CN1327132C - 中型泵、其制造方法及其用途 - Google Patents

中型泵、其制造方法及其用途 Download PDF

Info

Publication number
CN1327132C
CN1327132C CNB988143828A CN98814382A CN1327132C CN 1327132 C CN1327132 C CN 1327132C CN B988143828 A CNB988143828 A CN B988143828A CN 98814382 A CN98814382 A CN 98814382A CN 1327132 C CN1327132 C CN 1327132C
Authority
CN
China
Prior art keywords
unit
conduit device
electrode
diaphragm
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB988143828A
Other languages
English (en)
Other versions
CN1354823A (zh
Inventor
C·卡布茨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honeywell Inc
Original Assignee
Honeywell Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honeywell Inc filed Critical Honeywell Inc
Publication of CN1354823A publication Critical patent/CN1354823A/zh
Application granted granted Critical
Publication of CN1327132C publication Critical patent/CN1327132C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B45/00Pumps or pumping installations having flexible working members and specially adapted for elastic fluids
    • F04B45/04Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having plate-like flexible members, e.g. diaphragms
    • F04B45/043Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having plate-like flexible members, e.g. diaphragms two or more plate-like pumping flexible members in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B45/00Pumps or pumping installations having flexible working members and specially adapted for elastic fluids
    • F04B45/04Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having plate-like flexible members, e.g. diaphragms
    • F04B45/047Pumps having electric drive

Abstract

一种具有多个基本单元的中型泵,一种制造这种中型泵的方法,以及一种利用这种中型泵泵送流体的方法。每个单元具有一个形成一个空腔的主体,空腔具有一个上电极和一个下电极,每个电极具有一个朝向另一个电极的曲面。通过电连接可选择地为电极供能。一片双稳态膜片的主要部分位于电极之间的空腔内,并且膜片向上电极和下电极的曲面挠曲以便与其形状一致。一根横向导管位于主体的至少一端,以便与空腔内保持流体连通。横向导管与安装在主体上的膜片部分在操作上相连接,并且通过膜片的运动来开通或关断。一根位于至少一个曲面上的垂直导管通过膜片与垂直导管形成接触或脱离接触的运动而控制流体的流动。各单元互连在一起以便构成中型泵,电极的致动作用使得膜片在电极之间运动,从而使流体进出主体。优选的中型泵包括多个三单元组,以便使流体从流体源进入第一单元,通过垂直导管排向第二单元,通过横向导管排向第三单元,然后从其中排出,其中流体在电极的致动作用下从一个单元经过另一个单元。

Description

中型泵、其制造方法及其用途
技术领域
本发明涉及一种中型泵(mesoscopic pump)。更具体而言,本发明涉及一种基于双稳态静电致动膜片的中型泵。
背景技术
性能可靠的泵是现代工业、商业、航天和军事系统中进行流体处理的一个关键因素。流体处理系统正在向着体积更小、分布性更高和便携性更强的系统发展,以便适应仪器仪表和控制装置中越来越广泛的应用的需要。
尽管泵技术在过去的几十年中取得了许多重要的进展,然而在减小泵的尺寸、重量和功率要求的能力方面的进展已经达到极限。在包括所谓的“微型泵”在内的常规型泵技术与基于硅微加工和微电子技术的MEMS(微型机电系统)泵之间存在明显的空白。
MEMS(微型机电系统)泵的泵能力可以从每分钟几微升到数十毫升。这使得它们可以用于比如输送药物所用的可植入系统,或者化学分析系统中的微剂量测定等应用场合中,但是这样的泵速要比采样应用中所需的泵速小多个数量级。
市场上可以买到的常规型泵的能力从每分钟数十升到每分钟数百升。这种泵大多需要大功率。即使体积较小的泵通常也会达到10-50立方英寸的尺寸范围。市场上也可以买到输入功率较低的微型泵,但是它们的能力则低于每分钟一升。
许多授权的美国专利是关于通常涉及微型阀结构与控制方面的设备和装置的。例如,Bonne等人的美国专利No.5,082,242中描述了一种微型阀,它是制作于一块硅片上的一体式结构,使得这个装置通过入口和出口分别位于硅圆片两侧的阀而流动。阀的关闭通过与阀座的接触而实现,为防止阀性能下降,在阀座上接触表面必须紧密配合。专利No.5,180,623和5,244,527为关于最初提到的专利的分案。
另一组专利描述了利用微型阀、传感器和其他部件进行的流体控制,在入口和出口之间有一个主通道和一个伺服通道。该伺服通道通过一个控制流管来控制从而使得接片通过静电驱动。Bonne等人的美国专利No.5,176,358中描述了一种这样的流体控制装置,而分案No.5,323,999和5,411,597则是关于替代实施方案的。
Wagner等人在1996年6月版的IEEE期刊的第384-388页(June,1996,edition of the IEEE Journal,pages 384-388)中公开了另外一种思想,其中两个弯曲的Si/SiO2薄膜横跨在具有封闭的驱动电极的充满空气的多个空腔上。在所公开的耦合薄膜系统中,一片第一硅薄膜利用静电力来控制开关,而静电力又会压迫空气通过通道从而将第二硅薄膜推起。
在这两种有专利权的系统和Wagner等人提出的思想中,都用到了硅半导体芯片。事实上,硅技术是许多微传感器的核心技术。由于能够制造完全集成的系统,因而就可以研制某些上述的阀,等等。然而,现有技术所能达到的微小排量和硅技术中所能制得的材料并不能最好地满足这类应用场合的要求。在最好的情况下,所能达到的泵排量仍然很小(微升/分钟到毫升/分钟)。另外,结构也会变得很复杂,而且成本昂贵。还有,一个主要的问题是硅不能与许多生物材料兼容,因而实际上就不能广泛地应用于各种最终用途中。
现有的蒸气和粒子检测中所用的采样泵远大于它们支承的仪器。为了能够有效地胜任诸多任务,采样率应当比得上人类呼吸,即每分钟10升(10 1pm)或更大。泵必须提供这么大的流量,以便克服一磅/平方英寸(psi)或者更大的压降,与超过一瓦的气体输出负载和超过十瓦的输入功率要求相应。现有的使用转动发动机的系统功耗大,噪音大,而且使用寿命有限。不带转动或滑动零件的中型泵和较高的电子到气体转换效率将能够显著提高用于检测化学、生物、爆炸性或其它制剂的军事系统的能力和效率。
利用硅来做这类系统的一个部件已经证明难以进行,特别是在以下三个方面。首先,在硅上微加工所需的曲面是一个问题;第二,材料的原则受到严格限制;第三,难以实现高泵排量所需的尺寸。制造能力的约束会造成支座的曲率半径减小,膜片的行程减小,而且只能单向致动,所有这些都会造成泵效率降低。
如果能够研制一种能够提供与常规压力相同的泵速和最大压力、但是尺寸和功率水平的数量级较小的中型泵,将是本领域技术的一大进展。
如果能够利用可与大多数(如果不是全部)可能要加工的材料兼容的材料来制得中型泵,也将是一个优点。
其他优点在下文中将会述及。
发明内容
现在已经发现本发明的上述和其他目的可以通过以下方式实现。特别是,本发明提供了一种包括一个基本单元阵列的中型泵(mesopump)。每个单元包括一个具有特定形状的小室、一个膜片和互连的导管。本发明包括双稳态膜片、使电极空腔的形状与膜片的挠曲一致从而可以实现的双向静电致动作用、能够为流体的流动提供有力的整流机构的内置式阀作用、以及结构紧凑的阵列的串联方式。
为此,本发明提供一种具有多个基本单元的中型泵,每个所述单元包括:一个形成一个电极空腔的主体,所述电极空腔具有一个上电极和一个下电极,每个所述电极分别具有一个朝向另一个电极的曲面的曲面,以便形成所述空腔,所述主体包括可选择地为所述电极供能的电子致动装置;一片双稳态膜片,其安装在所述主体上并接地,并且具有一个位于所述曲面之间的所述空腔内的主要部分,所述膜片向所述上电极和下电极的曲面挠曲,以便与其形状一致;位于所述主体中的并构成入口端导管和出口端导管的横向导管装置,所述横向导管装置与安装在所述主体上的所述膜片部分在操作上相连接,并且其位置使得可以通过所述膜片的运动来开通或关断,以便控制通过所述入口端导管和出口端导管的流体的流动;垂直导管装置,所述垂直导管装置与一个电极空腔的至少一个曲面在操作上相连接,以便通过所述膜片与所述垂直导管装置形成接触或脱离接触的运动而控制通过其中的流体的流动;以及互连导管装置,用于连接所述单元与所述多个单元以便形成所述中型泵;由此,所述电极的致动作用使得所述膜片在所述电极的所述曲面之间运动,从而使流体进出所述主体。
本发明还提供一种制造基本单元的方法,在一个中型泵中具有多个这种基本单元,包括以下步骤:在主体中形成一个电极空腔,所述电极空腔具有一个上电极和一个下电极,每个所述电极分别具有一个朝向另一个电极的曲面的曲面,以便形成所述空腔;将电子致动装置连接到所述主体上以便可选择地为所述电极供能;在所述主体的至少一端形成横向导管装置,以便形成一个与所述空腔连通的至少一个入口端导管或出口端导管;将一个适于向所述上电极和下电极的曲面挠曲以便与其形状一致的双稳态膜片安装在所述主体中并接地,并且使所述膜片的主要部分都位于所述曲面之间的所述空腔内;将所述横向导管装置与安装在所述主体上的所述膜片部分相连接,并且使所述端导管正确定位,从而可以通过所述膜片的运动来开通或关断,以便控制通过所述端导管的流体的流动;将垂直导管装置与所述空腔中的至少一个电极曲面相连接以便通过所述膜片与所述垂直导管装置形成接触或脱离接触的运动而控制通过其中的流体的流动;以及提供用于连接所述单元与所述多个单元的互连导管装置,以便制得中型泵。
此外,本发明提供一种具有多个基本单元的中型泵,每个所述单元包括:一个形成一个电极空腔的主体,所述电极空腔具有至少一个电极,所述电极具有一个朝向所述主体的对面部分上的曲面的曲面,以便形成所述空腔,所述主体包括可选择地为所述电极供能的电子致动装置;一片膜片,它在拉伸状态下安装在所述主体上并接地,并且具有一个位于所述曲面之间的所述空腔内的主要部分,所述膜片适于朝向或背离所述电极的曲面弯曲;位于所述主体中的构成一个端导管的横向导管装置,所述横向导管装置与安装在所述主体上的所述膜片部分在操作上相连接,并且其位置使得可以通过所述膜片的运动来开通或关断,以便控制通过所述端导管的流体的流动;垂直导管装置,所述垂直导管装置与所述空腔的至少一个曲面在操作上相连接,以便通过所述膜片与所述垂直导管装置形成接触或脱离接触的运动而控制通过其中的流体的流动;以及互连导管装置,用于连接所述单元与所述多个单元以便形成所述中型泵;由此,所述电极的致动作用使得所述膜片向着所述电极的所述曲面运动,而所述电极停止致动作用时,所述膜片能回复至其初始位置,从而使流体进出所述主体。
在这里,所述横向导管装置是一根横向导管,所述垂直导管装置是一根垂直导管。
基本单元由带有一个电极空腔的主体构成,电极空腔具有一个上电极和一个下电极,这两个电极分别具有一个朝向另一个电极的曲面以便形成空腔。主体包括一个可选择地为电极供能的电子致动电源。双稳态膜片安装在主体上并接地,并且膜片的主要部分位于曲面之间的空腔内。当电压加于特定电极和接地膜片上时,膜片向上电极和下电极的曲面挠曲,以便与其形状一致。
基本单元也可以由带有一个电极空腔的主体构成,该电极空腔在空腔的上部或者下部具有至少一个电极,空腔的两侧分别具有一个朝向另一个表面的曲面以便形成空腔。主体包括一个可选择地为电极供能的电子致动电源。膜片在拉伸载荷下安装在主体上并接地,并且当电压加于特定电极和接地膜片上时,膜片的主要部分位于曲面之间的空腔内以便与其形状一致。由于膜片受到拉伸载荷,当电压消除时,它会回复至其初始位置,因而具有能形成所述装置的泵作用的推拉功能。
流体通过膜片从一个电极到另一个电极的运动产生的泵作用从而进出单元。在某些情况下,流体通过位于主体的一端或两端的起到空腔的入口端导管或出口端导管作用的横向导管流动。横向导管都与安装在主体上的膜片部分在操作上相连接,以便可以通过膜片的运动开通或关断。在其它情况下,流体通过与一个电极的曲面在操作上相连接的垂直导管装置而流动,并且这种流动过程也受控于膜片与该电极曲面上的垂直导管形成接触或脱离接触的运动。各个单元连接在一起从而形成一个装置,电极的致动作用使膜片在电极的曲面之间运动,从而使流体进出中型泵。
通常中型泵还包括一个垂直背压控制导管,它位于相对的电极上,位于膜片的远离垂直导管的一侧。
在一个优选实施方案中,膜片具有足够的弹性以便使其表面区域与曲面相一致,或者膜片弯曲以便增大其表面积。当膜片为弹性时,它由一种具有足够弹性体性能的聚合物材料制成,以便可以在曲面之间运动。
在膜片从一个电极的曲面移动到另一个电极的曲面时,其与横向导管配合以开通入口端导管和出口端导管中的一个,并且关断入口端导管和出口端导管中的另一个。
本发明的一种优选的中型泵包括一起共同作用的多组基本单元。每组中包括一个第一单元,它具有一个与流体源相连的入口端横向导管和一个由其垂直导管装置构成的流体出口。第二单元通过作为其入口源的垂直导管装置与第一单元垂直导管装置相连。其出口端横向导管起到通向第三单元的流体出口的作用,在第三单元的入口端横向导管处与第三单元相连。第三单元的出口端垂直导管为其流体出口。
在适当的电压下不同膜片的运动使流体在电极的致动作用下从一个单元经过另一个单元。在这样的四单元阵列中,电压施加于接地的膜片与第一和第二单元的上电极之间,这时产生吸入作用以便使流体通过第一单元进入。然后电压被转换到第一和第二单元的下电极上,这时流体流动至第二单元。将电压转回至第二单元的上电极上,并将电压施加于第三单元的上电极上,就会使得流体通过第二单元出口流入并流经第三单元。在接地的膜片与第三单元的上电极之间施加电压,就会产生压力使流体从第三单元流出。
在单元组的上述操作过程中,每个单元的入口端横向导管在单元膜片从一个电极向另一个电极运动时被单元膜片关断。每个单元的垂直导管在单元膜片与具有垂直导管的电极曲面进入接触时被单元膜片关断。当将电压施加于电极上时,膜片发生非线性运动,以便产生滚动致动作用,从而使流体从一个单元流至下一个单元。
在一个实施方案中,中型泵组串联连接,从而产生连续地沿着串联组累积的压力。另外,中型泵组可以并联连接以便产生高输出量。一个优选实施方案中包括一个阵列,其中各中型泵组以三维串联/并联阵列方式连接起来,从而既能产生压力累积,又能产生高输出量。
这些阵列型式结构可以为单个装置,或者可以为高达100个并联通道的阵列,从而使泵排量可以达到从10毫升/分钟到10升/分钟。通过利用静电致动作用,可以将功耗保持在每个通道5毫伏以下以及每100通道阵列0.5瓦以下。特别是由于电极的特殊形状,一致动电压可以保持在50伏以下。例如,一个100通道阵列的大小将会只有一立方英寸。
在另一个实施方案中,各组按树状结构相连,以便用作真空泵。这种树状结构可以在不影响泵速的情况下降低回流压力。
附图说明
为了对本发明有更为完整的理解,本文中参照了以下各图,其中:
图1为本发明的静电致动的中型泵的示意图;
图2为图1中所示的中型泵的一个单元的放大示意图;
图3为图1中所示的中型泵的一个泵通道的示意图;
图4为流体通过图2中所示类型一个单元的流动的工作情况的示意图;
图5为在图4中所示的泵循环中在电极上所施加的电压的示意图;
图6为本发明的树状串联连接方式,其背压力得到控制以便用于压缩机等等应用中;
图7为图2中所示单元的放大的部分剖面图,示出了本发明的一个优选实施方案;以及
图8为图7中所示的单元横截面的电极模式的示意图;
图9为本发明的一个替代实施方案的示意图。
具体实施方式
本发明的中型泵用一个基本单元阵列可以得到最为清楚的说明,其中每个单元包括一个具有特定形状的小室、一个膜片和互连的导管。
本发明的中型泵特别有利的一点是它们可以通过现有的材料利用现有的制造技术来制造。已用于微型机电系统的薄膜技术可以与已有的聚合物技术同时使用。
应当指出,将带有高质量金属与电介质薄膜的叠片式凸起聚合物部件组合成静电致动器的三维阵列这一技术代表了致动器技术的一种全新方法,体现了各项技术的最佳特征。驱动本发明的中型泵的电子技术已经易于使用,并且低于150伏的电压也在利用常规的高压电路技术驱动的充气式显示器所用的范围之内。
图1示出了一种中型泵,它的结构只有一立方英寸,并且利用了多个串联的单元。中型泵总体用10标出,它包括能够有效地将流体从入口13送往出口15的多个单元11。根据本发明,这种特殊的中型泵10具有相互平行的上通道17和下通道19,这两个通道的作用方式相同。
主体1通过用高温塑料如ULTEM、CELAZONE和KETRON模制而成。电极自身通过用金属进行电镀或电子束沉积作用之后利用干膜抗蚀层构图而形成,正如在本领域中众所周知。低温有机和无机电介质用作致动电极之间的绝缘材料,如下文中所示。
从图2中可以更清楚地看到,图1的中型泵10的每个通道11具有一个模制的泵主体21,泵主体21带有一个上致动电极23和一个下致动电极25。主体21上还安装着一个接地的膜片27,并且膜片27能够在上电极曲面31和下电极曲面33之间的小室29内运动。主体21还包括一个入口端横向导管35和一个出口端横向导管37。
当通过上电极23的电压源39和下电极25的电压源41向特定的电极施加电压,从而以静电驱动方式使膜片27向一个或另一个表面运动时,膜片27的形状与曲面31和33一致。膜片27和曲面31和33涂有一个薄电介质层(图中未示出),以便起到电绝缘和保护作用。
中型泵主体21还包括一个位于曲面33中的垂直导管43,它使得当施加电压以便驱动膜片与表面33形成紧密接触时,位于膜片27和下电极25之间的小室29中的材料能够被排出。主体21还包括一个位于上电极曲面31中的背压控制导管45。
在本发明中,优选地,膜片具有预先弯曲的形状,以便使得在电极之间的中间位置上时,弯曲部分受到压缩并且形状多少有些不规则。在朝向一个电极曲面运动时,弯曲的膜片伸直从而形成一个与曲面完全配合的平滑的均匀表面。与伸直的或受到拉伸载荷的膜片相比,弯曲的膜片每个冲程具有较大的容积,这可以通过减小致动力来实现。膜片在两个稳定位置上几乎都处于无应力状态,这就使得这种装置对温度变化或失配的敏感性减小。
膜片可以利用涂有KAPTON的金属、经过弯曲以便使形状与曲面一致的金属、或者能够使其表面区域与曲面一致的导电弹性聚合物制得。通常这种聚合物材料的弹性性能应足以使其在所述曲面之间运动。例如,膜片的制造可以基于为大批量生产的键盘和挠性电路制造所用的技术,从而使其加工方法得到优化,尽管它们目前尚未用于中型泵的制造中。优选的膜片利用聚合物薄膜、如市场上可以买到的KAPTON或MYLAR聚合物来制得。
由于泵主体上的膜片与电极之间的距离较大(至少数十微米),因而静电致动方式并未应用于常规型膜片泵中。然而,与驱动膜片的其他方法相比(例如热、洛仑兹力、气动、电机驱动),从功耗和结构简单性方面来讲,到目前为止静电致动方法是最有效的致动方法。
众所周知,静电压力非常依赖于电极之间的间距。它通过以下公式确定:
Pes=Kε0E2=Kε0V2/d2
其中E为膜片与泵主体之间的气隙中的电场,而V和d为相应的电压和间距。
例如,在介电常数为6的情况下,100伏的电压在一微米后的薄膜上在滚动接触点上产生的静电压力为5.2个大气压。在此处所示的结构中,由于如上所述,这种特殊的形状使得膜片能够滚动到小室壁上,因而可以同时得到高静电压力和大的排量。当施加电压时,高静电压力的位置从边缘向中心前进,从而使接触点在空腔壁上滚动。本发明的一个特别优点是死容积最小。当膜片27从与上曲面31的紧密接触位置移动至下曲面33上时,空腔中的所有空气都会排出。因此,可以很容易得到高达75或更大的小室-通道容积比(即压缩比)。
电介质材料是滚动接触的静电致动器中的一个关键元素。它必须能够提供电绝缘、金属电极的钝化、为防止静摩擦而要求的低粘附能、以及化学稳定的表面。诸如二氧化硅和氮化硅以及被称作钻石状毫微合成物(Diamond Like Nanocomposite,DLN)的电介质为适用的电解质材料。后面的DLN具有高电介质强度,低表面能和高耐蚀性。
在膜片与弯曲壁之间产生的高静电压力不仅会使空气从空腔中排空,而且还提供了一个密封机构。通道进入空腔中的结构方式使得这种密封能力起到一个内置式阀的作用,从而具有较高的整流能力。在需要回流的应用场合中,例如在真空泵和压缩机中,这是一个特别的优点。
泵送过程通过连续工作的串联的最少三个小室或单元来完成。图3中的泵47中的各单元的排列方式使得可以串联地加入另外的单元。图3中的每个泵通道包括其间带有相同膜片的一叠三个矩形平板。顶板49和底板51相同,其一侧下凹从而形成空腔或狭槽,而另一侧上带有控制背压的孔。中间板53在两侧都有凹槽,并且还具有互连导管所用的狭槽或孔。在图3所示的泵47中,各个单元并联叠放,以便提高泵送能力。
中型泵的蠕动式正排量的操作情况如图4中所示,其中小室A的膜片向上移动,从而通过横向入口将流体包(如气体)吸入小室A的下部。在这个吸入阶段中,小室B的膜片起阀的作用,牢牢地关断小室A和B之间的垂直导管。从输出中不会产生回流。在下一阶段,这两个膜片一起向下移动。当它向下滚动至小室A的下壁上时,小室A的膜片关断了入口导管,起到阀的作用,并将流体推入小室B。同时,小室B的膜片的位移在小室B中产生一个凹槽,将流体吸入本小室中。在循环的这个阶段,小室C的膜片保持将小室B和C之间的横向导管关断。同样,也会防止输出中产生回流。在循环的第三阶段,小室A的膜片保持通向小室B和通向输入口的导管紧紧关断,而小室B和C的膜片迫使流体包进入小室C。这样,就完成了一个基本的泵送循环。这个循环重复进行从而使气体包流过无论是串联还是并联的单元组。
图5示出了在参照图4所示的泵循环中的各个阶段施加于每个小室的上(u)电极和下(1)电极上的驱动电压。
本发明的一个优点是当膜片从与一个电极曲面的接触转换到与另一个接触时,膜片受到一个咬合作用。对标称直径10毫米、厚度25微米的膜片和75微米深的上下小室进行了测试分析。观察到了期望得到的滚动作用。随着电压增大,膜片-电极开始在外周接触并向中心移动,与膜片在50伏电压时完全接触。显然存在一个介于48伏到50伏之间的咬合作用,并且是基于这种非线性的与位置相关的力以及膜片的双稳态特性。静电力与致动电压的平方成正比,因此希望所需的致动电压随着电压的平方根而变化,并且发现这种方式也基本正确。
本发明也可以采用树型结构,如图6中所示。这可以提高能力以便适用于需要大压差和背压控制的应用场合。为了充分实现串联方式的优点,每级的膜片上的背压相应地都得到控制。图6中示出了背压受控的各单元的树状串联连接方式,圆圈中的数量表示的是背压。在这个实施方案中,所有膜片的背部连接于压力在输出压力和输入压力之间变化的小室系统中,从而使得任何膜片所受的压力差不会超过一个大气压。在树状串联连接方式的第一循环中,流量要受到最后一级的泵能力的限制。在经过许多循环后,串联的最后一个单元的输出小室的压力将会增大,从而使膜片背部的压力增大并使流速增大,直到达到输入级的泵送能力为止。
本发明还能够通过以三维串联/并联阵列方式连接所制造的各个单元来生产毫托级的真空所用的真空泵。串联操作可以实现较大压力比的累积而并联操作可以提供较高的输出量。图6中的装置也可以用做真空泵,但由于膜片能够克服一个大气压的压力,因而背压就不再是一个问题。对于给定的泵尺寸,这种结构形式还能够在不影响泵速的情况下降低回流压力。
现在参看图7,所示的实施方案能够保证将流体从第二小室如图4的小室B正确地排放至第三小室、如图4的小室C中。图7中所示的上电极55包括一个位于电极55和膜片59之间的浅通道57,它通向例如位于图4的小室B和C之间的排放通道。
图8中示出了一种第二小室的排放效果得到改进的替代装置,其中上小室61包括形状稍似椭圆的弯曲的电极表面63。
图9中所示的本发明的实施方案表示的是每个单元只用了一个电极的实施方案。特别是,各单元利用本文中所述的制造材料和方法来制得,如上所述。然而,每个单元中只使用了一个电极。这种装置包括一对构成单元的主体71和73,其中一个单元71包括一种构成一个电极的电介质材料,而另一个主体73不具有静电作用。膜片77延伸在两部分主体71和73之间,从而将构成的单元空腔分成两半。在主体71和73中带有一个入口导管79、横向导管81和输出导管83,以便使得流体能够流过该装置。
在工作过程中,膜片77向着电极75移动且移动回复至图9中所示的其伸展的初始位置,可以使得流体按照与图2和3中所示的那种装置相同的方式吸入入口79中,通过横向导管81传送至第二单元,并通过出口端导管83流出该装置,举例来说,这些单电极装置可以根据需要按图4和6中所示的阵列来排列。
本发明的中型泵具有广泛的最终用途。在军事领域内,许多任务需要检测化学和生物制剂和爆炸物。其中包括战场警报、反扩散以及条约监控等任务。快速地鉴别全部化学和生物制剂以及制造和销售过程中对预报器、变质产品和溶剂的检测,都需要利用检测技术。本发明提供的传感器技术敏感度高、功耗小、成本低,因而能够与多种正在进行的程序一起使用。其中有酶基电化学传感器、利用级联冲击器来监控气溶胶大小和浓度的气溶胶收集器、用于生物检测的紫外线感应的荧光基传感器和用于爆炸物中挥发性有机化合物及化学制剂检测的化学传感器。利用聚合酶链式反应和毛细管电泳现象进行的基于DNA技术的生物种类的鉴别已经演示过。
由于第一次能够制得在尺寸、重量、和功率方面与仪器的其它部分兼容的真空泵,因而本发明还能良好地适用于质谱仪及小型现场检测系统中所用的其它基于真空的仪器仪表。根据本发明现在也可以第一次制造适用于小型制冷和冷却系统中、或者给微流体处理系统中所周的气体小室加压的中型压缩机,如能够完成包括计量、采样筛选、PCR试剂注射和采样/试剂运输等工作的现场DNA分析系统。
尽管对本发明的具体实施方案进行了描述和说明,但除了以下权利要求中多确定的内容之外,并未对本发明进行限制。

Claims (50)

1.一种具有多个基本单元的中型泵,每个所述单元包括:
一个形成一个电极空腔的主体,所述电极空腔具有一个上电极和一个下电极,每个所述电极分别具有一个朝向另一个电极的曲面的曲面,以便形成所述空腔,所述主体包括可选择地为所述电极供能的电子致动装置;
一片双稳态膜片,其安装在所述主体上并接地,并且具有一个位于所述曲面之间的所述空腔内的主要部分,所述膜片向所述上电极和下电极的曲面挠曲,以便与其形状一致;
位于所述主体中的并构成入口端导管和出口端导管的横向导管装置,所述横向导管装置与安装在所述主体上的所述膜片部分在操作上相连接,并且其位置使得可以通过所述膜片的运动来开通或关断,以便控制通过所述入口端导管和出口端导管的流体的流动;
垂直导管装置,所述垂直导管装置与一个电极空腔的至少一个曲面在操作上相连接,以便通过所述膜片与所述垂直导管装置形成接触或脱离接触的运动而控制通过其中的流体的流动;以及
互连导管装置,用于连接所述单元与所述多个单元以便形成所述中型泵;
由此,所述电极的致动作用使得所述膜片在所述电极的所述曲面之间运动,从而使流体进出所述主体。
2.根据权利要求1的中型泵,其特征在于,所述单元还包括一个垂直背压控制导管,它位于相对的电极上且位于所述膜片的远离所述垂直导管装置的那一侧上。
3.根据权利要求1的中型泵,其特征在于,所述膜片由弯曲的金属制成以便增大其表面积并使其与所述曲面稳定地对齐。
4.根据权利要求1的中型泵,其特征在于,所述膜片具有足够的弹性以便使其表面区域与所述曲面相一致。
5.根据权利要求1的中型泵,其特征在于,所述膜片由一种具有足够弹性体性能的聚合物材料制成,以便可以在所述曲面之间运动。
6.根据权利要求1的中型泵,其特征在于,在所述膜片从一个电极的曲面移动到另一个电极的曲面时,与所述横向导管装置配合而开通所述入口端导管和出口端导管中的一个,并且关断所述入口端导管和所述出口端导管中的另一个。
7.根据权利要求1的中型泵,其特征在于,它包括多组基本单元,所述每个单元组包括:
一个第一单元,它具有一个入口端横向导管装置,所述入口端横向导管装置与一个流体源相连,所述第一单元具有一个由其垂直导管装置构成的流体出口;
一个第二单元,它通过一个作为其入口源的第二单元垂直导管装置与所述第一单元垂直导管装置相连,并且具有一个作为其流体出口的出口端横向导管装置;以及
一个第三单元,所述第三单元在入口端横向导管装置处与所述第二单元出口端横向导管装置相连,所述第三单元具有一个由其出口端垂直导管装置构成的流体出口。
8.根据权利要求7的中型泵,其特征在于,所述每个单元组还包括:
一个第四单元,它通过其作为入口源的垂直导管装置与所述第三单元的出口端垂直导管装置相连,并且其出口端横向导管装置作为其流体出口;
一个第五单元,它具有一个入口端横向导管装置,所述入口端横向导管装置与所述第四单元的所述流体出口相连,所述第五单元具有一个由其垂直导管装置构成的流体出口;以及
一个第六单元,所述第六单元通过一个作为其入口源的第六单元垂直导管装置与所述第五单元垂直导管装置相连,并且具有一个作为其流体出口的出口端横向导管装置。
9.根据权利要求7的中型泵,其特征在于,所述各组串联连接从而产生连续地沿着所述串联组累积的压力。
10.根据权利要求7的中型泵,其特征在于,所述各组并联连接以便产生高输出量。
11.根据权利要求7的中型泵,其特征在于,所述各组以三维串联/并联阵列方式连接起来,从而既能产生压力累积,又能产生高输出量。
12.根据权利要求7的中型泵,其特征在于,所述各组按树状结构相连,以便在不影响泵速的情况下降低回流压力。
13.根据权利要求12的中型泵,其特征在于,所述树状结构用作真空泵。
14.一种制造基本单元的方法,在一个中型泵中具有多个这种基本单元,包括以下步骤:
在主体中形成一个电极空腔,所述电极空腔具有一个上电极和一个下电极,每个所述电极分别具有一个朝向另一个电极的曲面的曲面,以便形成所述空腔;
将电子致动装置连接到所述主体上以便可选择地为所述电极供能;
在所述主体的至少一端形成横向导管装置,以便形成一个与所述空腔连通的至少一个入口端导管或出口端导管;
将一个适于向所述上电极和下电极的曲面挠曲以便与其形状一致的双稳态膜片安装在所述主体中并接地,并且使所述膜片的主要部分都位于所述曲面之间的所述空腔内;
将所述横向导管装置与安装在所述主体上的所述膜片部分相连接,并且使所述端导管正确定位,从而可以通过所述膜片的运动来开通或关断,以便控制通过所述端导管的流体的流动;
将垂直导管装置与所述空腔中的至少一个电极曲面相连接以便通过所述膜片与所述垂直导管装置形成接触或脱离接触的运动而控制通过其中的流体的流动;以及
提供用于连接所述单元与所述多个单元的互连导管装置,以便制得中型泵。
15.根据权利要求14的方法,其特征在于,它还包括一个步骤,即提供一个位于相对电极上的且位于所述膜片的远离所述垂直导管装置的那一侧上的垂直背压控制导管。
16.根据权利要求14的方法,其特征在于,它还包括一个步骤,即利用弯曲的金属来制得所述膜片以便增大其表面积并使其与所述曲面稳定地对齐。
17.根据权利要求14的方法,其特征在于,它还包括一个步骤,即利用具有足够弹性的聚合物来制得所述膜片以便使所述膜片的表面区域与所述曲面相一致。
18.根据权利要求14的方法,其特征在于,它还包括一个步骤,即利用一种具有足够弹性体性能的聚合物材料来制得所述膜片,以便使其可以在所述曲面之间运动。
19.根据权利要求14的方法,其特征在于,它还包括一个步骤,即安放所述膜片以便使在所述膜片从一个电极的曲面移动到另一个电极的曲面时,与所述横向导管装置配合而开通所述入口端导管和出口端导管中的一个,并且关断所述入口端导管和出口端导管中的另一个。
20.根据权利要求19的方法,其特征在于,它还包括一个步骤,即将所述膜片安放在其中一个所述电极的曲面上,从而密封与所述曲面相连的垂直导管装置。
21.根据权利要求14的方法,其特征在于,它还包括以下步骤:
形成多组基本单元,形成每个所述单元组包括:
安放第一单元,使入口端横向导管装置与一个流体源相连并提供一个由其垂直导管装置构成的流体出口;
通过作为其入口源的第二单元垂直导管装置将第二单元连接到所述第一单元垂直导管装置,并且提供一个作为其流体出口的出口端横向导管装置;以及
在第三单元的入口端横向导管装置处将第三单元连接到所述第二单元出口端横向导管装置,并且提供一个由其出口端垂直导管装置构成的流体出口。
22.根据权利要求21的方法,其特征在于,形成每个所述单元组还包括以下步骤:
通过作为其入口源的垂直导管装置将第四单元连接到所述第三单元出口端垂直导管装置,并提供一个出口端横向导管装置作为其流体出口;
安放具有一个与所述第四单元的所述流体出口相连的入口端横向导管装置的第五单元,并使所述第五单元具有一个由其垂直导管装置构成的流体出口;以及
通过作为其入口源的第六单元垂直导管装置将第六单元连接到所述第五单元垂直导管装置,并且提供一个出口端横向导管装置作为其流体出口。
23.根据权利要求14的方法,其特征在于,它还包括一个步骤,即将所述各组串联连接从而产生连续地沿着所述串联组累积的压力。
24.根据权利要求14的方法,其特征在于,它还包括一个步骤,即将所述各组并联连接以便产生高输出量。
25.根据权利要求14的方法,其特征在于,它还包括一个步骤,即将所述各组以三维串联/并联阵列方式连接起来,从而既能产生压力累积,又能产生高输出量。
26.根据权利要求14的方法,其特征在于,它还包括一个步骤,即将所述各组按树状结构连接,以便在不影响泵速的情况下降低回流压力。
27.一种利用根据权利要求7的中型泵泵送流体的方法,包括以下步骤:
将电压施加于接地的膜片与所述第一和第二单元的上电极之间,这时产生抽吸作用以便使流体通过所述第一单元入口端横向导管进入;
将电压转换到所述第一和第二单元的下电极上,这时流体通过其第二单元垂直导管装置流动至所述第二单元;以及
将电压转换回至所述第二单元的上电极上,并将电压施加于所述第三单元的所述上电极上,从而使得流体通过所述第二单元出口端横向导管装置和所述第三单元入口端横向导管装置流入所述第三单元,并通过其出口端横向导管装置从所述第三单元流出。
28.根据权利要求27的方法,其特征在于,在所述单元膜片从一个电极向另一个电极运动时,所述第一和第三单元的所述入口端横向导管被所述单元膜片关断。
29.根据权利要求27的方法,其特征在于,在所述单元膜片与具有所述垂直导管的电极曲面形成接触时,每个单元的所述垂直导管装置被所述单元膜片关断。
30.根据权利要求27的方法,其特征在于,将一个足够大的所述电压施加于所述电极上,以使所述膜片发生非线性运动,从而产生滚动致动作用以便使所述流体从一个单元流至下一个单元。
31.一种具有多个基本单元的中型泵,每个所述单元包括:
一个形成一个电极空腔的主体,所述电极空腔具有至少一个电极,所述电极具有一个朝向所述主体的对面部分上的曲面的曲面,以便形成所述空腔,所述主体包括可选择地为所述电极供能的电子致动装置;
一片膜片,它在拉伸状态下安装在所述主体上并接地,并且具有一个位于所述曲面之间的所述空腔内的主要部分,所述膜片适于朝向或背离所述电极的曲面弯曲;
位于所述主体中的构成一个端导管的横向导管装置,所述横向导管装置与安装在所述主体上的所述膜片部分在操作上相连接,并且其位置使得可以通过所述膜片的运动来开通或关断,以便控制通过所述端导管的流体的流动;
垂直导管装置,所述垂直导管装置与所述空腔的至少一个曲面在操作上相连接,以便通过所述膜片与所述垂直导管装置形成接触或脱离接触的运动而控制通过其中的流体的流动;以及
互连导管装置,用于连接所述单元与所述多个单元以便形成所述中型泵;
由此,所述电极的致动作用使得所述膜片向着所述电极的所述曲面运动,而所述电极停止致动作用时,所述膜片能回复至其初始位置,从而使流体进出所述主体。
32.根据权利要求31的中型泵,其特征在于,所述单元还包括垂直背压控制导管装置,它位于相对的电极上且位于所述膜片的远离所述垂直导管装置的那一侧上。
33.根据权利要求31的中型泵,其特征在于,所述膜片由一种具有足够弹性体性能的聚合物材料制成,以便可以在拉伸状态下运动。
34.根据权利要求31的中型泵,其特征在于,它包括多组基本单元,所述每个单元组包括:
一个第一单元,它具有一个入口端横向导管装置,所述入口端横向导管装置与一个流体源相连,所述第一单元具有一个由其垂直导管装置构成的流体出口;
一个第二单元,它通过一个作为其入口源的第二单元垂直导管装置与所述第一单元垂直导管装置相连,并且具有一个作为其流体出口的出口端横向导管装置;以及
一个第三单元,所述第三单元在入口端横向导管装置处与所述第二单元出口端横向导管装置相连,所述第三单元具有一个由其出口端垂直导管装置构成的流体出口。
35.根据权利要求34的中型泵,其特征在于,所述每个单元组还包括:
一个第四单元,它通过其作为入口源的垂直导管装置与所述第三单元出口端垂直导管装置相连,其出口端横向导管装置作为其流体出口;
一个第五单元,它具有一个入口端横向导管装置,所述入口端横向导管装置与所述第四单元的所述流体出口相连,所述第五单元具有一个由其垂直导管装置构成的流体出口;以及
一个第六单元,所述第六单元通过一个作为其入口源的第六单元垂直导管装置与所述第五单元垂直导管装置相连,并且具有一个作为其流体出口的出口端横向导管装置。
36.根据权利要求34的中型泵,其特征在于,所述各组串联连接从而产生连续地沿着所述串联组累积的压力。
37.根据权利要求34的中型泵,其特征在于,所述各组并联连接以便产生高输出量。
38.根据权利要求34的中型泵,其特征在于,所述各组以三维串联/并联阵列方式连接起来,从而既能产生压力累积,又能产生高输出量。
39.根据权利要求34的中型泵,其特征在于,所述各组按树状结构相连,以便在不影响泵速的情况下降低回流压力。
40.根据权利要求39的中型泵,其特征在于,所述树状结构用作真空泵。
41.根据权利要求31的中型泵,其特征在于,所述横向导管装置是一根横向导管,所述垂直导管装置是一根垂直导管。
42.根据权利要求41的中型泵,其特征在于,所述膜片由一种具有足够弹性体性能的聚合物材料制成,以便可以在拉伸状态下运动。
43.根据权利要求41的中型泵,其特征在于,所述膜片由一种具有足够弹性体性能的聚合物材料制成,以便可以在拉伸状态下运动。
44.根据权利要求41的中型泵,其特征在于,它包括多组基本单元,所述每个单元组包括:
一个第一单元,它具有一个入口端横向导管,所述入口端横向导管与一个流体源相连,所述第一单元具有一个由其垂直导管构成的流体出口;
一个第二单元,它通过一个作为其入口源的第二单元垂直导管与所述第一单元垂直导管相连,并且具有一个作为其流体出口的出口端横向导管;以及
一个第三单元,所述第三单元在入口端横向导管处与所述第二单元出口端横向导管相连,并且所述第三单元具有一个由其出口端垂直导管构成的流体出口。
45.根据权利要求44的中型泵,其特征在于,所述每个单元组还包括:
一个第四单元,它通过其作为入口源的垂直导管与所述第三单元出口端垂直导管相连,其出口端横向导管作为其流体出口;
一个第五单元,它具有一个入口端横向导管,所述入口端横向导管与所述第四单元的所述流体出口相连,所述第五单元具有一个由其垂直导管构成的流体出口;以及
一个第六单元,所述第六单元通过一个作为其入口源的第六单元垂直导管与所述第五单元垂直导管相连,并且具有一个作为其流体出口的出口端横向导管。
46.根据权利要求44的中型泵,其特征在于,所述各组串联连接从而产生连续地沿着所述串联组累积的压力。
47.根据权利要求44的中型泵,其特征在于,所述各组并联连接以便产生高输出量。
48.根据权利要求44的中型泵,其特征在于,所述各组以三维串联/并联阵列方式连接起来,从而既能产生压力累积,又能产生高输出量。
49.根据权利要求44的中型泵,其特征在于,所述各组按树状结构相连,以便在不影响泵速的情况下降低回流压力。
50.根据权利要求49的中型泵,其特征在于,所述树状结构用作真空泵。
CNB988143828A 1998-11-06 1998-11-06 中型泵、其制造方法及其用途 Expired - Lifetime CN1327132C (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US1998/023658 WO2000028215A1 (en) 1998-11-06 1998-11-06 Electrostatically actuated pumping array

Publications (2)

Publication Number Publication Date
CN1354823A CN1354823A (zh) 2002-06-19
CN1327132C true CN1327132C (zh) 2007-07-18

Family

ID=22268244

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB988143828A Expired - Lifetime CN1327132C (zh) 1998-11-06 1998-11-06 中型泵、其制造方法及其用途

Country Status (7)

Country Link
EP (1) EP1163446B1 (zh)
CN (1) CN1327132C (zh)
AT (1) ATE350580T1 (zh)
CA (1) CA2350076C (zh)
DE (1) DE69836836T2 (zh)
HK (1) HK1046945B (zh)
WO (1) WO2000028215A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102483055A (zh) * 2009-08-11 2012-05-30 卓越剂量技术有限公司 隔膜机

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6568286B1 (en) 2000-06-02 2003-05-27 Honeywell International Inc. 3D array of integrated cells for the sampling and detection of air bound chemical and biological species
US6729856B2 (en) 2001-10-09 2004-05-04 Honeywell International Inc. Electrostatically actuated pump with elastic restoring forces
US6637476B2 (en) 2002-04-01 2003-10-28 Protedyne Corporation Robotically manipulable sample handling tool
DE10302304B3 (de) * 2003-01-22 2004-01-29 Festo Ag & Co. Elektronisches Mikroventil und Verfahren zu seinem Betreiben
US7249529B2 (en) 2003-03-28 2007-07-31 Protedyne Corporation Robotically manipulable sample handling tool
US6991213B2 (en) * 2003-12-30 2006-01-31 Honeywell International Inc. Dual diaphragm valve
US7100453B2 (en) 2003-12-30 2006-09-05 Honeywell International Inc. Modified dual diaphragm pressure sensor
EP1834091A4 (en) * 2004-12-14 2009-12-09 Medipacs Inc ACTUATOR PUMPING SYSTEM
US7353747B2 (en) * 2005-07-28 2008-04-08 Ethicon Endo-Surgery, Inc. Electroactive polymer-based pump
WO2008079440A2 (en) 2006-07-10 2008-07-03 Medipacs, Inc. Super elastic epoxy hydrogel
EP1916420B1 (en) 2006-10-28 2009-09-23 Sensirion Holding AG Multicellular pump
NL2000466C2 (nl) * 2007-02-02 2008-08-05 Grood Johannes Petrus Wilhelmu Werkwijze en inrichting voor het dispenseren van een vloeistof.
JP2011505520A (ja) 2007-12-03 2011-02-24 メディパックス インコーポレイテッド 流体計量供給装置
WO2011032011A1 (en) 2009-09-10 2011-03-17 Medipacs, Inc. Low profile actuator and improved method of caregiver controlled administration of therapeutics
US8556392B2 (en) 2009-11-24 2013-10-15 De Grood Innovations B.V. Method and device for dispensing a liquid
US9500186B2 (en) 2010-02-01 2016-11-22 Medipacs, Inc. High surface area polymer actuator with gas mitigating components
US8839815B2 (en) 2011-12-15 2014-09-23 Honeywell International Inc. Gas valve with electronic cycle counter
US9835265B2 (en) 2011-12-15 2017-12-05 Honeywell International Inc. Valve with actuator diagnostics
US9557059B2 (en) 2011-12-15 2017-01-31 Honeywell International Inc Gas valve with communication link
US8905063B2 (en) 2011-12-15 2014-12-09 Honeywell International Inc. Gas valve with fuel rate monitor
US9846440B2 (en) 2011-12-15 2017-12-19 Honeywell International Inc. Valve controller configured to estimate fuel comsumption
US9851103B2 (en) 2011-12-15 2017-12-26 Honeywell International Inc. Gas valve with overpressure diagnostics
US8899264B2 (en) 2011-12-15 2014-12-02 Honeywell International Inc. Gas valve with electronic proof of closure system
US9995486B2 (en) 2011-12-15 2018-06-12 Honeywell International Inc. Gas valve with high/low gas pressure detection
US9074770B2 (en) 2011-12-15 2015-07-07 Honeywell International Inc. Gas valve with electronic valve proving system
US8947242B2 (en) 2011-12-15 2015-02-03 Honeywell International Inc. Gas valve with valve leakage test
JP2015510956A (ja) 2012-03-14 2015-04-13 メディパックス インコーポレイテッド 過剰反応性分子を含むスマートポリマー材料
US10422531B2 (en) 2012-09-15 2019-09-24 Honeywell International Inc. System and approach for controlling a combustion chamber
US9234661B2 (en) 2012-09-15 2016-01-12 Honeywell International Inc. Burner control system
DE102013209866B4 (de) 2013-05-28 2021-11-04 Robert Bosch Gmbh Vorrichtung mit vorgegebener Fluidverdrängung
EP2868970B1 (en) 2013-10-29 2020-04-22 Honeywell Technologies Sarl Regulating device
US10024439B2 (en) 2013-12-16 2018-07-17 Honeywell International Inc. Valve over-travel mechanism
US9841122B2 (en) 2014-09-09 2017-12-12 Honeywell International Inc. Gas valve with electronic valve proving system
US9645584B2 (en) 2014-09-17 2017-05-09 Honeywell International Inc. Gas valve with electronic health monitoring
CN104358674A (zh) * 2014-10-24 2015-02-18 安徽理工大学 一种基于超磁致伸缩薄膜驱动器的双平面线圈驱动式微泵
CN105201796A (zh) * 2015-10-29 2015-12-30 宁波大学 一种压电蠕动微泵
US10503181B2 (en) 2016-01-13 2019-12-10 Honeywell International Inc. Pressure regulator
CN108496004B (zh) * 2016-02-01 2020-03-31 株式会社村田制作所 气体控制装置
US10564062B2 (en) 2016-10-19 2020-02-18 Honeywell International Inc. Human-machine interface for gas valve
CN110168223B (zh) * 2016-12-30 2021-09-07 皇家飞利浦有限公司 静电蠕动泵及其操作方法
EP3596339A4 (en) * 2017-03-13 2020-07-29 Marsh, Stephen Alan MICROPUMP SYSTEMS AND PROCESSING TECHNIQUES
TW201912248A (zh) 2017-08-31 2019-04-01 研能科技股份有限公司 氣體輸送裝置
US11073281B2 (en) 2017-12-29 2021-07-27 Honeywell International Inc. Closed-loop programming and control of a combustion appliance
DE102018207858B4 (de) * 2018-05-18 2021-06-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und Haltevorrichtung zum Herstellen einer Mikropumpe mit mechanisch vorgespanntem Membranaktor
US10697815B2 (en) 2018-06-09 2020-06-30 Honeywell International Inc. System and methods for mitigating condensation in a sensor module
CN112673243A (zh) * 2018-09-14 2021-04-16 芬兰国家技术研究中心股份公司 压力传感器
CN109771740B (zh) * 2019-03-01 2020-11-27 浙江师范大学 一种气动输液装置
DE102019004450B4 (de) * 2019-06-26 2024-03-14 Drägerwerk AG & Co. KGaA Mikropumpensystem und Verfahren zur Führung eines kompressiblen Fluids
CN113482893B (zh) * 2021-06-10 2022-04-01 浙江大学 一种基于介电弹性材料的柔性泵

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0412270A1 (en) * 1989-08-07 1991-02-13 International Business Machines Corporation Micromechanical compressor cascade and method of increasing the pressure at extremely low operating pressure
US5380396A (en) * 1991-05-30 1995-01-10 Hitachi, Ltd. Valve and semiconductor fabricating equipment using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB514815A (en) * 1938-06-08 1939-11-17 Nils Nilsen Straatveit Improvements connected with reciprocating compressors or pumps

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0412270A1 (en) * 1989-08-07 1991-02-13 International Business Machines Corporation Micromechanical compressor cascade and method of increasing the pressure at extremely low operating pressure
US5380396A (en) * 1991-05-30 1995-01-10 Hitachi, Ltd. Valve and semiconductor fabricating equipment using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102483055A (zh) * 2009-08-11 2012-05-30 卓越剂量技术有限公司 隔膜机

Also Published As

Publication number Publication date
DE69836836T2 (de) 2007-06-28
DE69836836D1 (de) 2007-02-15
CA2350076A1 (en) 2000-05-18
EP1163446A1 (en) 2001-12-19
WO2000028215A1 (en) 2000-05-18
HK1046945A1 (en) 2003-01-30
ATE350580T1 (de) 2007-01-15
CN1354823A (zh) 2002-06-19
CA2350076C (en) 2008-12-30
EP1163446B1 (en) 2007-01-03
HK1046945B (zh) 2008-05-23

Similar Documents

Publication Publication Date Title
CN1327132C (zh) 中型泵、其制造方法及其用途
US5836750A (en) Electrostatically actuated mesopump having a plurality of elementary cells
US6106245A (en) Low cost, high pumping rate electrostatically actuated mesopump
EP1212532B1 (en) Dual diaphragm pump
US6655923B1 (en) Micromechanic pump
KR100286486B1 (ko) 엘라스토머성 마이크로 전기기계 시스템
US7648619B2 (en) Hydrogel-driven micropump
US6994314B2 (en) Valves activated by electrically active polymers or by shape-memory materials, device containing same and method for using same
Cabuz et al. The dual diaphragm pump
US7052594B2 (en) Devices and methods for controlling fluid flow using elastic sheet deflection
EP1289658B1 (en) Valve for use in microfluidic structures
US8440093B1 (en) Methods and devices for electronic and magnetic sensing of the contents of microfluidic flow channels
US20060102862A1 (en) Electrostatic sealing device and method of use thereof
WO2007030750A1 (en) Dual chamber valveless mems micropump
US20210363983A1 (en) MIcro Pump Systems and Processing Techniques
CN101881752B (zh) 微型二维离子迁移谱仪
Shoji et al. A study of a high-pressure micropump for integrated chemical analysing systems
US20030196900A1 (en) Hydrogel-driven micropump
CN1521500A (zh) 低电压低功率热气泡薄膜式微流体驱动装置
CN110918145B (zh) 微流控面板及其驱动方法
US20210220824A1 (en) Micro-channel device and manufacturing method thereof and micro-fluidic system
Schomburg et al. Components for microfluidic handling modules
Shoji Microfabrication technologies and micro-flow devices for chemical and bio-chemical micro flow systems
CN117705890A (zh) 一种集成式气体检测系统及其制造方法
KR20150089223A (ko) 마이크로 펌프 및 그 제조 방법

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20070718