CN1326648C - 制备高密度软磁产品的方法 - Google Patents

制备高密度软磁产品的方法 Download PDF

Info

Publication number
CN1326648C
CN1326648C CNB028118391A CN02811839A CN1326648C CN 1326648 C CN1326648 C CN 1326648C CN B028118391 A CNB028118391 A CN B028118391A CN 02811839 A CN02811839 A CN 02811839A CN 1326648 C CN1326648 C CN 1326648C
Authority
CN
China
Prior art keywords
powder
compacting
pressure head
high density
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB028118391A
Other languages
English (en)
Other versions
CN1516629A (zh
Inventor
O·安德松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoganas AB
Original Assignee
Hoganas AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoganas AB filed Critical Hoganas AB
Publication of CN1516629A publication Critical patent/CN1516629A/zh
Application granted granted Critical
Publication of CN1326648C publication Critical patent/CN1326648C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0257Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
    • C22C33/0264Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements the maximum content of each alloying element not exceeding 5%
    • C22C33/0271Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements the maximum content of each alloying element not exceeding 5% with only C, Mn, Si, P, S, As as alloying elements, e.g. carbon steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • B22F3/087Compacting only using high energy impulses, e.g. magnetic field impulses
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

本发明涉及一种制备用于软磁应用的高密度压实体的方法。该方法包括步骤:将一种颗粒电绝缘的铁或者铁基软磁粉末通过单轴压缩运动压制,其压头速度至少为2m/s。

Description

制备高密度软磁产品的方法
发明领域
本发明涉及粉末冶金的一般领域。具体地,本发明涉及一种制备高密度软磁产品的方法。
发明背景
近年来,应用粉末金属制造软磁芯件已得到拓宽,研究已经针对可以提高特定的物理和磁性能,而不会对其它性能产生有害影响的铁粉末组合物的开发。为实现这一目的,已经进行了许多努力,以提供可使单个铁粉末颗粒绝缘的电涂层,在这一领域公开了许多不同涂层的例子。
依据US专利3245841,通过用一种包含磷酸和铬酸的涂层液将一种铁粉末进行处理制成了一种绝缘粉末。在比如US 5798177和DE3439397中也描述了绝缘涂层。依据这些文献,通过将铁基粉末用含磷酸的涂层液处理来获得涂层。随后通过将绝缘粉末进行加热处理制得压实产品。在US 4602957中公开了另一类型的涂层。依据这一专利,通过将一种铁粉末用重铬酸钾的水溶液处理,干燥粉末,压实粉末制成压实产品,然后将压实产品在基本上600℃下进行加热处理制得了一种磁粉末芯。在其它已知的工艺中,在压制之前,将软铁颗粒用热塑性材料进行包覆。由此,US专利4947065和5198137披露了这样的用一种热塑性材料包覆铁粉末的方法。更近地,在PCT SE97/00283中描述了一种将用于软磁应用的铁基粉末进行包覆的方法。这样,通过使用不同类型的涂层和涂层技术,最近,已经显著提高了所期望的性能,比如在拓宽的频率范围内的高磁导率,高压缩强度,低磁心损耗和对压力造型技术的适用性。
除了在用于软磁应用的涂层粉末开发上的努力外,正如在US专利6331270中所描述的那样,也在为提高无涂层粉末的性能进行了努力。
现已发现,磁性能,比如作为频率的函数的起始磁导率(频率稳定性),可以通过使用一种高速压制(HVC)技术来进行提高,这一技术下面要进行更详细的描述。特别地,没有预料到的是发现通过这种HVC技术,对于一个给定的密度,在不同频率下的起始磁导率显著提高,而且对于绝缘的和不绝缘的粉末颗粒都观察到了这些性能。
发明目的
本发明的一个目的是提供一种制备高密度软磁产品的方法,特别是密度在7.25g/cm3以上,优选的在7.30g/cm3以上,最优选的在7.35g/cm3以上的产品。
第二个目的是提供一种适用于工业应用的,大批量生产这种高密度产品的压制方法。
第三个目的是提供具有高密度和高生坯强度的压实体。
第四个目的是提供一种具有高起始磁导率的软磁压实体。
发明简述
这一制备所述高密度压实体的方法概括地讲包括如下步骤:将一种铁或者铁基软磁粉末用一个单轴压缩运动进行HVC压制,压头速度至少2m/s。粉末颗粒可以是电绝缘的,但不是必须的。
发明详述
基体粉末,即不绝缘的粉末,可以是一种基本上纯的水雾化铁粉末,或者是一种具有不规则形状的颗粒的海棉铁粉末。在本文中,术语“基本上纯的”意思是指粉末应该基本上不含夹杂物,而且杂质O,C和N的含量应该保持在最小量。通常地,平均颗粒尺寸在300μm以下,且高于10μm。这类粉末的例子如可以从瑞典(Sweden)的Hgans AB得到的ABC100.30,ASC100.29,AT40.29,ASC200,ASC300,NC100.24,SC100.26,MH300,MH40.28,MH40.24。
为了提高在交变磁场中的性能,可以应用一种绝缘涂层。该涂层也允许可以进一步提高磁性能的热处理。相信该涂层和涂层方法并不严格,且涂层可以例如是上面所公开的那些中的任意一个。特别优选的是基于磷和硅酮,铝和钛的薄涂层。
为了得到依据本发明的具有所希望的高密度的产品,重要的是压制方法。通常所用的压制设备不能十分满意的工作,因为在设备上的应变过大。现已发现,使用在US专利6202757中公开的计算机控制撞压机(percussion machine)可以得到所需要的高密度,因此这里将这一专利引入用作参考。具体地,在模具空腔里装有粉末,该空腔具有对应于最终所希望的压实件形状的形状,用该撞压机的撞压压头撞压模具的上冲杆。当辅助以一种持模系统,例如传统所用的模具,以及一个粉末装填单元(这也可以是传统类型)后,这种撞压机可以提供一种工业化的使用方法来生产高密度的压实体。一个特别重要的好处是,与以前提出的方法相反,这一由液压驱动的配置允许进行所述高密度部件的大批量生产(连续化生产)。
在US专利6202757中,说明了这种撞压机的使用包括“绝热”成型。由于其压制是否是严格的科学意思上的绝热并不是完全清楚,我们对于该类型的压制使用高速压制(HVC)一词,其中,压制产品的密度通过传递给粉末的撞击能来控制。
依据本发明,压头速度应该在2m/s以上。压头速度是通过模具的冲杆向粉末提供能量的一种方式。在传统压制中的压制压力和压头速度之间不存在直接的等价关系。这种用计算机控制的HVC得到的压制除了依赖于压头速度外,还依赖于所要压制的粉末数量,撞击体的重量,撞击或者击打次数,撞击长度和部件最终的几何尺寸。而且,大量的粉末比少量的粉末需要更多的撞击。这样,对于HVC压制的最优条件,即应该传递到粉末上的动能的量,可以由本专业技术人员通过进行实验来确定。然而,与在US专利6202757中所披露的相反,为了压制粉末,不需要使用包括轻度击打,高能击打和中度能击打的特别的撞击程序。依据本发明,击打(如果需要多次击打)可以是基本相同的,并向粉末提供相同的能量。
如在实施例中所阐释的那样,使用现有设备的实验允许的压头速度达30m/s,在压头速大约为10m/s时得到高的生坯密度。然而,依据本发明的方法,不限于这些压头速度,相信可以采用的压头速度最高达到100或者甚至是最高达到200或者250m/s。然而,压头速度低于大约2m/s,就不能得到显著的致密化效果。优选的压头速度在3m/s以上。最优选的压头速度在5m/s以上。
压制可以在一个润滑的模具中进行。在所要压制的粉末中包含适量特定的润滑剂也是可以的。可供选择地,可以将二者结合使用。润滑剂可以从传统使用的润滑剂中选择,例如金属皂,蜡和热塑性材料,如聚酰胺,聚酰亚胺,聚烯烃,聚酯,聚烷氧化物,多元醇。润滑剂的具体例子是硬脂酸锌,H-wax和Kenolube。润滑剂的用量可以变化,最高可以达到粉末组合物的1%重量比。
用下面的实施例对本发明作进一步的说明:
实施例1
该实施例说明了用一种软磁粉末(从瑞典的Hgans AB得的Somaloy 500)获得高起始磁导率的可能性,该粉末的颗粒是电绝缘的。
将100g粉末用在一个尺寸为Φ72/56的环形工具(ring tool)中。使用了传统压制和HVC压制。测试了下面的两种混合物:
Somaloy 500+0.2%Kenolube*
Somaloy 500+0%Kenolube*
*润滑剂从瑞典的Hgans AB得到
压制机是瑞典Hydropulsor的Model HYP 35-4。
对于两种压制方法和两种混合物使用了同类型的模具壁润滑剂。
生坯密度由阿基米德原理(1)确定。
ρ=mair/(mair-mw)                 (1)
mair=在空气中的质量
mw=在水中的质量
测量每个样品的高度,外直径和内直径。在压制之后,将环型件用绝缘的铜线缠绕25匝。在1000Hz和2000Hz下用HP4284.A LCR-测量仪测量线圈的电感。电感在低电流(10mA)下测量,然后用(2)计算出起始磁导率。
μin=L*l*10-3/(N2*A*μ0)             (2)
L=电感测量值,单位μHenry
l=磁体长度,单位cm
N=匝数
A=截面积,单位cm2
μ0=自由空间的磁导率
样品具有相同的几何尺寸,并用完全相同的方式进行测试。在一个给定的密度下,在HVC和传统压制的样品之间观察到所没有预料到的起始磁导率的差异,参见图1。HVC压制所用的压头速度在大约7-8m/s。
实施例2
该实施例说明了用一种其颗粒在压制之前不是电绝缘的的粉末(从瑞典的Hgans获得的ABC100.30)获得高起始磁导率和高频率稳定性的可能性。
样品具有相同的几何尺寸,并用完全相同的方式进行测试。在一个给定的密度下,在HVC和传统压制的样品之间观察到没有预料到的差异,参见图2和3。在压制之前,分别将按重量比为0.2%和0.5%的一种特定的润滑剂(Kenolube)加入到铁粉末中。在图2中,HVC压制所用的击打长度分别为85和100mm,对应于压头速度8和9m/s。在图3中,HVC压制所用的击打长度分别为70和90mm,对应于压头速度7.5和8.5m/s。
实施例3
用HVC压制经过两次撞击,得到尺寸为Φ50/30×10mm的环。该环型件的材料是混有0.5%或者0.1%的KenolubeTM的Somaloy500TM。含有0-1%的Kenolube的压制在有模具壁润滑剂的支持下进行。表1给出了这一压制的数据,生坯密度和理论密度的百分比。
表1压制数据
材料 第1次撞击能/[Nm] 第2次撞击能/[Nm]   总压制能[Nm]   生坯密度[g/cm3]   理论密度%
Somaloy 500+0.5%Kenolube 1778 3111   4889   7.52   99.6
Somaloy 500+0.1%Kenolube 2667 4000   6667   7.68   98.9
在经过HVC压制,并在500℃下于空气中热处理30分钟之后,在样品上缠绕25匝读出线圈和150匝励磁线圈,然后用LDJ3500测量磁滞回线图。表2显示出,用HVC能够得到的未烧结粉末部件的高磁感应。从表2中的磁心损耗数据可以很容易地看出获得了高的电阻率。
表2磁性能
材料 B10kA/m μmax     磁心损耗/cycleIT[J/kg]50Hz          200Hz
Somaloy 500+0.5%Kenolube   1.55   530     0.112     0.130
Somaloy 500+0.1%Kenolube   1.67   660     0.106     0.127

Claims (7)

1.制备用于交变磁场中的软磁应用的高密度压实体的方法,其包括步骤:将一种铁或者铁基软磁粉末用一个单轴的压缩运动进行高速压制,压头速度2-10m/s。
2.权利要求1中的方法,其特征在于进行压制的压头速度在5-10m/s。
3.权利要求1中的方法,其特征在于压制作为温压制进行。
4.权利要求1中的方法,其特征在于所用的粉末颗粒是电绝缘的。
5.权利要求1中的方法,其特征在于压制在一个润滑的模具中进行,并可以使用或者不使用内部润滑剂。
6.权利要求1中的方法,其特征在于进行压制所用的粉末按重量比包含至多1%的润滑剂。
7.权利要求6中的方法,其特征在于进行压制所有的粉末按重量比包含至多0.5%的润滑剂。
CNB028118391A 2001-06-13 2002-06-12 制备高密度软磁产品的方法 Expired - Fee Related CN1326648C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE0102103A SE0102103D0 (sv) 2001-06-13 2001-06-13 High density soft magnetic products and method for the preparation thereof
SE01021039 2001-06-13

Publications (2)

Publication Number Publication Date
CN1516629A CN1516629A (zh) 2004-07-28
CN1326648C true CN1326648C (zh) 2007-07-18

Family

ID=20284469

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB028118391A Expired - Fee Related CN1326648C (zh) 2001-06-13 2002-06-12 制备高密度软磁产品的方法

Country Status (14)

Country Link
US (1) US6503444B1 (zh)
EP (1) EP1404473B1 (zh)
JP (1) JP2004528481A (zh)
KR (1) KR100945365B1 (zh)
CN (1) CN1326648C (zh)
BR (1) BR0210388B1 (zh)
CA (1) CA2450427C (zh)
DE (1) DE60213413T2 (zh)
ES (1) ES2268047T3 (zh)
MX (1) MXPA03011537A (zh)
RU (1) RU2292987C2 (zh)
SE (1) SE0102103D0 (zh)
TW (1) TW557454B (zh)
WO (1) WO2002100580A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7153594B2 (en) 2002-12-23 2006-12-26 Höganäs Ab Iron-based powder
US7211920B2 (en) * 2003-09-05 2007-05-01 Black & Decker Inc. Field assemblies having pole pieces with axial lengths less than an axial length of a back iron portion and methods of making same
US7078843B2 (en) * 2003-09-05 2006-07-18 Black & Decker Inc. Field assemblies and methods of making same
US7205696B2 (en) * 2003-09-05 2007-04-17 Black & Decker Inc. Field assemblies having pole pieces with ends that decrease in width, and methods of making same
US20060226729A1 (en) * 2003-09-05 2006-10-12 Du Hung T Field assemblies and methods of making same with field coils having multiple coils
US7146706B2 (en) * 2003-09-05 2006-12-12 Black & Decker Inc. Method of making an electric motor
US20050189844A1 (en) * 2003-09-05 2005-09-01 Du Hung T. Field assemblies having pole pieces with dovetail features for attaching to a back iron piece(s) and methods of making same
SE0302427D0 (sv) * 2003-09-09 2003-09-09 Hoeganaes Ab Iron based soft magnetic powder
EP2562912A1 (en) * 2005-03-07 2013-02-27 Black & Decker Inc. Power Tools with Motor Having a Multi-Piece Stator
JP2007013072A (ja) * 2005-05-30 2007-01-18 Mitsubishi Materials Pmg Corp 圧粉磁心の製造方法とその圧粉磁心並びに圧粉磁心を用いたリアクトル
KR101269688B1 (ko) 2006-05-22 2013-05-30 한국생산기술연구원 연자성 코어의 제조방법
US20110234347A1 (en) * 2010-03-24 2011-09-29 Aspect Magnet Technologies Ltd. Pole piece for permanent magnet mri systems
CN104134529B (zh) * 2014-07-21 2016-08-17 华南理工大学 一种各向异性纳米晶钕铁硼磁体及其制备方法与应用
CN105458249A (zh) * 2015-11-26 2016-04-06 扬州海昌粉末冶金有限公司 一种制备高磁导率烧结铁基软磁产品的方法
WO2019122307A1 (de) * 2017-12-22 2019-06-27 Querdenkfabrik Ag Verfahren zur herstellung eines weichmagnetischen formteils und weichmagnetisches formteil

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0331286A2 (en) * 1988-03-03 1989-09-06 General Motors Corporation Rapid compaction of rare earth-transition metal alloys in a fluid-filled die
US4925501A (en) * 1988-03-03 1990-05-15 General Motors Corporation Expolosive compaction of rare earth-transition metal alloys in a fluid medium
CN1043649A (zh) * 1988-12-31 1990-07-11 吴成义 钕铁硼球形非晶微晶粉末制备方法
US5541868A (en) * 1995-02-21 1996-07-30 The United States Of America As Represented By The Secretary Of The Navy Annular GMR-based memory element
WO1996030144A1 (en) * 1995-03-28 1996-10-03 Höganäs Ab Soft magnetic anisotropic composite materials
CN1220248A (zh) * 1997-12-19 1999-06-23 化学工业部天津化工研究院 氧化锆-氧化铝复合物的制法及其用途

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1046241A (en) 1961-08-31 1966-10-19 Secr Defence Improvements in the production of iron powder having high electrical resistivity
GB8425860D0 (en) 1984-10-12 1984-11-21 Emi Ltd Magnetic powder compacts
DE3439397A1 (de) 1984-10-27 1986-04-30 Vacuumschmelze Gmbh, 6450 Hanau Verfahren zur pulvermetallurgischen herstellung eines weichmagnetischen koerpers
US5198137A (en) 1989-06-12 1993-03-30 Hoeganaes Corporation Thermoplastic coated magnetic powder compositions and methods of making same
US4947065A (en) 1989-09-22 1990-08-07 General Motors Corporation Stator assembly for an alternating current generator
SE9401392D0 (sv) 1994-04-25 1994-04-25 Hoeganaes Ab Heat-treating of iron powders
EP0833714B1 (en) 1995-06-21 2000-10-25 Hydropulsor Ab Impact machine
JP4187266B2 (ja) 1996-02-23 2008-11-26 ホガナス アクチボラゲット リン酸塩被覆した鉄粉末およびその製造方法
SE511834C2 (sv) * 1998-01-13 1999-12-06 Valtubes Sa Heltäta produkter framställda genom enaxlig höghastighetspressning av metallpulver

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0331286A2 (en) * 1988-03-03 1989-09-06 General Motors Corporation Rapid compaction of rare earth-transition metal alloys in a fluid-filled die
US4925501A (en) * 1988-03-03 1990-05-15 General Motors Corporation Expolosive compaction of rare earth-transition metal alloys in a fluid medium
CN1043649A (zh) * 1988-12-31 1990-07-11 吴成义 钕铁硼球形非晶微晶粉末制备方法
US5541868A (en) * 1995-02-21 1996-07-30 The United States Of America As Represented By The Secretary Of The Navy Annular GMR-based memory element
WO1996030144A1 (en) * 1995-03-28 1996-10-03 Höganäs Ab Soft magnetic anisotropic composite materials
CN1220248A (zh) * 1997-12-19 1999-06-23 化学工业部天津化工研究院 氧化锆-氧化铝复合物的制法及其用途

Also Published As

Publication number Publication date
SE0102103D0 (sv) 2001-06-13
DE60213413D1 (de) 2006-09-07
DE60213413T2 (de) 2006-12-21
US20020192104A1 (en) 2002-12-19
BR0210388A (pt) 2004-06-29
KR20040014555A (ko) 2004-02-14
MXPA03011537A (es) 2004-03-26
EP1404473A1 (en) 2004-04-07
WO2002100580A1 (en) 2002-12-19
KR100945365B1 (ko) 2010-03-08
CA2450427C (en) 2008-05-06
ES2268047T3 (es) 2007-03-16
JP2004528481A (ja) 2004-09-16
CA2450427A1 (en) 2002-12-19
US6503444B1 (en) 2003-01-07
RU2292987C2 (ru) 2007-02-10
TW557454B (en) 2003-10-11
CN1516629A (zh) 2004-07-28
RU2004100544A (ru) 2005-06-10
BR0210388B1 (pt) 2012-02-07
EP1404473B1 (en) 2006-07-26

Similar Documents

Publication Publication Date Title
CN1326648C (zh) 制备高密度软磁产品的方法
CN101681709B (zh) 软磁性粉末
US7153594B2 (en) Iron-based powder
EP0647180A1 (en) Thermoplastic coated magnetic powder compositions and methods of making same
JP2006225766A (ja) 磁性鉄粉末の熱処理
US20020117907A1 (en) Electromagnetic pressing of powder iron for stator core applications
CA2552142C (en) Powder composition, method for making soft magnetic components and soft magnetic composite component
CA2505381C (en) Soft magnetic powder composition comprising insulated particles and a lubricant selected from organo-silanes, -titanates, -aluminates and zirconates and a process for their preparation
EP2656359A1 (en) Soft magnetic powder
CN106920622A (zh) 一种高性能smc软磁复合材料的制备工艺
Grande et al. Investigations on different processing conditions on soft magnetic composite material behavior at low frequency
AU2004270090A1 (en) Iron based soft magnetic powder
JP4849500B2 (ja) 圧粉磁心およびその製造方法
WO2009136854A1 (en) Method for improving the magnetic properties of a compacted and heat treated soft magnetic composite component
JP6174954B2 (ja) 圧粉成形体の製造方法
TW200423158A (en) Heat treatment of iron-based components
KR20070112522A (ko) 연자성 분말 제조방법
WO2005035171A1 (en) Method of producing a soft magnetic composite component with high resistivity

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070718

Termination date: 20120612