CN1337925A - Spvcd硅酸盐玻璃 - Google Patents
Spvcd硅酸盐玻璃 Download PDFInfo
- Publication number
- CN1337925A CN1337925A CN00803172.XA CN00803172A CN1337925A CN 1337925 A CN1337925 A CN 1337925A CN 00803172 A CN00803172 A CN 00803172A CN 1337925 A CN1337925 A CN 1337925A
- Authority
- CN
- China
- Prior art keywords
- glass
- rare earth
- fluorine
- loss
- doped
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000005368 silicate glass Substances 0.000 title description 4
- 239000011521 glass Substances 0.000 claims abstract description 69
- 229910052761 rare earth metal Inorganic materials 0.000 claims abstract description 24
- 150000002910 rare earth metals Chemical class 0.000 claims abstract description 19
- 229910052731 fluorine Inorganic materials 0.000 claims description 37
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims description 32
- 239000011737 fluorine Substances 0.000 claims description 32
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 11
- 229910005793 GeO 2 Inorganic materials 0.000 claims description 9
- 229910052757 nitrogen Inorganic materials 0.000 claims description 9
- 239000002994 raw material Substances 0.000 claims description 9
- 238000001228 spectrum Methods 0.000 claims description 9
- 230000003287 optical effect Effects 0.000 claims description 8
- 229910052691 Erbium Inorganic materials 0.000 claims description 6
- 230000003321 amplification Effects 0.000 claims description 6
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 6
- 229910052782 aluminium Inorganic materials 0.000 claims description 5
- 150000001875 compounds Chemical class 0.000 claims description 5
- 229910052692 Dysprosium Inorganic materials 0.000 claims description 4
- 229910052693 Europium Inorganic materials 0.000 claims description 4
- 238000000280 densification Methods 0.000 claims description 4
- 239000000126 substance Substances 0.000 claims description 4
- 229910052777 Praseodymium Inorganic materials 0.000 claims description 3
- 229910052684 Cerium Inorganic materials 0.000 claims description 2
- 229910052688 Gadolinium Inorganic materials 0.000 claims description 2
- 229910052689 Holmium Inorganic materials 0.000 claims description 2
- 229910052765 Lutetium Inorganic materials 0.000 claims description 2
- 229910052779 Neodymium Inorganic materials 0.000 claims description 2
- 229910052772 Samarium Inorganic materials 0.000 claims description 2
- 229910052771 Terbium Inorganic materials 0.000 claims description 2
- 229910052775 Thulium Inorganic materials 0.000 claims description 2
- 229910052769 Ytterbium Inorganic materials 0.000 claims description 2
- 239000000470 constituent Substances 0.000 claims description 2
- 239000005383 fluoride glass Substances 0.000 claims description 2
- 229910052746 lanthanum Inorganic materials 0.000 claims description 2
- 239000000075 oxide glass Substances 0.000 claims description 2
- 229910052760 oxygen Inorganic materials 0.000 claims description 2
- 229910001404 rare earth metal oxide Inorganic materials 0.000 claims description 2
- 239000002019 doping agent Substances 0.000 claims 2
- 238000000295 emission spectrum Methods 0.000 claims 2
- 239000012808 vapor phase Substances 0.000 claims 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims 1
- 230000008021 deposition Effects 0.000 claims 1
- 239000003365 glass fiber Substances 0.000 claims 1
- 239000013307 optical fiber Substances 0.000 claims 1
- 239000001301 oxygen Substances 0.000 claims 1
- 239000000835 fiber Substances 0.000 abstract description 17
- 238000005229 chemical vapour deposition Methods 0.000 abstract description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 abstract 2
- 229910052593 corundum Inorganic materials 0.000 abstract 2
- 239000000377 silicon dioxide Substances 0.000 abstract 2
- 229910001845 yogo sapphire Inorganic materials 0.000 abstract 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 238000004891 communication Methods 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- 238000005086 pumping Methods 0.000 description 3
- 238000004031 devitrification Methods 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- UYAHIZSMUZPPFV-UHFFFAOYSA-N erbium Chemical compound [Er] UYAHIZSMUZPPFV-UHFFFAOYSA-N 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- IRPGOXJVTQTAAN-UHFFFAOYSA-N 2,2,3,3,3-pentafluoropropanal Chemical compound FC(F)(F)C(F)(F)C=O IRPGOXJVTQTAAN-UHFFFAOYSA-N 0.000 description 1
- KLZUFWVZNOTSEM-UHFFFAOYSA-K Aluminum fluoride Inorganic materials F[Al](F)F KLZUFWVZNOTSEM-UHFFFAOYSA-K 0.000 description 1
- 206010016654 Fibrosis Diseases 0.000 description 1
- 238000003723 Smelting Methods 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 229910000323 aluminium silicate Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000005234 chemical deposition Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 238000007772 electroless plating Methods 0.000 description 1
- 230000004761 fibrosis Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 238000005424 photoluminescence Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/062—Glass compositions containing silica with less than 40% silica by weight
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C13/00—Fibre or filament compositions
- C03C13/04—Fibre optics, e.g. core and clad fibre compositions
- C03C13/045—Silica-containing oxide glass compositions
- C03C13/046—Multicomponent glass compositions
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/06—Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/11—Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen
- C03C3/112—Glass compositions containing silica with 40% to 90% silica, by weight containing halogen or nitrogen containing fluorine
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C4/00—Compositions for glass with special properties
- C03C4/0071—Compositions for glass with special properties for laserable glass
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C4/00—Compositions for glass with special properties
- C03C4/12—Compositions for glass with special properties for luminescent glass; for fluorescent glass
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Glass Compositions (AREA)
- Lasers (AREA)
Abstract
这些玻璃掺入了氟和Al2O3的组合,以使荧光光谱更宽,并改善增益平整度。另外,表面等离子体化学气相沉积(SPCVD)将大量的氮掺入到低损耗的纤维中去,这种纤维的高电荷会影响稀土的特性。SPCVD产生含有高含量的氟、Al2O3和氮的纤维预成型物。这些高度氟化的玻璃具有比I型和II型硅玻璃更宽的Er3+发射宽度,从而提高了多信道放大器性能。SPCVD成功的将硅玻璃氟化,使损耗小于5dB/km,并增加了Er3+的发射宽度。
Description
技术领域
本发明涉及采用表面等离子体化学气相沉积法(SPCVD)制成的氟化的和氮化的硅酸盐玻璃。这种新的玻璃可用于增益平稳的Er3+纤维放大器。本发明包括用等离子体化学气相沉积法制造掺杂有稀土的含氟玻璃。
背景技术
掺杂有Er3+的纤维放大器提供了全光系的高增益、低噪音的放大而无需昂贵的电子转发器,从而引起了光学通讯的革命。然而,目前的放大器并不非常适合多信道的放大,这是因为它们的作为波长函数的增益的强烈相关性。氟化铝硅酸盐玻璃在1530-1560nm波长段比I及II型的硅玻璃具有更好的增益平稳度。这使得多波长能够同时而又均匀的放大,从而使得纤维装置和平面装置的带宽增加3-32倍。这也使高数据流的通讯系统具有可操作性和可提供性。比如使具有10Gb/s(OC-192标准)的16个信道(总容量为160Gb/s)甚或具有2.4Gb/s(OC-48标准)的32个信道(总容量为76.8Gb/s)成为可能。
最新进展表明,氟化的、掺杂Er3+的SiO2能增强在1550nm波长处的荧光带宽发射。这种技术也显示,加入Al2O3能够增加荧光线宽度和Er3+的溶解。
发明内容
在我们的研究中加入了氟、Al2O3和/或Ga2O3的组合,以实现更宽的Er3+荧光和改善在1550nm的电信窗的增益平稳度。另外,SPCVD能够将大量的F、Al2O3和N加入到低耗纤维中去,上述这些成分都能影响稀土的特性。SPCVD产生有高含量F、Al和N的纤维预成型物。这种高度氟化的玻璃具有比I和II型的硅玻璃更宽的Er3+发射宽度,从而能提高多信道放大器的性能。SPCVD能成功的以低于5dB/km的损耗将硅玻璃氟化,并且能增加Er3+的发射宽度。
本发明的掺杂有稀土的玻璃组合物包含:
其中,SiO2+GeO2为80-95重量%,Al2O3+Ga2O3为5-15重量%,F为2-10重量%,R2O3是稀土氧化物。它们的和(SiO2+GeO2)是完全可以互换的,而且,只要SiO2+GeO2的总量在80%到95%之间,其中的SiO2或GeO2的量可以在0%到95%之间。
组分 | 重量百分比 |
SiO2 | 0-95 |
GeO2 | 0-95 |
Al2O3 | 0-15 |
Ga2O3 | 0-15 |
F | 2-10 |
N | 0-10 |
R2O3 | 0.01-2.0 |
图面的简单说明
图1是显示本发明对Er3+荧光效果的曲线图。
图2是显示本发明的氟化的及硝化的预成型物的微探针组分数据的曲线图。
本发明的最佳实施方式
曾有许多用化学气相沉积法(CVD)将氟掺杂到铝硅酸盐粉尘的尝试,由于AlF3和GeF4的高蒸气压的缘故,结果导致Al2O3和GeO3剥离。这些尝试无法使掺杂的氟的重量百分比超过2%。但是,SPCVD能同时掺杂氟和Al2O3,并使氟的含量达到5%。这就取得了更大的荧光线宽,并增加了稀土的溶解度。SPCVD法沉积的是致密的玻璃而不是粉尘。与外部气相沉积法(OVD)不同,SPCVD能防止挥发性组分(比如氟)的损失。通过使等离子区中的原料物质离子化,等离子环境创造了一种独特的化学性质。SPCVD也允许通过将稀土置于一个高场的环境中而掺入N,N对Er3+的作用会产生有益的作用。
坩锅熔炼的玻璃具有宽的Er荧光发射,FWHM能达到55nm,但是坩锅熔炼法不会产生出损耗在100dB/km以下的纤维。SPCVD产生出具有高纯度和低损耗(<5dB/km)的高氟含量的玻璃,从而能实现坩锅熔炼的玻璃的宽度并且具有CVD玻璃的低耗。
SiO2是这种玻璃里用来保持与现有的纤维以及处理的相容性的主要成分。加入超过3重量%的Al2O3能大大扩大Er3+的发射,氟的加入能充实1540nm区域,并进一步扩大Er3+的发射包络(emission envelope)。
N+F的含量最好为2.5-5.0重量%。较佳的实施方式是仅仅加F,或仅加N或两者都加。
如上面所讨论的,在玻璃中掺杂稀土金属有利于扩大发射和吸收光谱。因此,本发明的玻璃包含稀土元素的氧化物,比如Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb或Lu的氧化物。所述稀土元素以Er、Pr、Eu或Dy为佳,Er(比如Er2O3)更佳。
所述玻璃还可包含其他各种成分。例如,所述玻璃还可含有0-5重量%的其他氧化物,如Ta2O5、B2O3、SnO、ZrO2、P2O5、Sb2O5、As2O3以及Bi2O3。
所有的光学放大器,尤其是掺杂有铒的纤维放大器,由于它们的公认的优于转发器型放大方案的优点而都曾经在纤维光学通讯系统中被广泛应用。例如,掺杂铒的纤维放大器(EDFA)能方便的在优选的1550nm、第三电讯光谱窗处运作,偏振-失灵增益高,不同波长信号间的串扰小,饱和输出功率良好以及噪声指数接近基本量子极限。这一优异的噪声特性潜在性地可使数百个放大器沿着纤维通讯线路的长度插入,而所述纤维通讯线路则可跨越数千公里。光学放大器,特别是EDFA,与电子转发器相比,对数据速率、信号格式及限定范围的波长也是透明的(transparent),这使得它们对波长多路通讯系统特别有用,这些系统能用各信号不同波段将大量信号同时传输。
实施例1
图1显示作为波长函数的归一化Er3+发射强度。在纯SiO2中Er3+的发射光谱(曲线I)是最窄的,添加氟(曲线II)和Al2O3(曲线III)能显著扩大发射宽度,其FWHM从23nm分别扩大到28nm和44nm。在两个系统中损耗都小于2dB/km。将氟和Al2O3组合,可使发射宽度进一步增加到50nm(曲线IV),加入合适的玻璃改良剂(如CaO和Ta2O5,或者K2O与Sb2O3),可得到55nm以上的放射FWHM。曲线V显示了CaO-Ta2O5-Al2O3-SiO2玻璃发出的Er3+荧光。
图2表明,氟、氮和Er能同时掺杂到预成型物中。N3 -阴离子有高电荷,能明显的改变放大特性。氟与氮的结合同样是有益的,这是因为F-和N3-能代替两个O2-而形成假氧化物结构。
实施例2(现有技术)
Al2O3掺杂目前被用于II型EDFA中,以增加Er3+的溶解度与增益平稳度,超过纯SiO2。但是,这些组合物仅产生30%的40nm谱带增益波动并在Al2O3含量高(大于数重量%)的情况下易于失去透明性。本发明的玻璃的40nm谱带增益波动小于20%,因此更适合于多信道EDFA。
氟化玻璃,比如ZBLAN(53ZrF4-20BaF2-4LaF3-3AlF3-20NaF,以摩尔%计)也以其增益平整度和低声子能而闻名。由于不转换,必须将它们在1480nm泵激。在1480nm泵激(pumping)的结果是它们的噪音增加。它们还很难纤维化,不能熔融切片,易失透且耐久性差。
这些玻璃提供了一种制造低损耗、掺杂稀土、具有改善的增益平稳度、可用于增加信道容量的纤维的手段。用该方法生产的纤维能熔融切片,能与现有的拉伸方法兼容并可应用于纤维放大器和平面放大器。
本发明包括通过将致密的高纯度玻璃进行等离子体沉积而制造这样的掺杂有稀土的表面等离子体化学沉积法的掺杂氟的玻璃。在该方法中,挥发性玻璃成分的损耗被抑制。产生等离子区,用等离子环境将玻璃成分里的原料物质离子化,同时抑制挥发性物质(如氟)的损失,这些原料物质发生反应并形成致密的玻璃沉积物。除此之外,本发明还提供掺杂有稀土、具有有益的氟含量的玻璃及氟玻璃组合物,其中挥发性氟组分的挥发性损失被抑制。本发明还包括使用反应性等离子体环境掺杂氮,将氮掺入这些玻璃中。这些掺杂稀土的、利用表面等离子体化学沉积而成的、掺杂氟的玻璃的制造还包括通过抑制挥发性玻璃成分(如氟)的挥发性损失使掺杂稀土和氟的轻的放大用玻璃进行等离子体沉积,由此制造光波导放大器用玻璃。上述等离子体沉积法包括提供有益的高纯度的掺杂氟的氧化物玻璃的化学性质,这样产生了有益的光学放大特性,比如损耗低于100dB/km在1550nm波长区域的损耗在5dB/km以下,Er3+的发射光谱宽(FWHM大于44nm),40nm带增益波动少于20%。
除上述实施方式以外,本领域的技术人员会发现,对于上面的发明能做出许多的修正和改变而不偏离本发明所确定的实质和范围。
Claims (21)
1.掺杂有稀土的表面等离子体化学气相沉积的掺杂氟的玻璃,它包含:
组分 重量百分比
SiO2 0-95
GeO2 0-95
Al2O3 0-15
Ga2O3 0-15
F 2-10
N 0-10
R2O3 0.01-2.0
SiO2+GeO2为80-90重量%,Al2O3+Ga2O3为5-15重量%,R2O3是稀土氧化物,其中,掺杂氟的玻璃是一种高纯度沉积的致密的玻璃,氟的挥发性损耗被防止。
2.根据权利要求1所述的玻璃,其中,F+N为2.5-5.0重量%。
3.根据权利要求1所述的玻璃,其中,在1550nm的损耗小于100dB/km。
4.根据权利要求1所述的玻璃,它含有至少3重量%的Al2O3。
5.根据权利要求1所述的玻璃,其中,R2O3是稀土元素Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb或Lu的氧化物。
6.根据权利要求1所述的玻璃,其中,R是稀土元素Er、Pr、Eu或Dy的氧化物。
7.根据权利要求1所述的玻璃,其中,R2O3为Er2O3。
8.一种适合用于光学纤维放大器的玻璃纤维,它包含权利要求3所述的玻璃。
9.一种光学放大装置,它包含权利要求8所述的玻璃。
10.一种电子光学装置,它由权利要求1所述的玻璃制成。
11.掺杂有稀土元素铒以及氟的表面等离子体化学气相沉积玻璃,它包含:
组分 重量百分比
SiO2 0-95
GeO2 0-95
Al2O3 3-15
Ga2O3 0-12
F 2-10
N 0-10
R2O3 0.01-2.0SiO2+GeO2为80-95重量%,Al2O3+Ga2O3为5-15重量%,R2O3是Er2O3,其中,该玻璃是一种高纯度沉积的致密的氟化玻璃,由电离的等离子体形成,其中的挥发性组分的损耗被防止。
12.根据权利要求1所述的玻璃,其中,该玻璃的1550nm损耗少于100dB/km,其Er3+发射光谱的FWHM>44nm。
13.根据权利要求1所述的玻璃,其中,该玻璃的1550nm损耗少于5dB/km,其Er3+放射光谱的FWHM≥50nm。
14.根据权利要求1所述的玻璃,其中,该玻璃的1550nm损耗少于5dB/km,其Er3+的放射光谱≥55nm。
15.根据权利要求1所述的玻璃,其中,该玻璃的40nm Er3+带增益波动不超过20%。
16.根据权利要求13所述的玻璃,其中,该玻璃40nm Er3+带增益波动不超过20%。
17.根据权利要求1所述的玻璃,其中,该玻璃同时掺杂有F、N和Er,F和N3-代替氧形成假氧化物玻璃结构。
18.一种光学放大器,它包含权利要求16所述的玻璃。
19.一种光学放大器,它包含权利要求11所述的玻璃,该玻璃的1550nm损耗少于5dB/km,Er3+发射光谱的FWHM>44nm,40nm Er3+的带增益波动不超过20%。
20.制造掺杂稀土的玻璃的方法,它包括提供稀土掺杂剂原料和氟原料,形成反应用等离子区,在该等离子区中将原料离子化并沉积出致密的掺杂稀土、氟的玻璃,其中,挥发性氟的损失被防止。
21.制造掺杂稀土的光学波导放大器用玻璃的方法,所述玻璃具有宽的FWHM>44nm的发射光谱,1550nm损耗少于100dB/km;该方法包括提供稀土掺杂剂原料和氟原料,形成反应用等离子区,在该等离子区中将原料离子化并沉积致密的掺杂稀土、氟的玻璃,其中,挥发性的氟的损失被防止。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/266,956 US6077799A (en) | 1999-03-12 | 1999-03-12 | SPCVD silicate glasses |
US09/266,956 | 1999-03-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN1337925A true CN1337925A (zh) | 2002-02-27 |
Family
ID=23016687
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN00803172.XA Pending CN1337925A (zh) | 1999-03-12 | 2000-02-11 | Spvcd硅酸盐玻璃 |
Country Status (9)
Country | Link |
---|---|
US (1) | US6077799A (zh) |
EP (1) | EP1169273A1 (zh) |
JP (1) | JP2002539066A (zh) |
CN (1) | CN1337925A (zh) |
AU (1) | AU3999600A (zh) |
CA (1) | CA2367253A1 (zh) |
MY (1) | MY136003A (zh) |
TW (1) | TW482746B (zh) |
WO (1) | WO2000055101A1 (zh) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004501500A (ja) * | 1999-12-16 | 2004-01-15 | コーニング・インコーポレーテッド | 光利得ファイバ |
US6667257B2 (en) | 2000-10-02 | 2003-12-23 | The United States Of America As Represented By The Secretary Of The Navy | Heavy metal modified silica glass fibers doped with thulium, holmium, and thulium-sensitized-holmium high quantum efficiencies |
WO2002097496A1 (en) * | 2001-05-29 | 2002-12-05 | 3M Innovative Properties Company | Optical fiber fusion splice having a controlled mode field diameter expansion match |
US6690868B2 (en) | 2001-05-30 | 2004-02-10 | 3M Innovative Properties Company | Optical waveguide article including a fluorine-containing zone |
US20030024276A1 (en) * | 2001-05-30 | 2003-02-06 | 3M Innovative Properties Company | Method of manufacture of an optical waveguide article including a fluorine-containing zone |
US6757474B2 (en) | 2001-12-31 | 2004-06-29 | 3M Innovative Properties Company | Emission silicate waveguide compositions for enhanced L-band and S-band emission |
US6879609B2 (en) | 2001-12-31 | 2005-04-12 | 3M Innovative Properties Company | Silicate glass for upconversion fluorescence |
US6724972B2 (en) | 2001-12-31 | 2004-04-20 | 3M Innovative Properties Company | Silicate waveguide compositions for extended L-band and S-band amplification |
JP2004250251A (ja) * | 2003-02-18 | 2004-09-09 | Sumitomo Electric Ind Ltd | 蛍光性ガラス、光増幅用導波路および光増幅モジュール |
JP2005210072A (ja) * | 2003-12-25 | 2005-08-04 | Japan Science & Technology Agency | 光ファイバおよび広帯域光増幅器 |
JP5343849B2 (ja) | 2007-06-20 | 2013-11-13 | 旭硝子株式会社 | 酸化物ガラスの表面処理方法 |
CN115113325B (zh) * | 2021-03-23 | 2023-11-03 | 华为技术有限公司 | 一种掺铒光纤 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3535266A (en) * | 1966-04-25 | 1970-10-20 | Owens Illinois Inc | Glass laser compositions |
US4186021A (en) * | 1976-03-05 | 1980-01-29 | Corning Glass Works | Oxynitride glass-ceramics |
US4160654A (en) * | 1977-10-25 | 1979-07-10 | Corning Glass Works | Method for making silver-containing glasses exhibiting thermoplastic properties and photosensitivity |
JP3157000B2 (ja) * | 1990-08-08 | 2001-04-16 | 株式会社フジクラ | 光導波路 |
JP2518749B2 (ja) * | 1991-07-11 | 1996-07-31 | 五鈴精工硝子株式会社 | 着色ガラス |
CA2201576A1 (en) * | 1996-04-17 | 1997-10-17 | James Edward Dickinson, Jr. | Rare earth doped oxyhalide laser glass |
JP2002510273A (ja) * | 1997-06-23 | 2002-04-02 | コーニング インコーポレイテッド | 光導波路物品のための組成物および連続する被覆を備えた線条体の作成方法 |
-
1999
- 1999-03-12 US US09/266,956 patent/US6077799A/en not_active Expired - Fee Related
-
2000
- 2000-02-11 CN CN00803172.XA patent/CN1337925A/zh active Pending
- 2000-02-11 JP JP2000605532A patent/JP2002539066A/ja not_active Withdrawn
- 2000-02-11 CA CA002367253A patent/CA2367253A1/en not_active Abandoned
- 2000-02-11 EP EP00919285A patent/EP1169273A1/en not_active Withdrawn
- 2000-02-11 WO PCT/US2000/003602 patent/WO2000055101A1/en active Application Filing
- 2000-02-11 AU AU39996/00A patent/AU3999600A/en not_active Abandoned
- 2000-03-10 MY MYPI20000941A patent/MY136003A/en unknown
- 2000-03-13 TW TW089104768A patent/TW482746B/zh active
Also Published As
Publication number | Publication date |
---|---|
US6077799A (en) | 2000-06-20 |
CA2367253A1 (en) | 2000-09-21 |
AU3999600A (en) | 2000-10-04 |
WO2000055101A1 (en) | 2000-09-21 |
TW482746B (en) | 2002-04-11 |
MY136003A (en) | 2008-07-31 |
EP1169273A1 (en) | 2002-01-09 |
JP2002539066A (ja) | 2002-11-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Dejneka et al. | Rare-earth-doped fibers for telecommunications applications | |
US6495482B1 (en) | Glass composition | |
EP1285891B1 (en) | Tellurite glass, optical amplifier and light source | |
US7637124B2 (en) | Bismuth containing fluorophosphate glass and method for making thereof | |
JPH07291652A (ja) | 光信号増幅器用ガラスおよび光信号増幅器の製造方法 | |
CN1337925A (zh) | Spvcd硅酸盐玻璃 | |
Minelly et al. | Applications of antimony–silicate glasses for fiber optic amplifiers | |
US6515795B1 (en) | Borosilicate cladding glasses for germanate core thulium-doped amplifiers | |
EP1270526B1 (en) | Optical device with multicomponent oxide glass | |
US6859606B2 (en) | ER3+ doped boro-tellurite glasses for 1.5 μm broadband amplification | |
US6757474B2 (en) | Emission silicate waveguide compositions for enhanced L-band and S-band emission | |
US6724972B2 (en) | Silicate waveguide compositions for extended L-band and S-band amplification | |
CN1634785A (zh) | 光放大用铒镱共掺多组份氧化物玻璃及其制备方法 | |
CN1216752A (zh) | 具有光放大特性的Ge-Ga-S-基玻璃组合物以及使用该组合物的光纤通信装置 | |
CN1473782A (zh) | 用于碲酸盐玻璃包层的铅铋硅酸盐玻璃 | |
US6916753B2 (en) | Tm3+-doped silicate glass and the use thereof | |
US6797657B2 (en) | Tm-doped fluorophosphate glasses for 14xx amplifiers and lasers | |
AU734647B2 (en) | Glass for high and flat gain 1.55 um optical amplifiers | |
Davey et al. | Waveguide glasses | |
WO2004028992A1 (en) | Tellurite glass, optical fibre, optical amplifier and light source | |
US20030156318A1 (en) | Method for manufacturing silicate waveguide compositions for extended L-band and S-band amplification | |
CN117466539A (zh) | 一种扩展l波段掺铒硅酸盐增益光纤及其制备方法与在光纤放大器的应用 | |
Ellison | Materials for advanced optical amplifiers | |
US20030145629A1 (en) | Method of manufacturing improved emission silicate waveguide compositions for enhanced L-band and S-band emission | |
KR19990038328A (ko) | 광통신에 이용되는 광증폭용 중금속 산화물 유리 조성물 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |