CN1308681A - 抗病性转基因植物 - Google Patents

抗病性转基因植物 Download PDF

Info

Publication number
CN1308681A
CN1308681A CN 99808287 CN99808287A CN1308681A CN 1308681 A CN1308681 A CN 1308681A CN 99808287 CN99808287 CN 99808287 CN 99808287 A CN99808287 A CN 99808287A CN 1308681 A CN1308681 A CN 1308681A
Authority
CN
China
Prior art keywords
gene
plant
mosaic virus
tmv
disease
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN 99808287
Other languages
English (en)
Inventor
丁守伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Molecular Agrobiology
Original Assignee
Institute of Molecular Agrobiology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/SG1998/000035 external-priority patent/WO1999058696A1/en
Application filed by Institute of Molecular Agrobiology filed Critical Institute of Molecular Agrobiology
Publication of CN1308681A publication Critical patent/CN1308681A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • C12N15/8283Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for virus resistance

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Virology (AREA)
  • Biophysics (AREA)
  • Cell Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

用黄瓜花叶病毒2b基因或其活性片段,或具有无活性的细胞死亡区的Avr基因转化的转基因植物具有对感染性致病原如病毒引起的疾病的抗性。这些基因的表达导致在不能对某些致病原产生超敏应答的植物中引起超敏应答的活化和与致病性相关蛋白质的表达。用包含与植物活性启动子可操作地连接的这样的基因的表达载体转化多种植物赋予了这些植物对致病原感染的抗性。

Description

抗病性转基因植物
发明背景
发明领域
本发明涉及赋予植物抗病性的方法和材料。更具体地说,本发明涉及含有异源核酸的转基因植物,异源核酸能够赋予抗病性,特别是抗感染性致病原如病毒的抗性。本发明进一步涉及制备这样的转基因植物的方法和材料。
栽培植物的感染性疾病在世界范围引起了食物,饲料和纤维的本质性减产。这些疾病的控制最初是基于培养的实践中的,包括除去感染的碎片,去除杂草宿主(应用除草剂),防止载体传播(应用杀虫剂),标志无致病原起始物质(种子或植物繁殖体),以及培育植物的抗病性。一旦植物感染了病毒,大规模地恢复植物无病毒状态的方法目前还没有。所以,控制疾病的方法取决于防止或推迟感染的产生的方法。
在上面的疾病控制方法中,培育抗性通常是最经济和最实际的一个方法,因为不需要种植者额外的劳动或花费。另外,用抗性控制疾病不需要用除草剂或杀虫剂去除杂草宿主和昆虫载体。所以,宿主抗性是控制植物疾病对环境最安全和最耐久的一个方法。不幸的是,在许多植物-病毒系统中没有抗性,并且是不能利用传统的植物育种方法获得的。但是,最近已经证明在分子生物学和基因操作上的进步对将新的抗病因子整合进入以前不存在抗病因子的植物病毒系统是有帮助的。
背景技术
已经证明开发转基因植物是保护植物不受病毒疾病侵害的有价值的途径。例如,Stubbs,G.等人,美国专利,5,723,750叙述了表达编码野生型的和修饰的不同病毒组的外壳蛋白的基因的转基因植物。已经表明,这些转基因植物对相应的病毒的感染具有各种抗性水平。不幸的是,编码外壳蛋白质的异源基因的表达没有赋予对病毒感染的广谱抗性,并且对其它感染因子引起的致病作用也没有效果。
基因对基因的抗病性是对致病原的重要的植物防御机制。只有当携带抗性(R)基因的宿主植物受到携带匹配的无毒(Avr)基因(Keen,1990)的致病原攻击时才诱导基因对基因的抗病性(在本文的最后提供了文献目录)。在R-Avr基因的匹配对之间的特殊的相互反应通常诱导了超敏感应答(“HR”),并且导致了在试图侵入的位点局部地含有侵入的致病原。在HR过程中,致病原的识别诱导了快速细胞死亡过程,导致在感染的位点周围形成死细胞区(坏死)。据信,这一HR损伤进一步抑制了致病原的传播,产生活化宿主防御机制的信号,并且在许多情况中,诱导了对致病原的持久性广谱系统抗性(Ross,1961;Ryals等人,1996;Sticher等人,1997)。这样的系统抗性的诱导称为系统获得性抗性(“SAR”),并且伴随着氧化突发,几个致病性相关(“PR”)蛋白质的合成速度的增加,细胞壁结构的改变,和水杨酸(“SA”)的积累(Malamy等人,1990;Metraux等人,1990;Ward等人,1991;Hammond-Kosack和Jones,1996;Lamb和Dixon,1997;Yang等人,1997)。
已经叙述了在感染的植物中诱导HR的方法。例如,Lam,E.等人,美国专利5,629,470已经叙述了通过用细菌-视蛋白(bacterio-opsin)(bo)基因转化植物的细胞提供对一个或多个植物致病原的致病攻击的抗性增强的高等植物的方法。
已经从各种植物物种克隆了多个特异于细菌,病毒,真菌或线虫的R基因,令人吃惊的是,这些R基因经常编码结构相似的蛋白质,表明植物用于引发防御应答的途径之间具有高度的机制保守性(Baker等人,1997;Hammond-Kosack和Jones,1997)。
致病原的Avr基因定义为编码或产生在对应的抗性植物中可以启动HR的信号分子。例如,来自细胞外生长真菌致病原Cladosporiumsulvum的Avr4和Avr9编码加工成小的分泌性肽的前蛋白原,分泌肽甚至在缺乏致病原的情况下也能够引发依赖R基因的防御应答(Knogge,1996)。同样,细菌Pseudomonas syringae pv.glycinea的AvrD座位编码参与输出的丁香酯引发剂的合成的酶,当丁香酯引发剂注入细胞间叶空间时,可以在携带Rpg4基因的大豆品种中引发HR(Leach和White,1996)。但是,对于大多数克隆的细菌性Avr基因来说,Avr蛋白质本身即是引发剂(Leach和White,1996)。这些Avr基因通常编码缺少信号序列的亲水蛋白质,并且当注入具有匹配的R基因的植物的叶中时,诱导HR。最近已经证明在植物细胞内,匹配的R基因产物识别了几个细菌性Avr基因产物(Tang等人,1996;Scofield等人,1996;Leister等人,1996;Gopalan等人,1996;Vonden Ackerreken等人,1996)。Avr蛋白质输入植物细胞可能是利用了HR诱导和致病过程需要的细菌Hrp基因簇编码的III型分泌系统(Pirhonen等,1996;Lindgren,1997)。
植物病毒是通过已有的伤口和细胞内复制进入细胞的。所以,病毒Avr-R识别似乎也发生在植物细胞内部。大多数植物病毒具有小的基因组,编码复制,运动和包囊需要的基因。已经证明,所有三个编码外壳蛋白质(Bendahmane等人,1995;Berzal-Herranz等人,1995;Taraporewala和Culver,1996),RNA复制酶(Meshi等人,1988;Padgett等人,1997;Kim和Palukaitis,1997)或运动蛋白质(Meshi等人,1989;Weber等人,1993)的病毒基因大类是无毒决定簇。烟草花叶病毒(TMV)的126K的复制酶蛋白质(Padgett等人,1997)是唯一的病毒Avr蛋白质,它的匹配的R基因N的克隆已经有报道(Whitham等人,1994)。推测为细胞质蛋白质的N基因产物属于抗性基因的NBS-LRR家族(Baker等人,1997)。
最近有人报道线虫传多面体病毒和花叶病毒感染的植物的系统叶具有与转录后基因沉默(“PTGS”)相似的强病毒抗性,是植物中第二型抗病毒的天然防御机制的证据(Covey等人,1997;Ratcliff等人,1997)。PTGS首次是在转基因植物中发现的,并且参与了与沉默转基因的转录部分相似的RNA类别的降解。结果,即使在高水平转录,也只存在低水平的转基因RNA(Depicker和Van Montagu,1997)。如果沉默转基因起源于或与植物病毒的基因组共享同源的序列,PTGS在转基因植物中赋予病毒抗性(Lindbo等人,1993;Guo和Garcia,1997;Ruiz等人,1998)。
支持PTGS可以作为抗病毒的天然植物防御的事实是,鉴定了植物RNA病毒编码的两个蛋白质是转基因植物中PTGS的阻遏物(Anandalakshmi等人,1998;Brigneti等人,1998;Kasschau和Carrington,1998)。在沉默已经建立的组织中,马铃薯病毒Y编码的HC Pro阻止了PTGS的存在,而黄瓜花叶病毒(Cmv2b)编码的2b蛋白质防止了在植物生长点沉默基因的启动(Brigneti等人,1998)。两个病毒蛋白质曾经显示出对毒性决定和系统传播的重要性(Cronin等人,1995;Ding等人,1995)。所以,具有PTGS阻遏物功能的植物病毒提供了与先天的宿主抗性机制斗争的积极和有效的途径。这一途径与许多植物致病原用于克服可以逃避对应的宿主R基因识别的Avr基因中积累突变的基因对基因的抗病机制的途径是不同的。
从感染性疾病对农业生产的巨大的经济影响来看,对致病原感染具有一般抗性的转基因植物有继续存在的必要。
发明概述
根据本发明已经发现,用黄瓜花叶病毒的2b基因或其活性片段稳定转化的转基因植物对致病性感染因子如病毒具有系统抗性。这一基因编码的蛋白质在宿主植物中激活强疾病抗性应答。
本发明的另一方面涉及用黄瓜花叶病毒2b基因或其活性片段稳定转化的转基因植物的种子和繁殖部分。另外,本发明进一步提供了在植物中导入黄瓜花叶病毒2b基因的方法和载体。
本发明的再一方面涉及植物RNA病毒编码的PTGS的阻遏物,它作为植物Avr因子,受到相似于基因对基因的疾病抗性的强宿主抗性机制的靶击。将阻遏物进行分子解剖表明,存在两个区的结构,其中一个区足以活化抗性,而另一个区是引发超敏感细胞死亡所需要的。其中这两个区的结构使包含无毒的Avr基因的新疾病抗性基因类别,即,无活性细胞死亡诱导区的类别有存在的可能。通过交换连接活性抗性区与失活的细胞死亡区的区或选择性地失活Avr细胞死亡区的方法可以获得无毒的(disarmed)Avr基因。这样的单一无毒Avr基因可以赋予转基因植物广谱的致病原抗性。
附图的简要说明
图1说明了来自质粒pTMV-t2b和pPVX-t2b的嵌合病毒RNA转录物的结构特征和基因组结构。
图2是显示2b基因对在携带2b基因的烟草花叶病毒感染的烟草植物的叶中的致病性相关的蛋白质的表达的影响的Northern印迹杂交反应。
图3显示了区域作图表明的Tav2b的两个区的结构。图中显示出植物对各种2b嵌合体的应答。在图中,HR表示仅在N.tobaccum变种Samsun nn的接种的叶中观察到的坏死损伤和病毒增殖,R表示仅在接种的叶中观察到的病毒增殖,但没有可见的坏死损伤,S表示观察到的敏感性和系统感染。
图4表示了TMV-30B载体的基因组结构和来自TAV和CMV的插入片段。方框代表TMV,TAV或CMV编码的开放读框(ORF)。星号(*)表示可连读得到183K蛋白质的琥铂终止密码。三个sgRNA启动子用箭头表示。注意,除了包括外壳蛋白质(CP)编码序列及其sgRNA启动子(箭头3)的3’末端序列来自TMV U5外,这一载体来源于TMV-U的感染性cDNA克隆(W.O.Dawson,个人通讯)。来自TAV(T2b)或CMV(C2b)的2b编码序列(或它们的突变体)克隆在PmeI位点。TΔ2b1和TΔ2b2是具有导致编码的ORF部分或完全破坏的点取代的T2b的衍生物。
图5表示了烟草植物中病毒和植物RNA的积累。用TMV-30B(TMV),TMV-C2b(C2b),TMV-TΔ2b2(TΔ2b2),TMV-TΔ2b1,TMV-T2b(T2b)接种或用缓冲液单独模拟(M)接种Samsun植物。如所示出的,在接种后的不同天数(dpi),从接种的叶或系统叶提取总RNA,再利用特异于TMV基因组RNA(TMV),PR-1a mRNA或18SRNA(作为上样对照)的32P标记的DNA探针进行Northern印迹分析。
图6表示了在接种了TMV-T2b的Samsun植物中,PR-1a和PR-5编码的mRNA积累的时间过程。接种后提取总RNA的时间(dpi)在上面的每泳道上表示。
图7表示了在Samsun烟草植物的接种的和系统叶中,六个TMV重组体的积累。将TMV的基因组RNA的探针用于杂交。植物对每个重组体的应答(如图3中缩写)也表示出。对于所有6个重组体,通过RT-PCR获得了子代病毒的2b编码序列,接着分析DNA序列,发现子代病毒的2b编码序列相同于各自的接种物。M=模拟接种,CT1=TMV-CT1,CT2=TMV-CT2,CT3=TMV-CT3,TC1=TMV-TC1,TC2=TMV-TC2,TC3=TMV-TC3。
本发明的详细叙述
黄瓜花叶病毒(CMV)属于称为黄瓜花叶病毒的病毒属,该属也包括烟草无子病毒(TAV)。黄瓜花叶病毒含有编码5个基因:1a,2a,2b,3a和外壳蛋白质的三分体单链RNA基因组。在前面的出版物中已经叙述了2b基因的鉴定和功能分析。(Ding等人,1994;1995;1996)。已经证明黄瓜病毒编码的2b基因对于系统病毒传播和毒性的确定是重要的。SEQ ID NO:1提供了2b基因的核糖核苷酸序列。
已经发现,在感染了致病病毒的各种植物物种中,当独立地从来自南瓜病毒的基因组表达2b基因时,激活了强抗性应答。这些应答包括诱导致病作用相关的蛋白质和形成去除入侵的致病原的坏死损伤。所以,在一个方面,本发明涉及一种转基因植物,其用与一种启动子可操作地连接的黄瓜花叶病毒2b基因或其活性片段稳定地转化,当所述植物感染了致病生物体时,所述启动子能够实现所述基因的表达。用于生产疾病抗性植物的黄瓜花叶病毒2b基因有利地是在严格条件下与SEQ ID NO:1的核酸杂交的基因。
在相关的方面,本发明提供了赋予植物对感染性致病因子引起的疾病的抗性的方法,其中包括用与植物活性启动子可操作地连接的黄瓜花叶病毒2b基因或其活性片段稳定地转化植物,当所述植物感染了致病生物体时所述启动子能实现所述基因在植物中的表达。在另一方面,本发明提供了具有可操作地与植物活性启动子连接的黄瓜花叶病毒2b基因或活性片段的表达载体。
突变分析已经证明,2b基因对抗性应答起作用。基因中的点突变已经显示能够使基因失去功能,和消除基因激活抗性应答的能力。另外,已经发现,虽然可以除去编码四个C末端氨基酸的密码子而不失去活性,但基因的C末端的26个氨基酸和45个氨基酸序列对疾病抗性功能是必要的。将编码番茄无子病毒2b基因的C末端26个氨基酸和C末端45个氨基酸的密码子转移到失活的黄瓜花叶病毒2b基因的相应区域不产生活性嵌合基因;所以,蛋白质的N末端部分也似乎含有一个或多个抗性活化必要区。因此,本发明涉及含有2b基因的活性片段的转基因植物和载体。
已经发现,2b基因也是双重功能。根据表达2b基因的病毒遗传背景,2b可以作为毒性或无毒决定簇起作用。这些发现表明人们可以在易感的品种中寻找R类基因,该基因能够潜在地识别从异源病毒载体通过植物内(in planta)表达的毒性蛋白。许多Avr基因产物似乎是毒性因子,直到宿主品种中匹配的R基因进化出。这些结果表明在靶击中,植物的基因对基因的抗性对于Avr,一个植物基因沉默防御机制的病毒编码阻遏物,也是有效的。
虽然超敏感细胞死亡和基因对基因疾病抗性之间存在强相关性,最近的研究已经提供了证据表明细胞死亡既不是必需的并且对于基因对基因的抗性也是不够的。已经发现例如,TMV-TC2在Samsun品种中,没有可见的超敏感细胞死亡,但诱导了强病毒抗性(图3)。通过病毒Avr基因的分子解剖获得的这一结果支持细胞死亡不是抗性所需的观点。
在无毒2b和它的毒性同系物之间交换区域表明Avr蛋白质是两个区的结构。例如,Tav2b的69个氨基酸的N末端区域构成了激活抗性必要的和能够满足激活抗性需要的第一个区域。所以,编码完整的抗性区的TMV-TC1和TMV-TC2,在攻击的烟草植物中诱导了强病毒抗性。完全(例如,TMV-CT1,2,3)或部分(例如,TMV-TC3)取代或删除(例如,TMV-TΔ2b1)这一区域导致了在激活抗性中失去活性。含有Tav2b的氨基酸70-9的第二个区暂时称为“细胞死亡”区,因为在TMV-TC2中缺少它时没有诱导细胞死亡,但对抗性激活没有明显的影响。但是,虽然整个Cmv2b是无活性的,谁也不能排除这种可能性,即融合在TC2中的Cmv2b C末端34个氨基酸功能是作为细胞死亡启动的阳性或阴性调节物,导致TMV-TC2的局部无症状表型。应该注意到,根据其与2a基因是否重叠,而先定义的这两个功能区域对应于黄瓜花叶病毒2b基因的重叠和非重叠区。
与N末端抗性区(可以独立作用)不同,细胞死亡区是依赖于有功能的抗性区的存在的。例如,TMV-CT2和TMV-CT3均编码完整的细胞死亡区,但不能在接种的叶中诱导坏死损伤(图3)。支持这一发现的其它证据有,使Tav2b引发抗性和细胞死亡的活性失活的两个氨基酸的取代都定位于抗性区内,但在细胞死亡区的外面。令人感兴趣的是,与条件细胞死亡区相反,抗性区功能上是独立的。所以,在HR网络中,通常置于在Avr-R相互作用的下游的细胞死亡信号(Hammond-Kosack和Jones,1996;Lamb和Dixon,1997)可能参与了随后的可能通过它的细胞死亡区而发生的致病原Avr产物和另一个植物蛋白质的相互作用。
确定是否Tav2b的两个区结构的概念也适用于任何其它病毒,细菌和真菌致病原编码的Avr基因在实践上是重要的。在含有匹配的R基因的品种中,Avr基因的组成表达应该产生组成性广谱抗病性。但是,因为特异的Avr-R相互作用也导致了立即活化超敏感细胞死亡,所以这一类型的抗性是不易利用的(Culver和Dawson,1991;Gopalan等人,1996;Leister等人,1996;Scofield等人,1996;Tang等人,1996;van den Ackerveken等人,1996;Gilbert等人,1998)。通过移去活性细胞死亡区,将它与ab失活细胞死亡区交换,或选择性失活细胞死亡区同时维持它的大结构的完整性,用细胞死亡诱导系统抗性是可能的。因为一旦诱导,SAR对致病原(病毒,真菌,细菌,等等)是非特异的,通过掺入作为转基因的单个无毒Avr(优选地通过区域交换去毒)将有可能得到广谱抗性。这是提供致病原抗性植物的有效手段。
利用常规的载体和方法,可以将用于本发明的2b基因或它的活性片段(下文中的“2b基因”),或任何Avr导入植物。通常,这样的技术包括将基因插入含有插入的编码序列的转录和翻译必需的元件和一个或多个便于转化细胞或植物的选择的标记序列的表达载体中。
在本领域中,许多植物活性启动子是已知的,可以用于进行本文公开的核酸序列的表达。组成性启动子,如花椰菜花叶病毒的nos启动子或35S启动子是可以利用的;但是,组成性表达对转基因植物可能是有害的。因此,可诱导启动子,特别是致病原可诱导启动子,如与致病作用相关的蛋白质启动子是优选的。
一旦基因克隆进入表达载体,可以利用常规转化方法将它导入植物细胞。术语“植物细胞”包括来源于包括未分化的组织如愈伤组织和悬浮培养物的植物,以及植物种子,花粉或植物的胚的任何细胞。适用于转化的植物组织包括叶组织,根组织,分生组织,原生质体,下胚轴,子叶,盾片,茎尖,根,未成熟的胚,花粉,和花药。
转化植物的一个技术是将这样的植物的组织与用含有本发明的基因的载体转化的细菌接种物接触。通常,这一过程包括用细菌的悬浮液接种植物组织和在25-28℃,在没有抗生素的再生培养基上培养组织48到72小时。
有利地可以利用农杆菌属的细菌转化植物细胞。这样的细菌的适当种类包括根癌农杆菌和发根土壤杆菌。由于已知的转化植物的能力,根癌农杆菌(例如,菌株LBA4404或EHA105)是特别有用的。
用本发明的核酸转化植物细胞的另一个途径包括将惰性或有生物活性的颗粒推入植物细胞。这一技术公开在引入本文作为参考的授予Sanford等人的美国专利4,945,050,5,036,006和5,100,792中。通常这一方法包括在能够有效渗透到细胞的外表面和将掺入其内部的条件下,将惰性或生物活性颗粒推入细胞。当利用惰性颗粒时,通过用含有2b基因的载体包被颗粒,可以将载体导入细胞。生物活性颗粒(例如,干燥的酵母细胞,干燥的细菌或细菌噬菌体,每个都含有正需要导入的DNA)也可以推入植物细胞组织。
转化植物细胞的另一个方法是电穿孔方法。这一方法包括将原生质体与需要的DNA混合,通过电脉冲在细胞膜上形成洞,从而将DNA导入细胞中,因此而转化了细胞。目前,这一方法具有很高的重复性,通过这一方法已经在单子叶植物特别是水稻植物中导入了各种基因(Toriyama等人,1988,Shimamoto等人,1989和Rhodes等人,1988)。
与电穿孔方法相似的方法是混合需要的基因和原生质体,并且将混合物用聚乙二醇(“PEG”)处理,从而将基因导入原生质体。这一方法与电穿孔方法的不同在于利用了PEG而不是电脉冲(Zhang W.等人,1988,Datta等人,1990和Christou等人,1991)。
其它方法包括1)用核酸培养种子或胚(Topfer R.等人,1989,Ledoux等人,1974),2)处理花粉管,(Luo等人,1988),3)脂质体方法(Caboche,1990)和4)微注射方法(Neuhaus G.等人,1987)。
可以利用从转化的植物细胞再生植物的已知方法制备本发明的转基因植物。通常,可以将外植体,愈伤组织或悬浮培养物与适当的化学环境(例如,细胞因子和生长素)接触,从而使新的生长细胞分化,并且长出再生成根或茎的胚。
在单子叶植物(“monocots”)和双子叶植物(“dicots”)如玉米,小麦,水稻,小米,燕麦,大麦,高粱,向日葵,甜薯,苜蓿,甜菜,白菜种类,番茄,胡椒,大豆,烟草,甜瓜,南瓜,马铃薯,花生,豌豆,棉花或可可中,本发明的基因可用于增强对引起疾病的致病原的抗性。
通过下面的实施例本发明得到了进一步的说明,但这些实施例不用于限制本发明。
                    实施例1
                  (载体构建)
在最近几年中,已经开发了基于植物RNA病毒的几个有效的植物内表达系统。在本例中,将基于烟草花叶病毒(TMV)(美国专利5,589,367)和马铃薯病毒X(PVX;Chapman等人,1992)的载体用于表达黄瓜花叶病毒的2b基因。图1显示了构建的嵌合体病毒(TMV-t2b和PVX-t2b)的结构特征。利用Pfu DNA聚合酶(Stratagene)从pQCD2qt(Ding等人,1996)经PCR扩增TAV ORF 2b编码序列(RNA2的核苷酸2447-2734)制备TAV的2b基因的编码序列(SEQ ID NO:1,编码95个氨基酸)。将这一序列插入各自外壳蛋白质(CP)基因的上游的TMV和PVX的基因组中。将这一PCR片段平末端化地克隆在已知为pTMV-30B的TMV载体的PmeI位点,产生TMV-t2b(图1)。将在TMV-t2b中的TAV插入片段切出成为AgeI-XhoI片段(参见图1),将这一片段的末端填补,克隆在ClaI消化和末端填补的pPC2S(基于马铃薯病毒X的表达载体(Chapman等人,1992))产生了PVX-t2b。该2b基因的表达通过仅由TMV或PVX编码的RNA依赖性RNA聚合酶识别的独立启动子(在图1中用箭头表示为1和3)控制。
将TMV或PVX的表达2b衍生物(TMV-t2b和PVX-t2b)用于感染植物,从野生型和它的表达2b衍生物诱导的植物应答的差别表明了2b基因的功能性作用。
                        实施例2
                    (烟草Samsun的抗性)
在Samsun(nn)烟草植物中,TMV-t2b诱导了典型的超敏感应答(HR)。将质粒pTMV-30B,pPC2S和它们的衍生物线性化和在存在帽类似物(NEB)时,用T7RNA聚合酶(普洛美格)如上所述(Chapman等人,1992)转录。在完全发育的Nicotiana tabacum cv Samsun(nn)的叶上机械地接种加帽的RNA转录物。在Conviron生长室(24℃恒定,75%潮湿和16小时光/8小时黑暗)中接种植物。在接种后约4天,在接种的叶上出现局部坏死损伤,在整个观察期(5星期),植物的其余部分没有症状。在上面未接种的叶中,Northern印迹分析没有检测到病毒RNA的积累,进一步证明了TMV-t2b在Samsun(nn)植物中不能系统地传播。另外,在接种的叶中诱导了与致病作用相关的(PR)蛋白质1(PR-1)PR-3和PR-5的mRNA的转录。参见图2,图2是用TMV-t2b或TMV攻击植物的叶的Northern印迹。利用PR-1a cDNA作为探针(基于Comelissen,B.J.等人(1987)公开的序列,从烟草植物PCR扩增获得)进行Northern印迹杂交。从5天(泳道1),7天(泳道2),10天(泳道3),和13天(泳道4)提取的总RNA,显示了PR-1的表达增强了。虽然泳道5和6都感染了野生型TMV;但是,烟草的基因型在泳道5是nn,泳道6是NN。
这些结果表明,Samsun(nn)烟草植物是能够抵抗TMV-t2b的,在该植物中,TMV-t2b攻击接种诱导了HR的形态学标记(局部坏死)和分子标记(PR蛋白质诱导)的表达。
已知N.tabacum Samsun(nn)不含有特异于TMV的抗性基因,并且这一研究证明,当单独感染载体TMV-30B时,烟草植物产生了系统花叶症状,并且没有观察到诱导PR基因的表达。所以,结论是,烟草植物对TMV-t2b攻击的抗性应答是由于来自TMV基因组的TAV 2b基因的顺式表达。
                         实施例3
                  (2b基因负责抗性的证明)
构建了含有破坏开放读框2b的点突变的TMV-t2b的两个突变体。据推测,在感染植物中,TMV-tΔ2b1(SEQ ID NO:2)没有翻译成任何2b蛋白质。但是,在TMV-tΔ2b2(SEQ ID NO.3)感染的植物中,可预期表达失去C末端52个氨基酸残基的截短的2b蛋白质。TMV-tΔ2b2和TMV-tΔ2b2都没有在接种的叶中诱导局部坏死损伤并且也没有诱导PR蛋白质的mRNA的转录。所以,TAV2b蛋白质是作为抗性应答的激活剂起作用的。在HR引发中,插入的TAV核苷酸序列本身没有起作用。另外,TAV 2b蛋白质的C末端的52个氨基酸序列似乎是这一活性作用所必需的(参见下面)。
                  实施例4
              (确定抗性活化区)
将黄瓜花叶病毒(CMV)的Q菌株编码的2b基因(SEQ ID NO:4)相似地基因工程化以便从TMV基因组表达。称为TMV-q2b的衍生物系统地感染Samsun烟草植物没有在接种的叶上诱导坏死损伤,也没有诱导PR蛋白质的mRNA的转录。这表明,与TAV 2b蛋白质相反,在抗性活化中,CMV 2b蛋白质是无活性的。
为了定位激活抗性的重要区域,用CMV 2b蛋白质的结构等价区从C末端逐渐地取代TMV-t2b编码的TAV 2b蛋白质。感染测试表明取代TAV 2b蛋白质的4个氨基酸保留了它的HR引发的活性。但是,替代了TAV 2b蛋白质的C末端的26个或45个氨基酸使它失去了引发HR的能力。这表明虽然可以除去编码4个C末端氨基酸的密码子而不失去活性,但是TAV 2b蛋白质的C末端的26个氨基酸是烟草植物中的抗性活化所必需的。将编码番茄无子病毒2b基因的C末端的26个氨基酸和C末端的45个氨基酸的密码子转移到失活的黄瓜花叶病毒2b基因的对应区域不产生活性嵌合基因;所以蛋白质的N末端部分似乎也含有抗性活化必需的一个或多个区域。
                   实施例5
            (在其它植物物种中的抗性)
Nicotiana benthamiana和Physalis floridana植物与Samsun烟草的相似之处在于它们对TMV是敏感的,感染的植物不产生HR。感染性测试表明用TMV-t2b攻击接种,在Nocotiana benthamiana和Physalis floridana植物的接种的叶中诱导典型的局部坏死损伤,而未感染的植物部分仍然无症状。这些结果表明TAV 2b基因也能够在这些植物物种中激活对TMV的抗性。TAV 2b基因可以在两个属中的三个不同的植物物种中激活对TMV的抗性表明它将在大范围的宿主物种中相似地起作用。
                   实施例6
            (抗马铃薯病毒X的抗性)
Samsun(nn)和Xanthi-nc(NN)烟草(N.tabacum)植物对马铃薯病毒X(PVX)和对来自基于PVX的载体(pPC2S)(Chapman等人,1992)的RNA转录物是十分敏感的。但是,用PVX-t2b转录物在烟草种类的叶中接种都诱导了HR。PVX-t2b感染诱导的坏死损伤与TMV-t2b在Samsun(nn)植物上诱导的基本相同。另外,Northern印迹分析表明用PVX-t2b,而不是PVX或单独的PVX载体攻击的植物中也诱导了PR基因的转录。所以,从PVX基因组顺式表达TAV 2b也能够在不含有对PVX特异的抗性基因的烟草植物中引发抗性应答。
TMV和PVX是不同的病毒属的不同的植物RNA病毒,并且两个病毒的编码蛋白质具有最小的序列相似性。所以,TAV 2b基因激活抗性更不可能需要两个病毒载体编码的任何蛋白质特定地相互作用。这些结果表明TAV 2b基因将有可能激活抗各种植物致病原的广谱抗性机制。
野生型TAV(Ding等人,1994)和CMV/TAV嵌合体CMV-qt(Ding等人,1996)编码在感染植物中高水平表达的TAV 2b基因(Shi等人,1997)。前面已经表明,用于这一工作的所有三个植物物种均是对TAV和CMV-qt非常敏感的(Ding等人),表明这些植物物种不含有识别TAV 2b基因的抗性基因。这一结果表明在这些植物物种中,TAV 2b基因的激活抗性活性不是组成性的,并且可能需要诱导事件如用一定毒力的致病原感染(例如,TMV和PVX)。这一特性将TAV 2b基因与已知的植物致病原编码的无毒基因相区别出来。
                  实施例7
          (用于实施例8-12的方法)
1.质粒构建体
除非特别说明,利用标准方法(Sambrook等人,1989)进行DNA操作和克隆。在使用之前,在两个方向测序所有构建体中的DNA插入片段。
质粒pTMV-T2b,pTMV-TΔ2b1,pTMV-TΔ2b2和pTMV-C2b:质粒pTMV-30B(图4,由美国Florida大学,W.O.Dawson教授赠送)是基于TMV的植物基因表达载体。利用Pfu DNA聚合酶(Stratagene)从pQCD2qt(Ding等人,1996)PCR扩增TAV ORF2b的编码序列(RNA2的核苷酸2447-2734),并且克隆在pTMV-30B的PmeI位点,产生pTMV-T2b。如前面所述,pTMV-T2b通过PCR诱变产生了质粒pTMV-TΔ2b1(Ding等人,1995)(引入本文作为参考)。在相当于TAVRNA2的核苷酸2576和2582的位置上导入两个核苷酸取代(两个都是C-->T)(Moriones等人,1991)并且将ORF 2b的密码子44(CAA)和46(CGA)转换成终止密码子(TAA和TGA)。质粒pTMV-TΔ2b2含有与pQCD2qt2中相同的两个核苷酸突变(Ding等人,1996),其使ORF2b的第二个密码子改变成了终止密码子。从pSK2b中获得的CMVORF 2b编码序列(Ding等人,1994)是BamHI-Asp718片段,该片段的末端被填补,并且克隆在pTMV-30B的PmeI位点得到了pTMV-C2b。
质粒pTMV-TC1,pTMV-TC2,pTMV-TC3,pTMV-CT1,pTMV-CT2和pTMV-CT3:利用模板pQCD2(Ding等人,1995)或pQCD2qt(Ding等人,1996)和如前所述涉及三个独立的PCR的诱变方案(Ding等人,1996)(引入本文作为参考)产生了6个嵌合体DNA片段(图3)。将最后的PCR片段克隆在pTMV-30B的PmeI位点,得到列出的6个质粒构建体。
质粒pTMV-T2bC:通过PCR在pTMV-T2b编码的Tav2b的编码序列中导入核苷酸取代,AA->GT(相当于TAV RNA2的核苷酸2508-2509)和CGA->TCT(TAV RNA2的核苷酸2529-2531)。得到的质粒称为pTMV-T2bC。
质粒pPVX-T2b和pPVX-TΔ2b2:作为AgeI-XhoI片段获得pTMV-T2b和pTMV2TΔ2b2(图4)中的插入的TAV序列,克隆在PVX载体pP2C2S中。
2.体外转录,植物感染和Northern印迹分析
在利用TRNA聚合酶(新英格兰生物实验室),在存在帽子类似物时进行体外转录之前,用PstI将质粒pTMV-30B和它的衍生物线性化,而用SpeI将pPVX-Tb2和pPVX-TΔ2b2线性化。在Conviron生长室(22℃恒温,75%湿度和光期)中生长N.tabacum cv.Samsun(nn)植物。在大约几星期后,用金刚砂将植物最幼的完全伸展的叶去灰,用加帽的RNA转录物接种(从1微克质粒DNA模板转录的转录物/叶)。在接种后的各个时间,切下叶,在提取总RNA之前立即在液氮中冷冻,如上所述通过Northern印迹分析(Ding等人,1995)。
如上所述,在整个植物中进行了GFP转基因对PTGS的诱导和抑制以及GFP成象(Brigneti等人,1998)。简要地说,用携带含有功能性35S-GFP盒的二元Ti质粒的根癌农杆菌渗滤来自16C系的表达GFP的幼苗。在渗滤后3个星期,当完成了GFP转基因的系统PTGS时,将来自pPVX-T2b或pPVX-TΔ2b2的RNA转录物接种到植物最幼的完全扩展的叶上。
用所述的任意引物(Sambrook等人,1989),用α-32P-dCTP标记下面的DNA片段。来自pTMV-30B的SphI-StuI片段是对应于TMV基因组的核苷酸445-1675的(Goelet等人,1982)。通过根据公开的序列的PCR获得了特异于PR-1a(Comelissen等人,1987)的mRNA,和PR-(Comelissen等人,1986)的mRNA,和18SrRNA(Venkateswarlu和Nazar,1991)的所有探针,并且通过测序验证。在Northern分析中,所有样品利用的总RNA(Stg)的量相同,并且利用特异于18S rRNA的探针检测RNA加载。
3.病毒子代RNA分析
从用各个重组TMV转录物接种的植物回收病毒子代RNA,通过RT-PCR分析,并且进行DNA测序。首先利用侧接pTMV-30B的PmeI位点的引物对,通过RT-PCR扩增克隆在pTMV-30B的PmeI位点的黄瓜花叶病毒2b编码序列。然后,从琼脂糖凝胶纯化扩增的片段,利用同样的引物对直接对每个基因测序,或在测序之前克隆在质粒载体中。
                   实施例8
            1.诱导超敏感细胞死亡
N.tabacum cv.Samsun(nn)不含有N基因,并且所以是对许多TMV毒株包括U1和U5的感染敏感的(Mathews,1991)。系统感染的植物显示出花叶的症状。载体pTMV-30B(图4)除了插入的外源基因的表达由22U1外壳蛋白质(CP)亚基因组RNA(sgRNA)启动子(箭头2,图4)启动,而CP基因和它的sgRNA启动子(箭头3,图1)是从U5毒株获得(W.O.Dawson,未公开的数据)外,类似于前面所述的基于TMV的表达载体(Donson等人,1991;Kumagai等人,1995)。将从pTMV-30B转录的重组病毒RNA命名为TMV-30B。这一命名的系统用在整个上下文中。TMV-30B感染的Samsun植物具有比TMV的U1毒株感染的Samsun植物更轻的系统花叶症状。
将Tav2b和Cmv2b的编码序列克隆在pTMV-30B的U1 sg RNA启动子的下游,分别得到pTMV-T2b和pTMV-C2b(图4)。在接种3天后,在用TMV-T2b接种的烟草叶上出现了HR的形态学标记局部坏死损伤,而植物的其余部分,在整个观察中都无症状(5星期)。相反,在接种的叶上TMV-C2b没有诱导坏死损伤,并且在上面的未接种的系统叶上产生了花叶症状。这些后来的症状与TMV-30B感染引起的相似。
为了确定TMV-T2b和TMV-C2b在接种的烟草植物中的分布方式,从接种的和系统的叶提取总RNA,并且利用特异于TMV的基因组RNA的探针(在图5的右边表示)进行Northern印迹杂交进行分析。在接种了TMV-30B(泳道TMV)或TMV-C2b(泳道C2b)的植物的接种的叶(上面一组)和系统叶(中间一组)中检测同样高水平的基因组RNA的积累。相比之下,在接种的叶(泳道T2b,上面一组)中积累了水平低得多的TMV-T2b,在系统的叶(泳道T2b,中间一组)中没有检测到积累。利用序列特异性探针和通过对逆转录聚合酶链式反应(RT-PCR)获得的cDNA片段测序,证实了在从接种的叶提取的子代病毒RNA中存在Tav2b或Cmv2b的编码序列。另外,在变性的琼脂糖凝胶电泳过程中,TMV-C2b和TMV-T2b的基因组RNA比对应的TMV-30B的基因组RNA迁移得慢(图5,比较泳道TMV与紧接它的四个泳道),所以,Tav2b的表达在Samsun烟草品种中,诱导了超敏感细胞死亡和强病毒抗性。相反,在这一方法中,Cmv2b是无活性的。
2.Tav2b的PR基因表达和对病毒的抗性
为了测试是否TMV-T2b的攻击接种也导致编码与疾病抗性应答相关的分子标记PR蛋白质的基因的转录诱导,利用特异于PR1amRNA或PR-5mRNA的探针进行Northern印迹分析以分析在TMV-T2b接种后的不同时间点从烟草叶中提取的总RNA。正如图6所示,PR-1a(上面一组)和PR-5(下面一组)的mRNA的合成在3dpi时是可检测的,在5dpi(PR-1a)和7dpi(PR-5)时分别达到最大的稳定状态的RNA。在3dpi时mRNA诱导的时间与显微镜下坏死损伤的出现相一致。相反,PR-1amRNA(图5,下面一组)和PR-5mRNA的转录甚至在10dpi(或在任何其它更早的时间点)在TMV-30B(图5,泳道TMV)或TMV-C2b(图5,泳道C2b)感染的植物中也没有得到明显诱导。所以,TMV-T2b的攻击接种也导致了PR-1a和PR-5基因的转录诱导。在Samsun品种中,Tav2b诱导的超敏感细胞死亡,PR基因表达和强病毒抗性是与基因对基因疾病抗性机制相关的典型的宿主应答。所以,这些结果表明,Tav2b当从TMV基因组表达时的作用是Avr基因。
                 实施例9
          (Avr活性需要的全长序列)
在质粒pTMV-T2b中的Tav2b的编码序列中导入点突变得到pTMV-TΔ2b1和pTMV-TΔ2b2(图4)。预期重组病毒TMV-TΔ2b2不能在感染植物中产生任何Tav2b产物,因为第二个密码子( GCA)转换成了终止密码子( TAA)。在pTMV-TΔ2b1中,Tav2b的密码子44( CAA)和46( CGA)改变成终止密码子( TAA和 TGA)。在接种的叶中,TMV-TΔ2b1和TMV-TΔ2b2都不诱导形成坏死损伤,并且接种的植物产生了与TMV-C2b引起的相似的系统花叶症状。如Northern印迹杂交(图5,上面和中间一组,泳道TΔ2b1和TΔ2b2)表明,TMV-TΔ2b1和TMV-TΔ2b2在接种的叶和系统叶中都积累到可检测的水平。RT-PCR的子代分析和测序表明在TMV-TTΔ2b1和TMV-TΔ2b2中导入的突变能够稳定地维持,并且在插入的TAV序列中没有检测到第二个位点突变。另外,不象TMV-T2b,TMV-TΔ2b1或TMV-TΔ2b2的感染没有导致PR-1a(图5,最下一组,泳道TΔ2b1和TΔ2b2;图6,左边4个泳道)或PR-5(数据未显示)基因的转录诱导。所以,在Samsun品种中TMV-T2b诱导超敏感细胞死亡,PR基因表达和强病毒抗性与TMV-T2b编码全长可翻译Tav2b开放读框相关。这表明编码的蛋白质Tav2b是活性分子,并且观察到的Avr活性与插入的TAV RNA序列没有关系。含有在与TΔ2b1和TΔ2b2中存在的不同位点导入的核苷酸取代的Tav2b,T2bC(参见下面)突变体形式中观察到的Avr活性的丧失也支持了上面的提议的结论。另外,由于TMV-TΔ2b1系统地感染Samsun品种,截短的44个氨基酸的Tav2b的表达对于引发抗性应答必定是不够的。
                 实施例10
          (Tav2b蛋白质的功能区)
上面实施例7和8的实验表明,当从TMV载体中顺式表达时,Tav2b在Samsun(nn)烟草品种中诱导超敏感细胞死亡和强病毒抗性。但是,在这一方法中,当Cmv2b从TMV基因组中相似地表达时,它是无活性的。Cmv2b和Tav2b是来自相同的黄瓜花叶病毒属的两个不同的病毒种所编码的(Ding等人,1994,Shi等人,1997)。两个蛋白质推测的氨基酸序列具有24%的相同性(46.2%的相似性),这是在已知的黄瓜花叶病毒2b蛋白质之间最小的保守氨基酸匹配(Ding等人,1994)。由于Tav2b蛋白质只有95个氨基酸长,从缺失突变体如TMV-TΔ2b1得到的结果在定位Tav2b的功能区时信息是不够的。所以,将pTMV-T2b编码的Tav2b由根据已知的黄瓜病毒2b蛋白质的序列对比中Cmv2b的等价区从N末端(pTMV-CT1,2,和3)或C末端(pTMV-TC1,2,和3)逐步地取代。图3给出了得到的2b嵌合体的结构。起源于Tav2b的区域(表示为氨基酸的编号)表示为开放的部分,来自Cmv2b的那些区域表示为充满的部分。
图7中表示了利用来自6个嵌合2b构建体的重组TMV转录物的感染实验的结果,这些结果在图3中概述。Cmv2b的等价区取代Tav2b的N末端的91,69或50个氨基酸得到了CT1,CT2和CT3(图3)。烟草植物对编码的2b蛋白质的N末端的50个或更多的氨基酸起源于Cmv2b的所有3个TMV重组体(TMV-CT1,2,和3)是敏感的。这些重组体中没有一个诱导坏死损伤(数据未显示),并且所有重组体在接种和系统的叶中都积累(图7,泳道CT1,CT2和CT3)。感染的植物也具有与TMV-C2b引起的相似的系统温和花叶症状。所以,在2b嵌合体中缺乏Tav2b N末端的50个氨基酸导致无毒功能的丧失,表明这一区域是宿主中诱导病毒抗性和超敏感细胞死亡所必须的。
与上面的观察结果相一致,从三个TMV-TC重组体获得的数据进一步表明Tav2b N末端的69个氨基酸的序列足以在cv.Samsun中赋予病毒抗性。TC1,TC2和TC3是用来自Cmv2b的等价区取代Tav2b的C末端4,26或50个氨基酸获得的(图3)。TC1和TC2的N末端69和91个氨基酸起源于Tav2b(图3)。它们都能在攻击的烟草植物中诱导强病毒抗性。这是因为在接种的叶中TMV-TC1和TMV-TC2积累的水平非常低(图7,上面一组的泳道TC1和TC2),在系统叶中没有检测到病毒RNA的积累(下面一组,TC1和TC2泳道)。受攻击的植物在整个观察期(5个星期)中均保持无症状。用PR-1a探针再探测图7上面一组中所示的滤膜,示出在用TMV-TC1和TMV-TC2接种的烟草叶中,而不是在用其余四个病毒接种的烟草叶中诱导了PR-1amRNA的转录。所以,Tav2b的N末端的69个氨基酸在抗性活化中的功能独立于它的C末端的其余26个氨基酸。
TC3含有来自Tav2b蛋白质的N末端的50个氨基酸(图3),并且不诱导病毒抗性,因为TMV-TC3,和TMV-CT3一样系统地感染烟草植物(图7,底下一组)。这一结果与实施例9的发现一致,即编码截短的Tav2b的44个氨基酸的TΔ2b1在烟草植物中不诱导病毒抗性。TC2,但不是TC3是无毒力的这一事实(图3)表明Tav2b的氨基酸50-69在抗性活化中起了关键的作用。但是,CT3含有来自Tav2b的相同的20个氨基酸,它不能诱导病毒抗性(图7),表明在2b嵌合体中存在Tav2b的这一区域是不足以活化病毒抗性的,不象更长的N末端69个氨基酸的区域。
虽然Samsun品种是抗TMV-TC1和TMV-TC2的,但TMV-TC1在接种的叶中诱导与TMV-T2b引发的相同的坏死损伤。在相同的条件下,TMV-TC2没有引起可见的超敏感细胞死亡(图3)。这一结果,即TMV-TC2的局部的和无症状的感染在包括总共37个植物的6个独立的实验中是一致的,并且是可重复的,这表明包括Tav2b的氨基酸70-91的序列是引发超敏感细胞死亡所需要的。但是,编码Tav2b的相同的22个氨基酸的TMV-CT2和TMV-CT3不引起坏死损伤(图3),表明单独这一序列不足以引发超敏感细胞死亡。
                实施例11
            (去除Tav2d无毒活性)
为了进一步分析无毒决定簇,用在毒性的Cmv2b的序列对比的位置中发现的21Val和27Ser取代在无毒的Tav2b的抗性区中带正电的21Lys和27Arg(Ding等人,1994)。表达得到的Tav2b突变体的TMV-T2bC不引发与野生型Tav2b相关的任何疾病抗性应答,在接种的Samsun叶中也没有观察到坏死损伤和PR 1a mRNA的转录诱导。另外,TMV-T2bC接种的植物变成系统感染。Northern印迹分析表明在感染的植物的接种的和系统的叶中,TMV-T2bC积累到与TMV-TΔ2b2相似的水平。RT-PCR和DNA测序表明导入的突变维持在子代病毒基因组中,在TMV-T2bC的Tav2b编码序列中没有发现其它突变。所以,在这一烟草品种中,两个氨基酸取代去除了Tav2b的Avr活性。
                    实施例12
         (在N.benthamiana中的Tav2b活性)
我们先前已经确定从马铃薯病毒X(PVX)载体表达的Cmv2b的作用是毒性决定簇,并且抑制N.benthamiana植物中的绿色荧光蛋白质(GFP)转基因的PTGS(Brigneti等人,1998)。N.benthamiana植物对TMV-T2b也是非常敏感的。感染的植物展示了系统坏死,并且在14dpi时开始萎陷,之后几天死亡。TMV-C2b诱导轻得多的系统感染,不会导致感染植物的死亡;在Tav2b和Cmv2b之间的毒力上的这一差别在过去已经被观察到(Ding等人,1996)。用TMV-TΔ2b2系统感染的植物显示了与TMV-30B感染引起的相似的中等程度缺绿。Northern印迹杂交证实了在接种的和系统叶中积累了TMV-T2b和TMV-TΔ2b2。所以,在N.benthamiana中,Tav2b象Cmv2b一样不能认作为Avr基因。
为了测试Tav2b在抑制PTGS中的作用,将来自pTMV-T2b和pTMV-TΔ2b2的TAV序列转移到PVX载体(pP2C2S)得到pPVX-T2b和pPVX-TA2b2,从这两个质粒得到了RNA转录物,接种到N.benthamiana植物,展示了GFP转基因的完全的系统PTGS。在N.benthamiana中,PVX-T2b具有与TMV-T2b相似的毒力,PVX-T2b感染导致了感染的植物的快速死亡。但是,在12dpi时,当还没有发展成严重的系统坏死时,PVX-T2b感染的植物的新出现的叶在UV照射下有绿色荧光,而在病毒感染之前产生的老叶仍然是红色荧光。在12dpi提取的RNA的Northern分析表明在这些绿荧光叶中具有明显水平的GFP RNA积累。相比之下,尽管这些植物的新出现的叶变成绿荧光并在几天后积累高水平的GFP RNA,但在12dpi,PVX-C2b感染的植物仍然是红色荧光,并且具有低于检测极限的1 GFP RNA水平(Brigneti等人,1998)。正如所预期的,在N.benthamiana中,PVX-TΔ2b2比PVX-T2b具有的毒力小得多,并且在18dpi或在35dpi时,在PVX-TΔ2b2感染的植物中没有观察到GFP转基因抑制PTGS。所以,Tav2b在N.benthamiana中是毒性决定簇和PTGS的抑制剂。
参考文献
Anandalakshmi,R.,Pruss,G.J.,Ge,X.,Marathe,R.,Mallor.,A.C.,Smith,T.H.和Vance,V.B.(1988)在植物中基因拼接的病毒抑制剂。美国科学院学报,95,13079-13084。
Baker,B.,Zambryski,P.,Staskawicz,B.和Dinesh-Kumar,S.P.(1997)植物中23微生物相互作用形成的信号。科学,276,726-733。
Bendahmane,A.,Kohn,B.A.,Dedi,C.和Baulcombe,D.C.(1995)马铃薯病毒X的包被蛋白质是马铃薯中Rxl-介导的病毒抗性的菌株特异性激发剂。植物杂志,8,933-941。
Berzal-Herranz,A.,de la Cruz,A.,Tenllado,F.,Diaz-Ruiz,J.R.,Lopez,L.,Sanz,A.I.,Vaquero,C.,Serra,M.T.和Garcia-Luque,I.(1995)Capsicum L3基因-介导的抗烟草花叶病毒的抗性是由包被蛋白质引发的。病毒学Virology,209,498-505。
Brigneti,G.,Voinnet,O.,Li,W.X.,Ji,L.H.,Ding,S.W.和Baulcombe,D.C.(1998)病毒致病性决定簇是N.benthamiana中转基因拼接的抑制剂。EMBO J.,17,6739-6746。
Caboche(1990)。植物生理学。79:173-176。
Chapman,S.,Kavanagh,T.和Baulcombe,D.(1992)在植物中马铃薯病毒X作为基因表达的载体。植物杂志,2,549-557。
Christou et al.(1991)生物/技术9:957-962。
Comelissen,B.J.et al.(1987)。编码PR-1组的致病性相关蛋白质的烟草基因的结构。核酸研究,15,6799-6811。
Comelissen,B.J.,Hooft van Huijsduijnen,R.A.和Bol,J.F.(1986)烟草花叶病毒诱导的烟草蛋白质与产生甜味的蛋白质奇甜蛋白质。自然321,531-532。
Covey,S.N.,Al-Kaff,N.S.,Langara,A.和Turner,D.S.(1997)植物抗击基因拼接产生的感染性。自然,385,781-782。
Cronin,S.,Verchot,J.,Haldeman-Cahill,R.,Schaad,M.C.和Carrington,J.C.(1995)长距离运动因子:马铃薯Y病毒组辅助成分蛋白酸的运输功能。植物细胞,7,549-559。
Culver,J.N.,和Dawson,W.O.(1991)烟草花叶病毒引发剂包被蛋白质基因在转基因烟草枞萜植物产生超敏表现型。分子植物微生物相互作用,4,458-463。
Datta等人。(1990)生物/技术8:736-740。
Depicker,A.和Van Montagu,M.(1997)植物中转录中基因沉默。现代细胞生物学意见,9,372-382。
Ding,SW.,Anderson,BJ.,Haase,HR.和Symons,RH.(1994)。由黄瓜花叶病毒基因组编码的新的重叠基因。病毒学,198,593-601。
Ding,SW.,Li,W X.and Symons,RH.(1995)。由植物RNA病毒编码的新的天然存在的杂合基因促进长距离病毒运动。EMBO J.,14,5762-5772。
Ding,SW.,Shi,BJ.,Li,WX.和Symons,RH.(1996).种间杂交RNA病毒的毒性显著高于任一亲本病毒。美国科学院学报93,7470-7474。
Donson,J.,Kearney,C.M.,Hilf,M.E.和Dawson,W.O.(1991)基于烟草花叶病毒的载体全身表达细菌基因,美国科学院学报,88,720432 7208。
Gilbert,J.,Spillane,C.,Kavanagh,T.A.和Baulcombe,D.C.(1998)在马铃薯中Rx介导的PVX抗性的激发不需要新的RNA合成并且可能涉及迟缓的超敏应答。分子植物微生物相互作用。11,833-835。
Goelet,P.,Lomonossoff,G.P.,Butler,P.J.Akam,M.E.,Gait,M.J.和Kam,J.(1982)烟草花叶病毒RNA的核苷酸序列,美国科学院进展,79,5818-5822。
Gopalan,S.,Bauer,D.W.,Alfano,J.R.,Loniello,A.O.,He,S.Y.和Collmer,A.(1996)。植物细胞中丁香假单胞菌减毒蛋白质AvrB的表达减轻了它被激发基因型特异性超敏性细胞死亡时对超敏应答和致病原性(Hrp)分泌系统的依赖。植物细胞,8,1095-1105。
Guo,H.S.和Garcia,J.A.(1997)由突变的RNA复制酶基因介导的对plum pox马铃薯Y病毒的抗性的延迟;涉及基因沉默原理。分子植物微生物相互作用,10,160-170。
Hammond-Kosack,K.E.和Jones,J.D.G.(1996)依赖于抗性基因的植物防御应答。植物细胞,8,1773-1791。
Hammond-Kosack,K.E.和Jones,J.D.G.(1997)植物疾病抗性基因。植物生理学评论年报,植物分子生物学,48,575-607/
Hammond-Kosack,K.E.,Silverman,P.,Raskin,I.和Jones,J.D.G.(1996)cladosporium fulvum的种类特异性引发剂在携带相应的cf疾病抗性基因的细胞形态和乙烯和甘氨酸的合成中进行诱导改变。植物生理学,110,1381-1395。
Kasschau,K.D.和Carrington,J.C.(1998)植物病毒的反防御方案:对转录后基因沉默的抑制。细胞95,461-470。
Keen,N.T.(1990)在植物病原体相互作用中基因对基因的互补性。遗传学年度综述,24,447-463。
Kim,C-H和Palukaitis,P.(1997)由病毒聚合酶基因引发豇豆中对黄瓜花叶病毒的植物防御应答并且影响单个细胞中病毒积累。EMBO Jj.,16,4060-4068。
Knogge,W.(1996)植物的真菌感染。植物细胞8,1711-1722。
Kumagai,M.H.,Donson,J.,Della-Cioppa,G.,Harvey,D.,Hanley,K.和Grill,L.K.(1995)病毒衍生的RNA对类胡萝卜素生成合成的细胞质抑制。美国科学院学报,92,1679-1683。
Kumagai,M.H.,Turpen,T.H.Weinezettl,N.,Della-Cioppa,G.,Turpen,A.M.,Donson,J.,Hilf,M.e.,Grantham,G.L.,Dawson,W.O.,Chow,T.P.,Piatak,M.和Grill,L.K.(1993)。在转化的植物中由RNA病毒载体快速高水平表达生物学活性a-天花粉蛋白。美国科学院年报90,427-430。
Lamb,C.和Dixon,R.A.(1997)在植物疾病抗性中氧化的突发植物生理学和植物分子生物学综述年报,48,251-275。
Leach,J.E.和White,F.F.(1996)细菌的无毒性基因。植物病理学年度综述。34,153-179。
Ledox et al.,(1974)自然,249:17-21。
Leister,R.T.,Ausubel,F.M.和Katagiri,F.(1996)93,15497-15502。由拟南芥基因RPS2和RPMI限定的植物疾病抗性的植物细胞中出现了病原体攻击的分子识别。美国科学院年报。
Lindbo,J.A.,Silva-Rosales,L.,Proebsting,W.M.和Dougherty,W.G.(1993)在转基因植物中高度特异性抗病毒状态的诱导:暗示基因表达和病毒抗性的调节。植物细胞,5,1749-1759。
Lindgren,P.B.(1997)在植物细菌相互作用中hrp基因的作用。植物病理学年度综述,35,129-152。
Malamy,J.,Henning,J.,和Klessig,D.F.(1992).4在对烟草花叶病毒感染的抗性应答过程中甘氨酸和其共轭物的湿度依赖性诱导。植物细胞,359-366。
Matthews,R.E.F.(1991)植物病毒学,第3版,学术出版社,纽约。
Meshi,T.,Motoyoshi,F.,Maeda,T.,Yoshiwoka,S.,Watanabe,H.和Okada,Y.(1989)在烟草花叶病毒30-kD蛋白质基因的突变克服了番茄中Tm-2抗性。植物细胞,1,515-522。
Meshi,T.,Motoyoshi,F.,Adachi,A.,Watanabe,Y.,Takamatsu,N.和Okada,Y.(1998)在烟草花叶病毒的推测的复制酶基因的两个相体碱基取代。授予克服烟草抗性基因,Tm-1的作用的能力。EMBO J.,7,1575-1581。
Metraux,J.P.,Singer,H.,Rayals,J.,Ward,E.,Wyss-Benz,M.,Gaudin,J.,Raschdorf,K.,Schmid,E.,Blum,W.,和Inverardi,B.(1990)。在黄瓜中全身性获得的抗性的启动在甘氨酸增加。科学,250,1004-1006。
Moriones,E.,Roossinck,M.J.和Garcia-Arenal,F.(1991)番茄无精病毒RNA2的核苷酸序列。遗传病毒学杂志,72,779-783。
Padgett,H.S,Watanabe,Y.和Beachy,R.N.(1997)激活N基因介导的超敏应答的TMV复制酶序列的识别。分子植物微生物相互作用,10,709-715。
Pirhonen,M.U.,Lidell,M.C.,Rowley,D.L.,Lee,S.W.,Jin,S.,Liang,Y.,Silverstone,S.,Keen,N.T.和Hutcheson,S.W.(1996)大肠杆菌中丁香假单胞菌表现型的表达与hrp编码的分泌系统的活性连接。分子植物微生物相互作用,9,252-260。
Ratcliff,F.,Harrison,B.D.和Baulcombe,D.C.(1997)植物中病毒防御和基因沉默之间的相似性。科学,276,1558-1560。
Rhodes et al.,(1998)科学,240:204-207。
Ross,A.F.(1961)。植物中定位的病毒感染诱导的全身性获得性抗性。病毒学,14,340-358。
Ruiz,M.T.,Voinnet,O.和Baulcombe,D.C.(1998)病毒23的起动和维持诱导基因沉默。植物细胞,10,937-946。
Ryals,J.A.,Neuenschwander,U.H.,Willits,M.G.,Molina,A.,Steiner,H.Y.和Hunt,M.D.(1996)系统性获得的抗性。植物细胞,8,1809-1819。
Sambrook,J.,Fritsch,E.F.和Maniatis,T.(1989)分子克隆:实验室手册。冷泉港出版社,冷泉港,纽约。
Scofield,S.R.,Tobias,C.M.,Rathjen,J.P.,Chang,J.H.,Lavelle,D.T.,Michelmore,R.W.和Staskawicz,B.J.(1996)在番茄的细菌斑点疾病中基因对基因特异性的分子基础。科学。274,2063-2065。
Shi,BJ.,Ding,SW.和Symons,RH.(1997)。由黄瓜病毒编码的重迭的体内表达。病毒遗传学杂志,78,237-241。
Shimamoto等人(1989)自然,338:274-277
Sticher,L.,Mauch-Mani,B.和Metraux,J.P.(1997)系统获得的抗性。植物病理学评述年报,35,235-270。
Tang,X.,Frederick,R.D.,Zhou,J.,Halterman,D.A.,Jia,Y.和Martin,G.B.(1996)由avrPto和Pto激酶的生理相互作用启动植物疾病抗性。科学,274,2060-2063。
Taraporewala,Z.F.和Culver,J.N.(1996)烟草花叶病毒包被蛋白质的三维结构内引发剂活性位点的识别。植物细胞,8,169-178。
Topfer,R.等人(1989)植物细胞,1:133-139。
Toriyama等人(1988)生物/技术,6:1072-1074。
Van den Ackerveken,G.,Marois,E.和Bonas,U.(1996)宿主植物细胞内细菌无毒蛋白质AvrBs3的识别出现。细胞,87,1307-1316。
Venkateswarlu,K.和Nazar,R.(1991)来自烟草Nicotiana rustica的18-25s rRNA基因内区域的保守的核结构。植物分子生物学,17,189-194。
Ward,E.R.,Uknes,S.J.,Wlliams,S.C.,Dincher,S.S.,Widerhold,D.L.,Alexander,D.C.,Ahl-Goy,P.,Metraux,J-P.,和Ryals,J.A.(1991)。协调基因活性对诱导系统性获得的抗性的因子的协调基因活性。植物细胞,3,1085-1094。
Weber,H.,Schultze,S.和Pfitzner,A.J.(1993)在番茄花叶病毒30-KD运动蛋白质中的两个明替代授予克服番茄的Tm-2(2)抗性基因的能力。病毒学杂志,67,6432-6438。
Whitham,S.,Dinesh-Kumar,S.P.,Choi,D.,Hehl,R.,Corr,C.和Baker,B.(1994)烟草花叶病毒抗性基因N的产生:与Toll和白介李-1受体类似。细胞,78,1101-1115。
Yang,Y.,Shah,J.和Klessig,D.F.(1997)在植物防御应答中信号感觉和转导。基因研究,11,1621-1639。
Zhang W.等人(1988)遗传学应用理论,76:835-840。
                        序列表(1)总的信息:(I)申请人:丁守伟(ii)发明名称:抗病性转基因植物(iii)序列数目:4(iv)通信地址:
(A)收信人:Rothwell,Figg,Ernst & Kurz
(B)街道:13大街555号,N.W.,东701室
(C)城市:华盛顿
(D)州:DC
(E)国家:美国
(F)邮编:20004(v)计算机可读形式:
(A)介质类型:软盘
(B)计算机:IBM PC兼容机
(C)操作系统:PC-DOS/MS-DOS
(D)软件:PatentIn Release#1.0,#1.30版(vi)本申请数据:
(A)申请号:
(B)递交日期:
(C)分类:(viii)律师/代理人情况:
(A)姓名:Figg,EdwardA.
(B)注册号:27,195
(C)档案号:2248-108(ix)电信信息:
(A)电话:202-783-6040
(B)传真:202-783-6031(2)SEQ ID NO:1的信息:(i)序列特征:
(A)长度:328个碱基对
(B)类型:核酸
(C)链型:双链
(D)几何结构:线性(ii)分子类型:DNA(基因组)(iii)假设:无(iv)反义:否(vi)原始来源:
(A)生物体:番茄无子病毒(vii)即时来源:
(B)克隆:pTMV-30B(xi)序列描述:SEQ ID NO:1:ACCGTTAAGA AGAAGAAGAA TGGCAAGCAT CGAGATCCCT CTACACGAGA TCATTCGAAA      60GTTGGAACGG ATGAATCAAA AGAAACAAGC ACAGAGGAAA CGACACAAAC TGAACCGCAA     120GGAGCGGGGT CACAAAAGTC CAAGTGAACA AAGGCGATCG GAGTTATGGC ACGCGCGTCA     180AGTTGAACTT TCTGCCATTA ATTCCGATAA TTCTTCAGAT GAGGGTACCA CTCTGTGTCG     240CTTTGACACA TTTGGTTCCA AGTCTGATGC TATTTGTGAT CGCTCTGACT GGTGTCTCGA     300TCAATGATTT CCGACCCTTC GTCGTCCG                                        328(2)SEQ ID NO:2:(i)序列特征:
(A)长度:328碱基对
(B)类型:核酸
(C)链型:单链
(D)几何结构:线性(ii)分子类型:其它核酸
(A)描述:/desc=“合成DNA”(iii)假设:无(iv)反义:否(vi)原始来源:
(A)生物体:番茄无子病毒(vii)即时来源:
(B)克隆:pTAVd2b1(xi)序列描述:SEQ ID NO:2:ACCGTTAAGA AGAAGTAGAA TGTAAAGCAT CGAGATCCCT CTACACGAGA TCATTCGAAA      60GTTGGAACGG ATGAATCAAA AGAAACAAGC ACAGAGGAAA CGACACAAAC TGAACCGCAA     120GGAGCGGGGT CACAAAAGTC CAAGTGAACA AAGGCGATCG GAGTTATGGC ACGCGCGTCA     180AGTTGAACTT TCTGCCATTA ATTCCGATAA TTCTTCAGAT GAGGGTACCA CTCTGTGTCG     240CTTTGACACA TTTGGTTCCA AGTCTGATGC TATTTGTGAT CGCTCTGACT GGTGTCTCGA     300TCAATGATTT CCGACCCTTC GTCGTCCG                                        328(2)SEQ ID NO:3的信息:(i)序列特征:
(A)长度:328个碱基对
(B)类型:核酸
(C)链型:单链
(D)几何结构:线性(ii)分子类型:其它核酸
(A)描述:/desc=“合成DNA”(iii)假设:无(iv)反义:否(vi)原始来源:
(A)生物体:番茄无子病毒(vii)即时来源:
(B)克隆:pTAVd2b2(xi)序列描述:SEQ ID NO:3:ACCGTTAAGA AGAAGTAGAA TGTAAAGCAT CGAGATCCCT CTACACGAGA TCATTCGAAA      60GTTGGAACGG ATGAATCAAA AGAAACAAGC ACAGAGGAAA CGACACAAAC TGAACCGCAA     120GGAGCGGGGT CACAAAAGTC CAAGTGAATA AAGGTGATCG GAGTTATGGC ACGCGCGTCA     180AGTTGAACTT TCTGCCATTA ATTCCGATAA TTCTTCAGAT GAGGGTACCA CTCTGTGTCG     240CTTTGACACA TTTGGTTCCA AGTCTGATGC TATTTGTGAT CGCTCTGACT GGTGTCTCGA     300TCAATGATTT CCGACCCTTC GTCGTCCG                                        328(2)SEQ ID NO:4的信息:(i)序列特征:
(A)长度:504个碱基对
(B)类型:核酸
(C)链型:单链
(D)几何结构:线性(ii)分子类型:DNA(基因组)(iii)假设:无(iv)反义:否(vi)原始来源:
(A)生物体:黄瓜花叶病毒(vii)即时来源:
(B)克隆;pCMV2b(xi)序列描述:SEQ ID NO:4:GATCCATGGA TGTGTTGACA GTAGTGGTGT CGACCGCCGA CCTCCACTTA GCCAATTTGC      60AGGAGGTGAA ACGTCGAAGA CGAAGGTCTC ACGTCAGAAA CCGGCGAGCG AGGGGTTACA     120AAAGTCCCAG CGAGAGAGCG CGATCTATAG CGAGACTTTT CCAGATGTTA CCATTCCACG     180GAGTAGATCC CGTGGATTGG TTTCCTGATG TCGTTCGCTC TCCGTCCGTT ACCAGCCTTG     240TTTCTTATGA ATCTTTTGAT GATACTGATT GGTTTGCTGG TAACGAATGG GCCGAAGGGT     300CGTTTTGATT TCCGACCCTT CGTCGTCCGA AGACGTTAAA CTACGCTCTC TTTATTGCGA     360GTGCTGAGTT GGTAGTTTGC TCTAAACTAT CTGAAGTCGC TAAATCCATT ACTGGTTGCG     420AACGGGTTGT CCATCCAGCT TACGGCTAAA ATGGTCAGTC ATGCCCCAAA GGCATGCCGA     480CACCCTACAG GGTTGTCGAG GTAC                                            504

Claims (37)

1.用与一种启动子可操作地连接的黄瓜花叶病毒2b基因或其活性片段稳定转化的转基因植物,当所述的植物感染了致病原生物体时,所述启动子能够在所述的植物中实现所述的基因的表达。
2.根据权利要求1所述的转基因植物,其中黄瓜花叶病毒2b基因是在严格条件下SEQ ID NO:1的核酸将与之杂交的一个基因。
3.根据权利要求1所述的转基因植物,其中黄瓜花叶病毒2b基因基本上具有SEQ ID NO:1的序列。
4.根据权利要求1所述的转基因植物,其中该植物用黄瓜花叶病毒2b基因的活性片段稳定转化。
5.根据权利要求4所述的转基因植物,其中所述片段包含至少编码黄瓜花叶病毒2b基因编码的蛋白质的C末端26个氨基酸的核酸序列。
6.根据权利要求4所述的转基因植物,其中所述片段包含至少编码黄瓜花叶病毒2b基因编码的蛋白质的C末端45个氨基酸的核酸序列。
7.根据权利要求4所述的转基因植物,其中所述片段不含编码黄瓜花叶病毒2b基因编码的蛋白质的C末端4个氨基酸的氨基酸。
8.根据权利要求1所述的转基因植物,其中2b基因的表达是致病原可诱导启动子控制的。
9.根据权利要求8所述的转基因植物,其中致病原可诱导的启动子是PR蛋白基因启动子。
10.赋予植物对感染性致病因子引起的疾病的抗性的方法,包括用与一种启动子可操作地连接的黄瓜花叶病毒2b基因或其活性片段稳定转化所述植物,当所述的植物感染了致病原生物体时,所述启动子能够在所述的植物中实现所述的基因的表达。
11.根据权利要求10所述的方法,其中黄瓜花叶病毒2b基因是在严格条件下SEQ ID NO:1的核酸将与之杂交的一个基因。
12.根据权利要求10所述的方法,其中黄瓜花叶病毒2b基因基本上具有SEQ ID NO:1的序列。
13.根据权利要求10所述的方法,其中所述植物用黄瓜花叶病毒2b基因的活性片段稳定地转化。
14.根据权利要求13所述的方法,其中所述片段包含至少编码黄瓜花叶病毒2b基因编码的蛋白质的C末端26个氨基酸的核酸序列。
15.根据权利要求13所述的方法,其中所述片段包含至少编码黄瓜花叶病毒2b基因编码的蛋白质的C末端45个氨基酸的核酸序列。
16.根据权利要求13所述的方法,其中所述片段不含编码黄瓜花叶病毒2b基因编码的蛋白质的C末端4个氨基酸的氨基酸。
17.根据权利要求10所述的方法,其中2b基因的表达是致病原可诱导的启动子控制的。
18.权利要求1,2,3,4,5,6,7,8或9所述的转基因植物的种子。
19.权利要求1,2,3,4,5,6,7,8或9所述转基因植物的繁殖部分。
20.根据权利要求1所述的转基因植物,其是玉米,小麦,水稻,小米,燕麦,大麦,高粱,向日葵,甜薯,苜蓿,甜菜,白菜类,番茄,胡椒,大豆,烟草,甜瓜,南瓜,马铃薯,花生,豌豆,棉花或可可。
21.含有与植物活性启动子可操作地连接的黄瓜花叶病毒2b基因或其活性片段的表达载体。
22.根据权利要求21所述的表达载体,其中黄瓜花叶病毒2b基因或其活性片段的表达是致病原可诱导的启动子控制的。
23.根据权利要求22所述的表达载体,其中致病原可诱导启动子是PR蛋白基因启动子。
24.用具有无活性细胞死亡区的二区Avr基因稳定转化的转基因植物,其中所述基因与一种启动子可操作地连接,当所述植物感染致病原生物体时,所述启动子能够在所述的植物中实现所述的基因的表达。
25.根据权利要求24所述的转基因植物,其中Avr基因来自黄瓜花叶病毒2b基因。
26.根据权利要求25所述的转基因植物,其中Avr基因是Tav2b基因的抗性区和Cmv2b基因的细胞死亡区的嵌合体。
27.赋予植物对感染性致病因子引起的疾病的抗性的方法,包括用具有无活性细胞死亡区的二区Avr基因稳定转化植物,其中所述基因与一种启动子可操作地连接,当所述植物感染致病原生物体时,所述启动子能够在所述的植物中实现所述的基因的表达。
28.根据权利要求27所述的方法,其中Avr基因来自黄瓜花叶病毒2b基因。
29.根据权利要求27所述的方法,其中Avr基因是Tav2b基因的抗性区和Cmv2b基因的细胞死亡区的嵌合体。
30.一种表达载体,包含与植物活性启动子可操作地连接的Avr基因,其中的Avr基因具有无活性细胞死亡区。
31.根据权利要求30所述的表达载体,其中Avr基因来自黄瓜花叶病毒2b基因。
32.根据权利要求31所述的表达载体,其中Avr基因是Tav2b基因的抗性区和Cmv2b的细胞死亡区的嵌合体。
33.根据权利要求30,31或32所述的表达载体,其中Avr基因的表达是致病原可诱导启动子控制的。
34.根据权利要求33所述的表达载体,其中致病原可诱导启动子是PR蛋白基因启动子。
35.根据权利要求24,25或26所述的转基因植物的种子。
36.根据权利要求24,25或26所述的转基因植物的繁殖部分。
37.根据权利要求24所述的转基因植物,其是玉米,小麦,水稻,小米,燕麦,大麦,高粱,向日葵,甜薯,苜蓿,甜菜,白菜类,番茄,胡椒,大豆,烟草,甜瓜,南瓜,马铃薯,花生,豌豆,棉花或可可。
CN 99808287 1998-05-12 1999-02-12 抗病性转基因植物 Pending CN1308681A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SGPCT/SG98/00035 1998-05-12
PCT/SG1998/000035 WO1999058696A1 (en) 1998-05-12 1998-05-12 Disease resistant transgenic plants

Publications (1)

Publication Number Publication Date
CN1308681A true CN1308681A (zh) 2001-08-15

Family

ID=20429854

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 99808287 Pending CN1308681A (zh) 1998-05-12 1999-02-12 抗病性转基因植物

Country Status (4)

Country Link
EP (1) EP1078090A1 (zh)
CN (1) CN1308681A (zh)
ID (1) ID27743A (zh)
WO (1) WO1999058697A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU1602301A (en) * 1999-11-12 2001-06-06 University Of South Carolina Method for enhancing resistance in plants
JP2011217744A (ja) * 2010-03-24 2011-11-04 Iwate Univ 植物への病原ウイルス感染を防除する組換えalsv
EP2690171A4 (en) * 2011-03-24 2014-09-24 Nat University Iwate Univ Inc ALSV RECOMBINANT FOR PREVENTING PATHOGEN VIRAL INFECTION OF A PLANT

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL9000773A (nl) * 1990-04-02 1991-11-01 Rijkslandbouwhogeschool Werkwijze voor het beschermen van planten tegen pathogenen.
WO1993025068A1 (en) * 1992-06-08 1993-12-23 Cornell Research Foundation, Inc. Viral resistance by plant transformation with a replicase portion of a plant virus genome
WO1996021032A1 (en) * 1994-12-30 1996-07-11 Asgrow Seed Company Transgenic plants exhibiting heterologous virus resistance

Also Published As

Publication number Publication date
WO1999058697A1 (en) 1999-11-18
EP1078090A1 (en) 2001-02-28
ID27743A (id) 2001-04-26

Similar Documents

Publication Publication Date Title
Zhang et al. Development of Bean pod mottle virus-based vectors for stable protein expression and sequence-specific virus-induced gene silencing in soybean
US11299746B2 (en) Disease resistant pepper plants
EP2436769B1 (en) Plant expression constructs and methods of utilizing same
CN107936104B (zh) 牡丹PsMYB12转录因子及其编码基因与应用
KR20020020795A (ko) 식물 숙주에서의 제초제, 해충, 또는 질환 저항성의 부여방법
HU207534B (en) Process for producing transgene plants transactivatable with virus-infection and for producing recombinant dns molecule
Komarova et al. New viral vector for efficient production of target proteins in plants
Díaz-Camino et al. An effective virus-based gene silencing method for functional genomics studies in common bean
CN115976040A (zh) 本氏烟NbTSG101基因在调控植物抗病毒中的应用及转基因植物培育方法
CN1119422C (zh) 抗病毒植物
Cai et al. Development of a virus-induced gene-silencing system for functional analysis of the RPS2-dependent resistance signalling pathways in Arabidopsis
US7476780B2 (en) Root agroinoculation method for virus induced gene silencing
US20110173717A1 (en) BPMV-based viral constructs useful for VIGS and expression of heterologous proteins in legumes
WO2018065785A1 (en) Vectors and methods for gene expression in monocots
JP2002525033A (ja) 植物に疾患抵抗性を付与するPi−ta遺伝子
JP6350995B2 (ja) 植物において外来遺伝子を発現させるための核酸分子及び方法
US6207882B1 (en) Disease resistant transgenic plants comprising a tomato aspermy virus 2b gene
CN1308681A (zh) 抗病性转基因植物
JP2008283978A (ja) パパイヤ輪紋ウイルス遺伝子
CN1496367A (zh) 用于在植物中产生番茄黄叶卷缩病毒抗性的材料和方法
WO2020071528A1 (ja) 植物のゲノム編集に用いられるdna構築物
Mitiouchkina et al. Molecular biology approach for improving chrysanthemum resistance to virus B
CN1352693A (zh) 昆虫病毒载体及其应用
WO2001007641A2 (en) Method for expressing a library of nucleic acid sequence variants and selecting desired traits
WO2010010501A1 (en) Non-host transgenic plant comprising in its genome the entire genome of a badnavirus

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication