CN1326296C - 固体激光器 - Google Patents

固体激光器 Download PDF

Info

Publication number
CN1326296C
CN1326296C CNB028284291A CN02828429A CN1326296C CN 1326296 C CN1326296 C CN 1326296C CN B028284291 A CNB028284291 A CN B028284291A CN 02828429 A CN02828429 A CN 02828429A CN 1326296 C CN1326296 C CN 1326296C
Authority
CN
China
Prior art keywords
face
depolarising
birefringence
laser
yag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB028284291A
Other languages
English (en)
Other versions
CN1623256A (zh
Inventor
平等拓范
庄司一朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Publication of CN1623256A publication Critical patent/CN1623256A/zh
Application granted granted Critical
Publication of CN1326296C publication Critical patent/CN1326296C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0602Crystal lasers or glass lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08072Thermal lensing or thermally induced birefringence; Compensation thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/163Solid materials characterised by a crystal matrix
    • H01S3/164Solid materials characterised by a crystal matrix garnet
    • H01S3/1643YAG

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Lasers (AREA)
  • Polarising Elements (AREA)

Abstract

提供能使热双折射效应大幅度地降低的固体激光器。在激光器方面,通过使用(110)切割晶体,无须进行什么补偿,而可大幅度地降低因热双折射率而产生的去极化。和(111)切割晶体相比,去极化可减少一个数量级以上。

Description

固体激光器
发明领域
本发明有关光学器件,尤其关于YAG激光器。
背景技术
现有作为有关本发明的参考文献,有如下所示的多篇。
[1]:W.Koechner,Solid-State Laser Engineering(SpringerVerlag,Berlin.1996),pp.393-412.
[2]:W.C.Scott and M.de Wit,“Birefringence compensation andTEM00 mode enhancement in a Nd:YAG laser,”Appl.Phys.Lett.18,3-4(1971).
[3]:K.Yasui,“Efficient and stable operation of a high-brightnesscw 500-W Nd:YAG rod laser,”Appl.Opt.35,2566-2569(1996).
[4]:W.A.Clarks on,N.S.Felgate,and D.C.Hanna,“Simplemethod for redncing the depolarization loss resulting from thermallyinduced birefringence in solid-state lasers,”Opt.Lett.24.820-822(1999).
[5]:W.Koechner and D.K.Rice,“Effect of birefringence on theperformance of linearly polarized YAG:Nd lasers,”IEEE J.QuantumElectron.QE-6,557-566(1970).
[6]:W.Koechner and D.K.Rice,“Birefringence of YAG:Nd laserrods as a function of growth direction,”J.Opt.Soc.Am.61,758-766(1971).
[7]:I.Shoji,Y.Sato,S.Kurimura,V.Lupei,T.Taira,A.Ikesue,and K.Yoshida,“Thermal birefringence in Nd:YAG ceramics,”Trends in Optics and Photonics,Vol.50.Advanced Solid-StateLasers,C.Marshall,ed.(Optical Society of America,Washington,DC2001).pp.273-278.
[8]:L.N,Soms,A.A.Tarasov,and V.V.Shashkin,“Problemof depolarization of linearly Polarized light by a YAG:Nd3+ laser-active element under thermally induced birefringence conditions,”Sov.J.Quantum Electron.10,350-351(1980).
[9]:V.Parfenov,V.Shashkin,and E.Stepanov,“Numericalinvestigation of thermally induced birefringence in optical elements ofsolid-state lasers,”Appl.Opt.32,5243-5255(1993).
谋求固体激光器的高输出化,高质量化时候,伴随激发而在介质内产生的热双折射率成为大的问题。为了补偿因为热双折射率而产生的去极化(对原先直线偏振光发生垂直方向的偏振光成分的比率:Dpol=P/Pinitial)得到直线偏振光,直到今天,激光器介质的配置和与光学器件的组合等想了各式各样的办法了。
在固体状态的激光材料方面,伴随激发引起的热双折射率效应,在谋求激光器的高输出,高质量化方面是重大的问题。原因是,引起直线性偏振光束的双焦点化(bifocusing)和去极化(参考文献[1])。
这些现象在YAG等固体激光器高输出化时成为大的障碍。直到今天,为了补偿发生的去极化,提出用90°转子(rotator)、4分之1波长板等的几种技术(参考文献[2]~[4])。这样的补偿,仅对(111)切割的YAG晶体适用。其理由是,(111)面的双折射率是圆形对称(circularly symmerical)的,再一个理由是因为YAG棒通常沿着(111)方向生长,所以用(111)切割的棒是很适合的缘故。
这样,作为代表性激光材料的YAG晶体,可以使用现有(111)方向生长的棒。
发明内容
但是,就像上述一样,对现有的YAG激光器而言,因为设光的传播方向为(111)轴方向,消除因随着激发而发生热感应畸变的光弹性效应造成的双折射率(热双折射率),必需在共振器内部插入多余的光学零件之类,采用成为锯齿形片形式等特殊的形状配置。
本发明鉴于上述状况,其目的在于提供能使热双折射率效应大幅度地降低的固体激光器。
为达成上述目的,根据本发明的一个方面,一种固体激光器,包括:半径为r0的(110)切割晶体棒,该固体激光器工作产生通过所述棒传播的半径为ra的激光束,其中ra<r0
[1]在光学器件方面,选择光传播方向属于等轴晶系晶体的(111)轴方向以外,基于由中心对称地感应应力引起的光弹性效应而降低双折射率效应为特征。
[2]在上述[1]所述的光学器件方面,以选择上述光传播方向为晶体的(100)取向为特征。
[3]在上述[1]所述的光学器件方面,以选择上述光传播方向为晶体的(110)取向为特征。
附图说明
图1是表示去极化对偏振光方向依赖性的测量结果图。
图2是表示有关本发明的去极化对吸收激发功率依赖性计算结果的图。
图3是表示用参考文献[5]、[6]的理论算出的,在(111)、(100)和(110)面的表示去极化对吸收激发功率的依赖性图。
图4是表示在(111)、(100)和(110)面的,θ与Φ的关系图。
图5是表示把各面的Ωr2/r0 2的计算值作为Φ函数表示的图。
图6是表示ra=r0。的情况的,(111),(100)和(110)面,对去极化的吸收激发功率的正确的依赖性的图。
图7是水平方向放大在第6图的低吸收功率区域图。
图8是表示,在(111)、(100)和(110)面的,基于测量结果的去极化对吸收激发功率的依赖性图。
图9是表示ra=r0/4情况的,在(111),(100)和(110)面的,去极化对吸收激发功率的依赖性图。
具体实施方式
以下,详细地说明有关本发明实施例。
首先,表示本发明第1实施例,说明关于(100)切割的YAG晶体的热感应双折射率去极化的减低。
YAG作为开始的立方晶系晶体,光的传播方向是与(111)面垂直的情况下,热分布轴对称的话,晶面内的热双折射率就与角度无关而成为固定。
另一方面,除(111)面以外都具有角度依赖性。
图1是表示有关去极化偏振光方向依赖性的测量结果的图。在这里,横轴表示偏振光角度θp(度),纵轴表示去极化Dpol。图2是表示有关本发明的去极化对吸收激发功率依赖性的计算结果图,横轴表示吸收激发功率Pab(W),纵轴表示去极化Dpol
以往,Koechner和Rice以各式各样的晶面取向计算热双折射率对角度依赖性,吸收激发功率很小时如果选择适当的晶面取向和偏振光方向,就能比(111)面降低去极化,然而吸收激发功率越过一定值,就主张几乎没有晶面取向的差异(参照图2的虚线)。此时,他们认为哪个面取向也在轴对称面内的动径方向与连线方向之间发生双折射率。但是,实际上,可以知道这仅对(111)面正确,在另一面双折射率和动径方向·连线方向不一致,其偏移大小具有角度依赖性。
本申请发明人考虑到其影响,再次算出去极化对吸收激发功率依赖性的场合,尽管吸收激发功率大,就在(100)面内与晶轴交角45°的直线偏振光来说,很清楚对(111)面内的直线偏振光可把去极化能降低一半以下。
其次,说明有关本发明第2实施。
这里,说明有关(110)切割的YAG晶体的热感应双折射率去极化的减低。
去极化作为对原来直线偏振光的激光,去极化功率(depolarizedDower)的比率来定义,由下式给出。
D pol = 1 πr 0 2 ∫ ro 0 ∫ 2 π 0 DrdΦdr . . . ( 1 )
在圆筒状棒的,光束传播方向(z轴)垂直面上的各点(r,Φ),去极化的总量D成为下式。
D=sin2[2(θ-γ)]sin2(Ψ/2)    …(2)
在这里,θ是x轴与双折射率固有向量(xy平面上的曲折率椭圆的主轴)当中之一间的角度,γ是x轴与原来偏振光方向间的角度。相位差距Ψ,由热感应双折射率Δn给出
Ψ=(2π/λ)ΔnL;Δn=ΩS(r2/r0 2);
S=[α1/(1-v)](ηhPab/16πκL)    …(3)
同样泵浦(uniform pumping)的情况下,λ是激光器波长,Ω是由光弹性系数给出的双折射率参数,r0是棒半径,α1是线膨胀系数,ν是泊松比,ηh是激发功率当中转换为热的比率(fractional thermalloading),Pab是吸收激发功率,κ是热导率,L是棒长。
Koechner和Rice从各式各样的方向分析Nd:YAG棒的热感应双折射率(参考文献[5]、[6]),如第3图所示,在高吸收功率区域的极限,得出去极化量不依赖于棒方向的结论。但是,这一理论有两个错误。一个是,即使在哪个面上设θ=Φ,然而这应该是(111)面,原因是,(111)、(100)和(110)面的θ与Φ的正确关系分别由
tan2θ=tan(2Φ)    …(4a)
tan2θ=(2P44/(p11-p12)tan(2Φ)    …(4b)
tan2θ=(8P44tan(2Φ)/
        {3(p11-p12)+2p44-(p11-P12-2p44)
        [2-(r0 2/r2)][(1/cos(2Φ)]}    …(4c)给出。在这里,pmn是光弹性系数张量,以图4的长点线表示(100)面的θ对Φ的依赖性。在(110)面的依赖性变化和r值不同,以图4的点线表示。还有一个错误是各面的Ω值。参考文献[5]、[6]中,上述式(3)中,固定r=r0下再定义Ω。在(111)、(100)和(110)面的正确Ω分别由:
Ω=(1/3)n0 3(1+v)(p11-p12+4p44)    …(5a)
Ω=n0 3(1+v)[(p11-p12)2cos2(2Φ)+
    4p44 2sin2(2Φ)]1/2    …(5b)
Ω=n0 3(1+v)[(1/16){[3(p11-P12)+2p44]
    cos(2Φ)-(p11-p12-2p44)[2-(r0 2/r2)]}2
  +4p44 2sin2(2Φ)]1/2    …(5c)给出。作出再定义尽管(111)和(100)面的Ω不变,然而在(110)面因为Ω依赖于r,不可能得到正确的数值。
还有,在图5中表示把在各面的Ωr2/r0 2的计算值作为Φ的函数。就(111)和(100)面来说,r值一变化就只有大小变化而形状不变(相似形),对(110)而言面,不仅大小而且形状也变化。
图6中,表示激光器光的半径ra等于棒半径r0情况的,去极化对吸收激发功率的正确依赖性。而且,作为图7表示在图6的低吸收功率区域放大图。
去极化即使在高吸收功率区域依赖于面取向和偏振光方向,ra=r0的情况下,(111)、(100)和(110)面之中(100)面45°偏振光时变成最小,在高吸收功率区域是(111)面的二分之一,在低吸收功率区域是六分之一。用参考文献(7)中所记载的激发-探针测量,根据实验证明本申请发明人的计算是正确的。
在实验中,根据端部泵浦评价,虽然绝对值不同,然而图8中所示的实验数据相对值,与图7的理论上曲线大致符合,但与参考文献[5]、[6]的曲线不相符合。
参考文献[5]、[6]理论的2个错误当中,除(111)外对于其它晶面,θ和Φ不相符的这一事实已经指出了,然而去极化的依赖性只有对(100)面才不能正确得到(参考文献[8]、[9])。但是,本申请发明人发现,采用在ra小于r0的条件下用(110)切割棒的办法,能大幅度地降低去极化。
如图4所示,r大于r0程度的情况,θ接近Φ。即,对各点固有向量的方向,大致成为半径方向和连线方向。
另一方面,r很小时,任何Φ的θ也都接近0°或90°。这时,意味着全部的固有向量沿X轴方向和Y轴方向直线上排列。根据这个特性,偏振光方向接近X轴或Y轴方向的情况下,只要具有小于棒半径的光束,就几乎没有去极化,就能通过棒进行传播。
图9表示ra=r0/4情况的,去极化对吸收激发功率的依赖性例子。对(100)面的去极化量只不过是(111)面的一半,然而对于(110)面,Δn本身尽管(110)面比(111)面的要大,可是降低到(111)面大约1/50。这样的条件,在一样的泵浦情况下,可通过孔径(开口)实现控制光束尺寸。
一方面,端部泵浦的场合,因为聚焦后的激发光束本身起增益孔径的作用,容易满足这个条件。即使用非掺杂的YAG包围掺杂的YAG的那样复合材料,也能实现同样的条件。
作为结论,对参考文献[5]、[6]的论文中错误,从理论也从实验也证实,可知通过用(100)和(110)面,能根本地降低去极化。尤其是,采用有小半径的束组合的(110)切割晶体,和采用(111)切割晶体的情况相比,也能降低去极化一个数量级以上。
因为这样构成,在Y3Al5O12激光器的,因热双折射率效应而引起的去极化,通过用(111)以外方向的切割棒,无须补偿,就能根本地降低去极化。通过使用(110)切割晶体,和用现有的(111)切割晶体情况相比,预期能够把去极化削减到1/10以下。
还有,按照上述实施例,虽然举例说明YAG激光器,然而不限于YAG激光器,也能应用于其他等轴晶系晶体的光学器件,能降低其光学器件的去极化。
而且,本发明不应该限定于上述实施例,基于本发明宗旨,各种变形是可能的,不应该从本发明范围内加以排除。
以上,就像详细说过一样,根据本发明,就能起到如下所示的这些效果。
(A)除(111)轴取向外只要选择光的传播方向,就能使热双折射率效应减少。
(B)用(100)或(110)切割样品的话,就能大幅度地降低热双折射率效应。
(C)尤其是,采用使用(110)介质的办法,和使用(111)切割介质情况相比,能够不补偿而削减去极化一个量级以上。
本发明的光学器件,尤其,采用把光传播方向选定为晶体的(110)取向的办法,能使热双折射率效应大幅度地降低,适合解决热问题的固体激光器。

Claims (3)

1.一种固体激光器,其特征在于包括:半径为r0的(110)切割晶体棒,该固体激光器工作产生通过所述棒传播的半径为ra的激光束,其中ra<r0
2.按照权利要求1所述的固体激光器,其特征在于ra=r0/4。
3.按照权利要求1或2所述的固体激光器,其特征在于所述晶体棒包括复合材料,该复合材料中非掺杂的YAG包围掺杂的YAG。
CNB028284291A 2002-02-01 2002-08-08 固体激光器 Expired - Fee Related CN1326296C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP25040/2002 2002-02-01
JP2002025040A JP3585891B2 (ja) 2002-02-01 2002-02-01 レーザー素子

Publications (2)

Publication Number Publication Date
CN1623256A CN1623256A (zh) 2005-06-01
CN1326296C true CN1326296C (zh) 2007-07-11

Family

ID=27654512

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB028284291A Expired - Fee Related CN1326296C (zh) 2002-02-01 2002-08-08 固体激光器

Country Status (8)

Country Link
US (1) US20050117085A1 (zh)
EP (1) EP1478061B1 (zh)
JP (1) JP3585891B2 (zh)
KR (1) KR100642954B1 (zh)
CN (1) CN1326296C (zh)
CA (1) CA2474966A1 (zh)
DE (1) DE60217410T2 (zh)
WO (1) WO2003065519A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050058165A1 (en) * 2003-09-12 2005-03-17 Lightwave Electronics Corporation Laser having <100>-oriented crystal gain medium
DE102006049846A1 (de) * 2006-10-23 2008-05-08 Schott Ag Anordnung sowie ein Verfahren zur Vermeidung der Depolarisation von linear-polarisiertem Licht beim Durchstrahlen von Kristallen
JP2008141187A (ja) * 2006-11-09 2008-06-19 Matsushita Electric Ind Co Ltd 窒化物半導体レーザ装置
EP2097956A4 (en) * 2006-12-15 2013-01-09 Ellex Medical Pty Ltd LASER
JP6281935B2 (ja) 2013-10-25 2018-02-21 大学共同利用機関法人自然科学研究機構 Qスイッチレーザー装置
JP6456080B2 (ja) 2014-09-18 2019-01-23 株式会社トプコン レーザ発振装置
CN104701722B (zh) * 2015-02-14 2018-04-17 苏州国科华东医疗器械有限公司 一种用于中红外激光器提升功率的方法
US20200161506A1 (en) * 2018-11-21 2020-05-21 Osram Opto Semiconductors Gmbh Method for Producing a Ceramic Converter Element, Ceramic Converter Element, and Optoelectronic Component
LT6781B (lt) 2019-03-20 2020-11-25 Uab "Ekspla" Depoliarizacijos kompensatorius

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1071032A (zh) * 1992-07-28 1993-04-14 国营第七○六厂 一种大功率固体激光器
US5587793A (en) * 1992-11-12 1996-12-24 Sadao Nakai Birefringence distribution measuring method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3201427B2 (ja) * 1992-06-01 2001-08-20 日本電信電話株式会社 ガーネット結晶膜の製造方法
US5585648A (en) * 1995-02-03 1996-12-17 Tischler; Michael A. High brightness electroluminescent device, emitting in the green to ultraviolet spectrum, and method of making the same
JP3557011B2 (ja) * 1995-03-30 2004-08-25 株式会社東芝 半導体発光素子、及びその製造方法
US5851284A (en) * 1995-11-21 1998-12-22 Nippon Telegraph And Telephone Corporation Process for producing garnet single crystal
JP2743901B2 (ja) * 1996-01-12 1998-04-28 日本電気株式会社 窒化ガリウムの結晶成長方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1071032A (zh) * 1992-07-28 1993-04-14 国营第七○六厂 一种大功率固体激光器
US5587793A (en) * 1992-11-12 1996-12-24 Sadao Nakai Birefringence distribution measuring method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Reduction of Depolarization inducedbyThermalBirefringenceusing a (100)-cut YAG Crystal I.Shoji ,S.Kurimura,and T .Taira,第62届应用物理学会学术讲演会讲演予稿集,第3卷 2001 *
Thermal birefringence effect in Nd3+ doped YAG ceramics I.Shoji ,S.Kurimura,et al,CLEO(R) PACIFIC RIM 2001,TECHNICAL DIGEST 2001 *

Also Published As

Publication number Publication date
KR100642954B1 (ko) 2006-11-10
JP3585891B2 (ja) 2004-11-04
US20050117085A1 (en) 2005-06-02
DE60217410D1 (de) 2007-02-15
EP1478061A1 (en) 2004-11-17
WO2003065519A1 (fr) 2003-08-07
EP1478061A4 (en) 2005-04-27
CN1623256A (zh) 2005-06-01
JP2003229619A (ja) 2003-08-15
CA2474966A1 (en) 2003-08-07
KR20040088489A (ko) 2004-10-16
DE60217410T2 (de) 2007-04-19
EP1478061B1 (en) 2007-01-03

Similar Documents

Publication Publication Date Title
Brown The promise of cryogenic solid-state lasers
Tsunekane et al. Analytical and experimental studies on the characteristics of composite solid-state laser rods in diode-end-pumped geometry
US7440477B2 (en) Solid-state laser generator
Loiko et al. In-band-pumped Ho: KLu (WO 4) 2 microchip laser with 84% slope efficiency
CN101765950B (zh) 波长变换激光装置
Shoji et al. Intrinsic reduction of the depolarization loss in solid-state lasers by use of a (110)-cut Y3Al5O12 crystal
CN1326296C (zh) 固体激光器
Loiko et al. Comparative spectroscopic and thermo-optic study of Tm: LiLnF 4 (Ln= Y, Gd, and Lu) crystals for highly-efficient microchip lasers at~ 2 μm
Pirri et al. High-efficiency, high-power and low threshold Yb 3+: YAG ceramic laser
McKay et al. High power tungstate-crystal Raman laser operating in the strong thermal lensing regime
Kellert et al. High power (> 500W) cryogenically cooled Yb: YLF cw-oscillator operating at 995 nm and 1019 nm using E//c axis for lasing
Vannini et al. High efficiency room temperature laser emission in heavily doped Yb: YLF
Demirbas et al. Advantages of YLF host over YAG in power scaling at cryogenic temperatures: direct comparison of Yb-doped systems
Machinet et al. High-gain amplification in Yb: CaF 2 crystals pumped by a high-brightness Yb-doped 976 nm fiber laser
Albach et al. Large size crystalline vs. co-sintered ceramic Yb 3+: YAG disk performance in diode pumped amplifiers
Demirbas et al. Broadly tunable (993–1110 nm) Yb: YLF laser
Wilhelm et al. Power scaling of end-pumped solid-state rod lasers by longitudinal dopant concentration gradients
Li et al. 21.8 W CW second-Stokes CVD-diamond Raman laser at 1516 nm
Serres et al. Ho: KLuW microchip laser intracavity pumped by a diode-pumped Tm: KLuW laser
Mukhopadhyay et al. An alternative approach to determine the fractional heat load in solid state laser materials: application to diode-pumped Nd: YVO4 laser
Toci et al. Characterization of the lasing properties of a 5% Yb doped Lu 2 SiO 5 crystal along its three principal dielectric axes
Rimington et al. Thermal lens shaping in Brewster gain media: A high-power, diode-pumped Nd: GdVO 4 laser
Cheng et al. Enhanced performance of Cr, Yb: YAG microchip laser by bonding Yb: YAG crystal
Ma et al. Single-longitudinal mode Nd: YVO4 microchip laser with orthogonal-polarization bidirectional traveling-waves mode
Loiko et al. Thermo-optic characterization of Yb: YAl 3 (BO 3) 4 laser crystal

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070711

Termination date: 20090808