CN1387269A - 一种单壁纳米碳管可充电池电极及其制备方法 - Google Patents

一种单壁纳米碳管可充电池电极及其制备方法 Download PDF

Info

Publication number
CN1387269A
CN1387269A CN01113941A CN01113941A CN1387269A CN 1387269 A CN1387269 A CN 1387269A CN 01113941 A CN01113941 A CN 01113941A CN 01113941 A CN01113941 A CN 01113941A CN 1387269 A CN1387269 A CN 1387269A
Authority
CN
China
Prior art keywords
electrode
carbon nanotube
walled carbon
single walled
rechargeable battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN01113941A
Other languages
English (en)
Other versions
CN1168162C (zh
Inventor
成会明
戴贵平
陈德敏
刘敏
侯鹏翔
刘畅
白朔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Metal Research of CAS
Original Assignee
Institute of Metal Research of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Metal Research of CAS filed Critical Institute of Metal Research of CAS
Priority to CNB011139412A priority Critical patent/CN1168162C/zh
Publication of CN1387269A publication Critical patent/CN1387269A/zh
Application granted granted Critical
Publication of CN1168162C publication Critical patent/CN1168162C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种单壁纳米碳管可充电池电极,其特征在于以氢电弧法制备的单壁纳米碳管作为电极的电化学储氢材料含量为10~98wt%,其余是作为骨架材料的泡沫镍及不可避免的杂质;电极的宏观密度为1000~6000kg/m3。其制备方法为首先采用专利申请号为99113021.9的氢电弧法制备平均直径在1.85nm的单壁纳米碳管;所制得的单壁纳米碳管不经提纯和任何处理直接压在泡沫镍上成型。本发明电极具有很高的电化学容量及很高的循环使用寿命。

Description

一种单壁纳米碳管可充电池电极及其制备方法
本发明涉电池技术,特别提供了一种新型的可充电池电极及其制备方法。
随着人类对矿物能源的过度开采与大量使用,矿物能源储备日渐短缺、环境污染日益严重,迫切要求一种新的替代能源。氢能具有零污染和可再生的独特优点,被认为是现有以碳为基础的能源工业最理想的替代者。但是阻碍氢能规模利用的主要障碍是缺乏一种方便、高效的储存系统,储氢材料正是在这样的背景下产生的,并得以迅猛发展。
1886年美国现代化学奠基人Thamas Graham发现金属钯能够大量吸氢。一个世纪以后,直到1968年美国Brookhaven国立研究所率先在储氢合金的研究上获得成功,发现了Mg2Ni合金也具有储氢性能。1970年荷兰菲利普研究所发现了LaNi5的储氢性能。与此同时,美国的Brookhaven国立研究所又发现了FeTi储氢合金,从而揭开了储氢合金研究的新篇章。其中研究较多、技术相对成熟的LaNi5已被成功应用于Ni-MH可充电池,其他合金材料的应用也在研究中,但金属合金储氢材料存在储氢容量低或放氢条件苛刻等问题,难以实现在燃料电池、高容量可充电池等氢能规模利用方面的应用。
本发明的目的在于提供一种单壁纳米碳管可充电池电极及其制备方法,其具有很高的电化学容量及很高的循环使用寿命。
本发明提供了一种单壁纳米碳管可充电池电极,其特征在于以氢电弧法制备的单壁纳米碳管作为电极的电化学储氢材料,含量为10~98wt.%,其余是作为骨架材料的泡沫镍及不可避免的杂质;电极的宏观密度为1000~6000kg/m3
其中所述单壁纳米碳管平均直径在1.85nm,其纯度为50~75wt.%,Ni为10~20wt.%,Fe为1~5wt.%,Co为1~5wt.%,其它为石墨粉、无定形碳及不可避免的杂质。
本发明还提供上述单壁纳米碳管可充电池电极的制备方法,其特征在于:首先采用专利申请号为99113021.9的氢电弧法制备平均直径在1.85nm的单壁纳米碳管;所制得的单壁纳米碳管不经提纯和任何处理直接压在泡沫镍上成型。
本发明提供了一种新型的可充电池电极,即采用申请号为99113021.9的氢电弧法制备的单壁纳米碳管作为电极的电化学储氢材料,其平均直径大(1.85nm,其它研究者制备的样品平均直径一般为1.4nm),氢分子可以在单壁纳米碳管中大量凝聚,从而与现有的合金电极比具有很高的电化学储氢能力;另外采用申请号为99113021.9的氢电弧法制备的单壁纳米碳管,纯度可达50~75wt.%,每10~20根单壁纳米碳管聚集成束状,宏观定向成绳,长达数厘米,具有良好的导电性和成型性,因而可以不经过提纯和任何处理,不需粘结剂直接压制成电极。本发明中所用样品量大,下述实施例中所用样品的量均在50mg以上,实验数据重现性好。
以本发明电极作为工作电极,Hg/HgO作为参比电极,6MKOH为电解液,NiOH为辅助电极,然后进行电化学储氢实验,其电化学容量可达到503mAh/g(按活性物质单壁纳米碳管重量计算,下同),相当于气相储氢重量百分比为1.8wt.%,100个充放电循环后容量仍维持在最高容量的80%以上。可以预见如果优化单壁纳米碳管的制备工艺,制备出更高质量的单壁纳米碳管,优化单壁纳米碳管电极的成型条件和充放电制度,将更能展现单壁纳米碳管作为电化学储氢材料的美好前景。
下面通过实施例详述本发明。
附图1.单壁纳米碳管的电化学储氢实验示意图
附图2.单壁纳米碳管的透射电镜照片
附图3.单壁纳米碳管电极的电压与时间的曲线
附图4.单壁纳米碳管电极的循环寿命曲线
实施例1
电化学储氢实验如附图1。其中1为工作电极,2为参比电极,3为辅助电极。
取用专利号为99113021.9的方法制得的,平均直径大约为1.85nm的单壁纳米碳管300mg,未经处理直接以25mg泡沫镍为基体压制成型,密度为6000kg/cm3,所得到单壁纳米碳管电极用作工作电极,Hg/HgO作为参比电极,6MKOH为电解液,NiOH为辅助电极,电解池的温度为25℃。单壁纳米碳管电极的循环寿命实验以500mA/g的电流密度进行充放电,放电时截止电位为-0.4V(vs.Hg/HgO)。单壁纳米碳管的最高电化学储氢量为503.4mAh/g。
实施例2
电化学储氢实验如附图1。
取用专利号为99113021.9的方法制得的,平均直径大约为1.85nm的单壁纳米碳管200mg,未经处理直接以25mg泡沫镍为基体压制成型,密度为4000kg/cm3,所得到单壁纳米碳管电极用作工作电极,Hg/HgO作为参比电极,6MKOH为电解液,NiOH为辅助电极,电解池的温度为25℃。单壁纳米碳管电极的循环寿命实验以500mA/g的电流密度进行充放电,放电时截止电位为-0.4V(vs.Hg/HgO)。单壁纳米碳管的最高电化学储氢量为503mAh/g。
实施例3
电化学储氢实验如附图1。
取用专利号为99113021.9的方法制得的,平均直径大约为1.85nm的单壁纳米碳管160mg,未经处理直接以25mg泡沫镍为基体压制成型,密度为3500kg/cm3,所得到单壁纳米碳管电极用作工作电极,Hg/HgO作为参比电极,6MKOH为电解液,NiOH为辅助电极,电解池的温度为25℃。单壁纳米碳管电极的循环寿命实验以400mA/g的电流密度进行充放电,放电时截止电位为-0.4V(vs.Hg/HgO)。单壁纳米碳管的最高电化学储氢量为502.8mAh/g。
实施例4
电化学储氢实验如附图1。
取用专利号为99113021.9的方法制得的,平均直径大约为1.85nm的单壁纳米碳管100mg,未经处理直接以25mg泡沫镍为基体压制成型,密度为2000kg/cm3,所得到单壁纳米碳管电极用作工作电极,Hg/HgO作为参比电极,6MKOH为电解液,NiOH为辅助电极,电解池的温度为25℃。单壁纳米碳管电极的循环寿命实验以500mA/g的电流密度进行充放电,放电时截止电位为-0.4V(vs.Hg/HgO)。单壁纳米碳管的最高电化学储氢量为502mAh/g。。
实施例5
电化学储氢实验如附图1。
取用专利号为99113021.9的方法制得的,平均直径大约为1.85nm的单壁纳米碳管80mg,未经处理直接以25mg泡沫镍为基体压制成型,密度为2000kg/cm3,所得到单壁纳米碳管电极用作工作电极,Hg/HgO作为参比电极,6MKOH为电解液,NiOH为辅助电极,电解池的温度为25℃。单壁纳米碳管电极的循环寿命实验以500mA/g的电流密度进行充放电,放电时截止电位为-0.4V(vs.Hg/HgO)。单壁纳米碳管的最高电化学储氢量为501.3mAh/g。
实施例6
电化学储氢实验如附图1。
取用专利号为99113021.9的方法制得的,平均直径大约为1.85nm的单壁纳米碳管50mg,未经处理直接以25mg泡沫镍为基体压制成型,密度为3500kg/cm3,所得到单壁纳米碳管电极用作工作电极,Hg/HgO作为参比电极,6MKOH为电解液,NiOH为辅助电极,电解池的温度为25℃。单壁纳米碳管电极的循环寿命实验以500mA/g的电流密度进行充放电,放电时截止电位为-0.4V(vs.Hg/HgO)。单壁纳米碳管的最高电化学储氢量为501mAh/g。

Claims (4)

1、一种单壁纳米碳管可充电池电极,其特征在于以氢电弧法制备的单壁纳米碳管作为电极的电化学储氢材料。
2、按照权利要求1所述单壁纳米碳管可充电池电极,其特征在于:所述单壁纳米碳管的含量为10~98wt.%,其余是作为骨架材料的泡沫镍及不可避免的杂质;电极的宏观密度为1000~6000kg/m3
3、按照权利要求1或2所述单壁纳米碳管可充电池电极,其特征在于:其中所述单壁纳米碳管平均直径在1.85nm,其纯度为50~75wt.%,Ni为10~20wt.%,Fe为1~5wt.%,Co为1~5wt.%,其它为石墨粉、无定形碳及不可避免的杂质。
4、一种权利要求1所述单壁纳米碳管可充电池电极的制备方法,其特征在于:首先采用专利申请号为99113021.9的氢电弧法制备平均直径在1.85nm的单壁纳米碳管;所制得的单壁纳米碳管不经提纯和任何处理直接压在泡沫镍上成型。
CNB011139412A 2001-05-22 2001-05-22 一种单壁纳米碳管可充电池电极 Expired - Fee Related CN1168162C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB011139412A CN1168162C (zh) 2001-05-22 2001-05-22 一种单壁纳米碳管可充电池电极

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB011139412A CN1168162C (zh) 2001-05-22 2001-05-22 一种单壁纳米碳管可充电池电极

Publications (2)

Publication Number Publication Date
CN1387269A true CN1387269A (zh) 2002-12-25
CN1168162C CN1168162C (zh) 2004-09-22

Family

ID=4660636

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB011139412A Expired - Fee Related CN1168162C (zh) 2001-05-22 2001-05-22 一种单壁纳米碳管可充电池电极

Country Status (1)

Country Link
CN (1) CN1168162C (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106981624A (zh) * 2017-05-24 2017-07-25 中国科学院过程工程研究所 一种简单高效制备锂硫电池正极极片的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106981624A (zh) * 2017-05-24 2017-07-25 中国科学院过程工程研究所 一种简单高效制备锂硫电池正极极片的方法
CN106981624B (zh) * 2017-05-24 2019-12-20 中国科学院过程工程研究所 一种简单高效制备锂硫电池正极极片的方法

Also Published As

Publication number Publication date
CN1168162C (zh) 2004-09-22

Similar Documents

Publication Publication Date Title
CN106887567B (zh) 一种碳包覆硅/石墨烯复合材料及其制备方法
EP3846249A1 (en) Silicon-based negative electrode material of lithium ion battery and preparation method therefor, and battery
Zhou et al. Tailored synthesis of nano-corals nickel-vanadium layered double hydroxide@ Co2NiO4 on nickel foam for a novel hybrid supercapacitor
CN106025297A (zh) 一种新能源汽车燃料电池的电极制备方法
CN101060172B (zh) 纳米氢氧化镍/碳复合材料及其制备方法和用途
CN111974430B (zh) 一种单原子铜催化剂的制备方法及其在锂硫电池正极中的应用
Dai et al. Electrochemical charge-discharge capacity of purified single-walled carbon nanotubes
Yang et al. S@ CNT-graphene-TiN multi-dimensional composites with high sulfur content as the high-performance lithium-sulfur battery cathode materials
Li et al. Nd-Mg-Ni alloy electrodes modified by reduced graphene oxide with improved electrochemical kinetics
WO2014056114A1 (en) Method of producing porous electrodes for batteries and fuel cells
Lan et al. Nickel-graphene nanocomposite with improved electrochemical performance for La0. 7Mg0. 3 (Ni0. 85Co0. 15) 3.5 electrode
Lota et al. AB5-type hydrogen storage alloy modified with carbon used as anodic materials in borohydride fuel cells
CN1168162C (zh) 一种单壁纳米碳管可充电池电极
Wang et al. Sr-doped urchin-like NiCo hydroxide and Sr-doped flower-like NiCo hydroxide@ O-doped layered porous carbon for high-performance asymmetric supercapacitors with gel electrolyte
Fan et al. Synthesis of Mo2C@ MWCNTs and its application in improving the electrochemical hydrogen storage properties of Co0. 9Cu0. 1Si alloy
Zhao et al. Low temperature aluminothermic reduction of natural sepiolite to high-performance Si nanofibers for Li-ion batteries
CN1168161C (zh) 一种可充电池电极
Zhai et al. 3D network and wrapping strategy derived loofah-like Sb@ CNTs@ C for high performance K+/Na+ storage
CN1267357C (zh) 氢氧化镍纳米管的制备方法
Li et al. Emerging carbon-based flexible anodes for potassium-ion batteries: Progress and opportunities
Xiao et al. Recent advances in electrochemical performance of Mg-based electrochemical energy storage materials in supercapacitors: Enhancement and mechanism
CN112928266A (zh) 一种石墨烯包覆纳米多孔锡复合材料制备方法
Obodo et al. Review on performance optimization of Lithium Sulphur Batteries (LiSBs) using carbon based electrodes
CN1612379A (zh) 镍氢电池用电极及其制备方法
CN111584858A (zh) 一种中空六边形棒状结构硫化锌负载硫单质作为正极材料的锂硫电池及其制备方法

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20040922

Termination date: 20110522