覆有抑制生长、脂类衍生的、生物活性的物质或其衍生物。
13.按照权利要求12所述的系统,所述的抑制生长的、脂类衍生的、生物活性的物质是由酰基鞘氨醇、二甲基鞘氨醇、乙醚连接的二脂酰甘油酯、乙醚连接的磷脂酸、鞘氨醇或前者的衍生物构成的组中选出的一种。
14.一种用于避免在对具有内壁面的人体血管或腔室进行干涉性手术后出现的狭窄和再狭窄的器具,所述器具包括一抑制生长的、脂类衍生的、生物活性的物质或前者的衍生物的覆层。
15.按照权利要求14所述的器具,其中所述的抑制生长的、脂类衍生的、生物活性的物质是由酰基鞘氨醇、二甲基鞘氨醇、乙醚连接的二脂酰甘油酯、乙醚连接的磷脂酸、鞘氨醇或前者的衍生物构成的组中选出的一种。
16.按照权利要求15所述的器具,其中酰基鞘氨醇衍生物是包含有2-10个碳的可穿透细胞的脂肪酸。
17.按照权利要求15所述的器具,其中酰基鞘氨醇衍生物是C6-酰基鞘氨醇。
18.按照权利要求15所述的器具,其中所述人体脉管是血管。
CN00813982.2A 1999-10-06 2000-10-05 避免人体脉管再狭窄的系统和器具 Pending CN1390149A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US15796099P 1999-10-06 1999-10-06
US60/157,960 1999-10-06

Publications (1)

Publication Number Publication Date
CN1390149A true CN1390149A (zh) 2003-01-08

Family

ID=22566085

Family Applications (1)

Application Number Title Priority Date Filing Date
CN00813982.2A Pending CN1390149A (zh) 1999-10-06 2000-10-05 避免人体脉管再狭窄的系统和器具

Country Status (8)

Country Link
EP (1) EP1221997B1 (zh)
JP (1) JP2003511110A (zh)
CN (1) CN1390149A (zh)
AU (1) AU773899B2 (zh)
CA (1) CA2386007A1 (zh)
DE (1) DE60037264D1 (zh)
RU (1) RU2002108119A (zh)
WO (1) WO2001024866A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102470196A (zh) * 2009-08-27 2012-05-23 泰尔茂株式会社 药物输送用医疗器具

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6955661B1 (en) 1999-01-25 2005-10-18 Atrium Medical Corporation Expandable fluoropolymer device for delivery of therapeutic agents and method of making
US7947015B2 (en) 1999-01-25 2011-05-24 Atrium Medical Corporation Application of a therapeutic substance to a tissue location using an expandable medical device
DE10115740A1 (de) 2001-03-26 2002-10-02 Ulrich Speck Zubereitung für die Restenoseprophylaxe
EP1485042A1 (en) * 2002-03-18 2004-12-15 Medtronic AVE Inc. Medical devices for delivering anti-proliferative compositions to anatomical sites at risk of restenosis
EP2324866B1 (en) 2002-07-12 2014-06-18 Cook Medical Technologies LLC Angioplasty balloons drug-coated in an expanded condition
DE10244847A1 (de) 2002-09-20 2004-04-01 Ulrich Prof. Dr. Speck Medizinische Vorrichtung zur Arzneimittelabgabe
US20040224003A1 (en) 2003-02-07 2004-11-11 Schultz Robert K. Drug formulations for coating medical devices
US8021331B2 (en) 2003-09-15 2011-09-20 Atrium Medical Corporation Method of coating a folded medical device
WO2005027996A2 (en) 2003-09-15 2005-03-31 Atrium Medical Corporation Application of a therapeutic substance to a tissue location using an expandable medical device
WO2005039556A1 (ja) * 2003-10-29 2005-05-06 Institute Of Medicinal Molecular Design. Inc. 血行再建術後の再狭窄又は再閉塞の治療及び/又は予防のための医薬
US9000040B2 (en) 2004-09-28 2015-04-07 Atrium Medical Corporation Cross-linked fatty acid-based biomaterials
US9801982B2 (en) 2004-09-28 2017-10-31 Atrium Medical Corporation Implantable barrier device
US9801913B2 (en) 2004-09-28 2017-10-31 Atrium Medical Corporation Barrier layer
US9012506B2 (en) 2004-09-28 2015-04-21 Atrium Medical Corporation Cross-linked fatty acid-based biomaterials
US8263102B2 (en) 2004-09-28 2012-09-11 Atrium Medical Corporation Drug delivery coating for use with a stent
US9278161B2 (en) 2005-09-28 2016-03-08 Atrium Medical Corporation Tissue-separating fatty acid adhesion barrier
US9427423B2 (en) 2009-03-10 2016-08-30 Atrium Medical Corporation Fatty-acid based particles
CA2626030A1 (en) 2005-10-15 2007-04-26 Atrium Medical Corporation Hydrophobic cross-linked gels for bioabsorbable drug carrier coatings
US10045953B2 (en) 2006-07-06 2018-08-14 Case Western Reserve University Ceramide composition and method of use
US9492596B2 (en) 2006-11-06 2016-11-15 Atrium Medical Corporation Barrier layer with underlying medical device and one or more reinforcing support structures
WO2008057328A2 (en) 2006-11-06 2008-05-15 Atrium Medical Corporation Tissue separating device with reinforced support for anchoring mechanisms
US9126025B2 (en) 2008-05-01 2015-09-08 Bayer Intellectual Property Gmbh Method of coating a folded catheter balloon
US20110038910A1 (en) 2009-08-11 2011-02-17 Atrium Medical Corporation Anti-infective antimicrobial-containing biomaterials
EP2593141B1 (en) 2010-07-16 2018-07-04 Atrium Medical Corporation Composition and methods for altering the rate of hydrolysis of cured oil-based materials
WO2013162366A1 (en) 2012-04-27 2013-10-31 Stichting Vu-Vumc Protection of materials by sphingosine based compounds
US9867880B2 (en) 2012-06-13 2018-01-16 Atrium Medical Corporation Cured oil-hydrogel biomaterial compositions for controlled drug delivery

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6515009B1 (en) * 1991-09-27 2003-02-04 Neorx Corporation Therapeutic inhibitor of vascular smooth muscle cells
US5634901A (en) * 1992-11-02 1997-06-03 Localmed, Inc. Method of using a catheter sleeve
WO1994021308A1 (en) * 1993-03-18 1994-09-29 Cedars-Sinai Medical Center Drug incorporating and releasing polymeric coating for bioprosthesis
US5509899A (en) * 1994-09-22 1996-04-23 Boston Scientific Corp. Medical device with lubricious coating
US5830430A (en) * 1995-02-21 1998-11-03 Imarx Pharmaceutical Corp. Cationic lipids and the use thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102470196A (zh) * 2009-08-27 2012-05-23 泰尔茂株式会社 药物输送用医疗器具

Also Published As

Publication number Publication date
EP1221997B1 (en) 2007-11-28
JP2003511110A (ja) 2003-03-25
DE60037264D1 (de) 2008-01-10
EP1221997A4 (en) 2006-05-31
WO2001024866A1 (en) 2001-04-12
AU773899B2 (en) 2004-06-10
AU7863700A (en) 2001-05-10
RU2002108119A (ru) 2003-11-27
CA2386007A1 (en) 2001-04-12
EP1221997A1 (en) 2002-07-17

Similar Documents

Publication Publication Date Title
CN1390149A (zh) 避免人体脉管再狭窄的系统和器具
US6682545B1 (en) System and device for preventing restenosis in body vessels
US6645464B1 (en) Loading metal particles into cell membrane vesicles and metal particular use for imaging and therapy
JP2828433B2 (ja) 強化された感染抵抗を有する筋肉内刺激リード
McDannold et al. Effects of acoustic parameters and ultrasound contrast agent dose on focused-ultrasound induced blood-brain barrier disruption
Nelson et al. Ultrasonically activated chemotherapeutic drug delivery in a rat model
WO1996022111A1 (en) Local delivery and monitoring of drugs
US20150224221A1 (en) Method for preparing microspheres for emboli, and method for preparing microspheres to which drug-containing carrier is bound
CN107073178A (zh) 提供药物微贮库的接触转移的管腔内可扩张导管的涂层
Deaciuc et al. Modulation of hepatic sinusoidal endothelial cell function by Kupffer cells: an example of intercellular communication in the liver
JP7053463B2 (ja) 超音波システムを使用して脳腫瘍を治療するための方法及びキット
Lis et al. Leksell gamma knife lesioning of the rat hippocampus: the relationship between radiation dose and functional and structural damage
CN106693040A (zh) 一种可载药聚乙烯醇洗脱微球的制备方法
CN102256596A (zh) 用于增强对流递送到中枢神经中心的脂质体组合物
Geraci et al. Radiation hepatology of the rat: microvascular fibrosis and enhancement of liver dysfunction by diet and drugs
Hamilton et al. Statin treatment of hypercholesterolemic-induced aortic valve sclerosis
Leré et al. A model of ‘epileptic tolerance’for investigating neuroprotection, epileptic susceptibility and gene expression-related plastic changes
Durand et al. Tumour blood flow influences combined radiation and doxorubicin treatments
EP3558408B1 (en) Intratumoral drug delivery materials and methods for treating breast cancer
US20080260790A1 (en) Plasmid Enhancement Agent for High Intensity Focused Ultrasound Treatment and Use Thereof
CN115141319A (zh) 工程化放射性聚合物微球及其制备方法和用途
Gregoriadis The physiology of the liposome
Nguyen et al. Perivascular innate immune events modulate early murine vein graft adaptations
Braunhut Protection against radiation damage to vascular tissues
Sridhar-Keralapura et al. Structural changes and imaging signatures of acoustically sensitive microcapsules under ultrasound

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication