CN1306625C - Light-emitting diode structure and manufacturing method thereof - Google Patents

Light-emitting diode structure and manufacturing method thereof Download PDF

Info

Publication number
CN1306625C
CN1306625C CNB031501079A CN03150107A CN1306625C CN 1306625 C CN1306625 C CN 1306625C CN B031501079 A CNB031501079 A CN B031501079A CN 03150107 A CN03150107 A CN 03150107A CN 1306625 C CN1306625 C CN 1306625C
Authority
CN
China
Prior art keywords
layer
type
gallium nitride
emitting diode
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB031501079A
Other languages
Chinese (zh)
Other versions
CN1571176A (en
Inventor
陈隆建
简奉任
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bright Circle Au Optronics Co
Lumens Ltd By Share Ltd
Original Assignee
Formosa Epitaxy Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Formosa Epitaxy Inc filed Critical Formosa Epitaxy Inc
Priority to CNB031501079A priority Critical patent/CN1306625C/en
Publication of CN1571176A publication Critical patent/CN1571176A/en
Application granted granted Critical
Publication of CN1306625C publication Critical patent/CN1306625C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)

Abstract

本发明提供一种发光二极管元件及其制造方法,是在基片表面先成长一层缓冲层,之后再于此缓冲层上成长发光二极管结构,其中该发光二极管结构包含有在p型氮化镓层上的p型量子点磊晶层,因p型量子点磊晶层具有粗化散射效果,可以使InGaN多重量子阱结构层形成的发光层所散发出来的光线,改变行进路线,减少内部全反射的机率,因此可有效地简化公知的粗化过程,并能促进发光效率。

Figure 03150107

The present invention provides a light emitting diode element and a manufacturing method thereof. A buffer layer is first grown on the surface of a substrate, and then a light emitting diode structure is grown on the buffer layer. The light emitting diode structure includes a p-type quantum dot epitaxial layer on a p-type gallium nitride layer. Since the p-type quantum dot epitaxial layer has a roughening and scattering effect, the light emitted from the light emitting layer formed by the InGaN multiple quantum well structure layer can change the path of travel and reduce the probability of total internal reflection. Therefore, the known roughening process can be effectively simplified and the light emitting efficiency can be improved.

Figure 03150107

Description

发光二极管结构及其制造方法Light-emitting diode structure and manufacturing method thereof

技术领域technical field

本发明涉及一种发光二极管元件及其制造方法,特别是涉及一种包含p型量子点磊晶层于p型氮化镓层上的发光二极管结构及其制造方法。The invention relates to a light-emitting diode element and a manufacturing method thereof, in particular to a light-emitting diode structure comprising a p-type quantum dot epitaxial layer on a p-type gallium nitride layer and a manufacturing method thereof.

背景技术Background technique

由于发光二极管材料,三-五族(III-V)氮化镓(GaN)半导体折射系数(n=2.3)与空气(n=1)间折射系数的差异很大,使得其全反射临界角约只有25度,造成发光层产生的光,大部分只能在内部全反射而不能逃逸出来,为了要改变这种介面的缺点,在公知技术中,有人提出将半导体表面进行粗化,使光从发光层出来后经过粗化层介面。因粗化层介面的散射特性而改变光的行进路径,这样即使还存在全反射的机率,但是光发散出去的机率增加了,该技术已如文献(IEEE Transcations on ElectronDevices,47(7),1492,2000)所述。公知技术粗化的方式,主要是在磊晶表面以蚀刻的方法来达成,如在美国专利第5,040,044号中,揭示了利用化学蚀刻以粗化发光元件表面,借以达成增加发光效率效果。其他相关资料还有美国专利第5,429,954号与第5,898,192号等。然而,以上述制造过程加工的方式只应用在红光发光二极管中,这主要是基于其材料加工特性较容易。但相对于氮化镓系列材料并不适用,这是因为氮化镓系列材料不具有很强的耐酸碱特性,在湿式蚀刻时并不容易控制。而采用干法刻蚀虽然可以克服前述的湿式蚀刻问题,但却容易造成磊晶层的损伤。尤其p型氮化镓层(p-GaN)极易因此而造成阻值上升,影响电流分布,劣化发光效率。而且p型氮化镓层通常沉积的厚度很薄(0.1~0.3μm),若直接粗化p型氮化镓层则可能破坏发光层,造成使发光面积减少的缺点。另外,一般适用在氮化镓发光二极管上的透明电极,为了透光良好的缘故,必须维持很薄的厚度(10nm)。在粗化加工时,将遭到破坏并造成透明电极的不连续,同时也会对电流分布造成不良影响,并降低发光效率。因此,除非p型氮化镓层能沉积足够厚的厚度,才有可能进行干法刻蚀,但是过厚的p型氮化镓层,会使电流分散而造成发光效率降低,因此直接粗化p型氮化镓层的方案显得难以实施。Due to the material of light-emitting diodes, the difference between the refractive index of III-V (III-V) gallium nitride (GaN) semiconductor (n=2.3) and air (n=1) is very large, so that the critical angle of total reflection is about Only 25 degrees, resulting in the light generated by the light-emitting layer, most of which can only be totally reflected inside and cannot escape. In order to change the shortcomings of this interface, in the known technology, someone proposes to roughen the surface of the semiconductor to make the light from After the luminous layer comes out, it passes through the interface of the roughening layer. Due to the scattering characteristics of the roughened layer interface, the path of light is changed, so that even though there is still a probability of total reflection, the probability of light divergence increases. , 2000). The roughening method of the known technology is mainly achieved by etching the epitaxial surface, such as in US Patent No. 5,040,044, which discloses the use of chemical etching to roughen the surface of the light-emitting element, so as to achieve the effect of increasing the luminous efficiency. Other relevant materials include US Patent Nos. 5,429,954 and 5,898,192, etc. However, the method of processing through the above-mentioned manufacturing process is only applied to red light-emitting diodes, which is mainly based on its material processing characteristics are relatively easy. However, it is not suitable for gallium nitride series materials, because gallium nitride series materials do not have strong acid and alkali resistance, and are not easy to control during wet etching. Although dry etching can overcome the aforementioned wet etching problem, it is easy to cause damage to the epitaxial layer. In particular, the p-type gallium nitride layer (p-GaN) is very easy to cause an increase in resistance, which affects current distribution and degrades luminous efficiency. Moreover, the p-type gallium nitride layer is usually deposited in a very thin thickness (0.1-0.3 μm). If the p-type gallium nitride layer is directly roughened, the light-emitting layer may be damaged, resulting in the disadvantage of reducing the light-emitting area. In addition, the transparent electrodes generally applied to GaN light-emitting diodes must maintain a very thin thickness (10nm) for good light transmission. During the roughing process, it will be damaged and cause the discontinuity of the transparent electrode, which will also adversely affect the current distribution and reduce the luminous efficiency. Therefore, unless the p-type gallium nitride layer can be deposited thick enough, it is possible to perform dry etching, but too thick p-type gallium nitride layer will disperse the current and reduce the luminous efficiency. The solution of p-type gallium nitride layer appears to be difficult to implement.

发明内容Contents of the invention

鉴于上述问题,本发明提出利用磊晶的方式来达成粗化的效果,借以改善氮化镓系列发光元件的发光效率,本发明揭示了一种粗化氮化镓层发光元件的方法,与公知技术相比较,本发明可获得明显提升的发光效率。In view of the above problems, the present invention proposes to use epitaxy to achieve the effect of roughening, so as to improve the luminous efficiency of gallium nitride series light-emitting elements. The present invention discloses a method for roughening gallium nitride layer light-emitting elements, which is different from known Compared with other technologies, the present invention can obtain significantly improved luminous efficiency.

本发明主要目的是:在磊晶成长的发光二极管结构中,于p型氮化镓层表面上成长p型量子点磊晶层,利用氮化镓系列的p型量子点磊晶层的具有粗化散射效果的特性,可以有效地简化公知的为使发光二极管结构具有良好粗化散射效果的粗化过程。The main purpose of the present invention is: in the epitaxially grown light-emitting diode structure, grow a p-type quantum dot epitaxial layer on the surface of the p-type gallium nitride layer, and use the p-type quantum dot epitaxial layer of the gallium nitride series to have a coarse The characteristics of the roughened scattering effect can effectively simplify the known roughening process for making the light-emitting diode structure have a good roughened scattering effect.

本发明又一目的是:借由p型量子点磊晶层,可使氮化铟镓(InGaN)多重量子阱结构层形成的发光层所散发出来的光线,因p型量子点磊晶层的粗化散射效果而改变光线行进路线,减少内部全反射的机率,促进发光效率。Another object of the present invention is: by means of the p-type quantum dot epitaxial layer, the light emitted by the light-emitting layer formed by the indium gallium nitride (InGaN) multiple quantum well structure layer can be reduced due to the p-type quantum dot epitaxial layer. Coarse the scattering effect to change the path of light, reduce the probability of internal total reflection, and improve luminous efficiency.

本发明的内容如下:Content of the present invention is as follows:

本发明的第1项内容是一种发光二极管结构,设置有基片,其特征在于,该结构包含:The first content of the present invention is a light emitting diode structure provided with a substrate, which is characterized in that the structure comprises:

于该基片上的缓冲层,该缓冲层的材料是氮化镓(GaN)系列化合物;A buffer layer on the substrate, the material of the buffer layer is gallium nitride (GaN) series compounds;

于该缓冲层表面的发光二极管结构层,该发光二极管结构层是结合n型氮化镓层、多重量子阱结构层、p型氮化铝镓层和p型氮化镓层而构成,A light-emitting diode structure layer on the surface of the buffer layer, the light-emitting diode structure layer is composed of an n-type gallium nitride layer, a multiple quantum well structure layer, a p-type aluminum gallium nitride layer and a p-type gallium nitride layer,

其中,该n型氮化镓层于该缓冲层上,该n型氮化镓层的材料是氮化镓系列III-V族化合物,Wherein, the n-type gallium nitride layer is on the buffer layer, and the material of the n-type gallium nitride layer is a gallium nitride series III-V compound,

该多重量子阱结构层于该n型氮化镓层上,该多重量子阱结构层的材料是氮化铟镓系列化合物,The multiple quantum well structure layer is on the n-type gallium nitride layer, and the material of the multiple quantum well structure layer is an indium gallium nitride series compound,

该p型氮化铝镓层于该多重量子阱结构层上,该p型氮化铝镓层的材料是p型氮化铝镓系列III-V族化合物,The p-type aluminum gallium nitride layer is on the multiple quantum well structure layer, and the material of the p-type aluminum gallium nitride layer is a p-type aluminum gallium nitride series III-V compound,

该p型氮化镓层于该p型氮化铝镓层上,该p型氮化镓层的材料是p型氮化镓系列III-V族化合物;The p-type gallium nitride layer is on the p-type aluminum gallium nitride layer, and the material of the p-type gallium nitride layer is a p-type gallium nitride series III-V compound;

于该发光二极管结构层的该p型氮化镓层上的p型量子点磊晶层,该p型量子点磊晶层的材料是氮化铝铟镓系列化合物,其中,该发光二极管结构层的该n型氮化镓层、该多重量子阱结构层、该p型氮化铝镓层、该p型氮化镓层与该p型量子点磊晶层,部份均被蚀刻工序所移除;The p-type quantum dot epitaxial layer on the p-type gallium nitride layer of the light-emitting diode structure layer, the material of the p-type quantum dot epitaxial layer is aluminum indium gallium nitride series compounds, wherein the light-emitting diode structure layer The n-type gallium nitride layer, the multiple quantum well structure layer, the p-type aluminum gallium nitride layer, the p-type gallium nitride layer and the p-type quantum dot epitaxial layer are partially removed by the etching process remove;

于该p型量子点磊晶层上且电连接的p型欧姆接触电极,该p型欧姆接触电极的材料是镍/金金属;及A p-type ohmic contact electrode electrically connected on the p-type quantum dot epitaxial layer, the material of the p-type ohmic contact electrode is nickel/gold metal; and

于该发光二极管结构层的该n型氮化镓层上且电连接的n型欧姆接触电极,该n型欧姆接触电极的材料是钛/铝金属;借此能够于该发光二极管结构设置一正向偏压。The n-type ohmic contact electrode on the n-type gallium nitride layer of the light-emitting diode structure layer and electrically connected, the material of the n-type ohmic contact electrode is titanium/aluminum metal; thereby a positive electrode can be arranged on the light-emitting diode structure to the bias.

本发明的第2项内容是一种发光二极管的制造方法,其特征在于,包含以下步骤:The second content of the present invention is a method for manufacturing a light-emitting diode, which is characterized in that it includes the following steps:

设置基片;Set up the substrate;

于该基片表面成长一层缓冲层;growing a buffer layer on the surface of the substrate;

于该缓冲层表面成长发光二极管结构层,该发光二极管结构层是结合n型氮化镓层、多重量子阱结构层、p型氮化铝镓层和p型氮化镓层而构成;growing a light emitting diode structure layer on the surface of the buffer layer, the light emitting diode structure layer is composed of an n-type gallium nitride layer, a multiple quantum well structure layer, a p-type aluminum gallium nitride layer and a p-type gallium nitride layer;

于该发光二极管结构层的该p型氮化镓层表面上,成长p型量子点磊晶层,该p型量子点磊晶层与p型欧姆接触电极电连接,该p型欧姆接触电极的材料是镍/金(Ni/Au)金属,该n型氮化镓层与n型欧姆接触电极电连接,该n型欧姆接触电极的材料是钛/铝(Ti/Al)金属,借此得以设置一正偏压。On the surface of the p-type gallium nitride layer of the light-emitting diode structure layer, a p-type quantum dot epitaxial layer is grown, and the p-type quantum dot epitaxial layer is electrically connected to a p-type ohmic contact electrode, and the p-type ohmic contact electrode The material is nickel/gold (Ni/Au) metal, the n-type gallium nitride layer is electrically connected to the n-type ohmic contact electrode, and the material of the n-type ohmic contact electrode is titanium/aluminum (Ti/Al) metal, thereby being able to Set a positive bias voltage.

本发明的第3项内容是,在第2项所述的发光二极管元件的制造方法中,该p型量子点磊晶层是氮化铝铟镓(AlxGa(1-x-y)InvN)薄膜,0≤x,y<1,0≤x+y<1。The third content of the present invention is that, in the manufacturing method of the light-emitting diode element described in the second item, the p-type quantum dot epitaxial layer is aluminum indium gallium nitride (Al x Ga (1-xy) In v N ) film, 0≤x, y<1, 0≤x+y<1.

本发明的第4项内容是,在第2项所述的发光二极管元件的制造方法中,该基片是蓝宝石(Sapphire)、碳化硅(SiC)、硅(Si)、砷化镓(GaAs)、偏铝酸锂(LiAlO2)、镓酸锂(LiGaO2)和氮化铝(AlN)基片其中之一。The content of the fourth item of the present invention is that in the manufacturing method of the light-emitting diode element described in the second item, the substrate is sapphire (Sapphire), silicon carbide (SiC), silicon (Si), gallium arsenide (GaAs) , one of lithium metaaluminate (LiAlO 2 ), lithium gallate (LiGaO 2 ) and aluminum nitride (AlN) substrates.

本发明的第5项内容是,在第2项所述的发光二极管元件的制造方法中,该p型量子点磊晶层的厚度大于10埃()。According to the fifth item of the present invention, in the manufacturing method of the light-emitting diode element described in the second item, the thickness of the p-type quantum dot epitaxial layer is greater than 10 Angstroms (A).

本发明的第6项内容是,在第2项所述的发光二极管元件的制造方法中,该p型量子点磊晶层的平均粗糙度大于10埃()。The content of the sixth item of the present invention is that, in the manufacturing method of the light-emitting diode element described in the second item, the average roughness of the p-type quantum dot epitaxial layer is greater than 10 Angstroms (A).

附图说明Description of drawings

图1是根据本发明实施例的一种发光二极管结构示意图。Fig. 1 is a schematic structural diagram of a light emitting diode according to an embodiment of the present invention.

图2是根据本发明实施例的一种发光二极管的制造方法流程图。图中Fig. 2 is a flowchart of a method for manufacturing a light emitting diode according to an embodiment of the present invention. in the picture

101  基片                  102   缓冲层101 Substrate 102 Buffer layer

103  发光二极管结构层      1030  n型氮化镓层103 light-emitting diode structure layer 1030 n-type gallium nitride layer

1032 多重量子阱结构层      1034  p型氮化铝镓层1032 multiple quantum well structure layer 1034 p-type aluminum gallium nitride layer

1036 p型氮化镓层           107   p型量子点磊晶层1036 p-type gallium nitride layer 107 p-type quantum dot epitaxial layer

108  p型欧姆接触电极       109   n型欧姆接触电极108 p-type ohmic contact electrode 109 n-type ohmic contact electrode

201  成长缓冲层            203   成长发光二极管结构层201 Growth buffer layer 203 Growth light-emitting diode structure layer

205  生长量子点磊晶层      207   形成电极205 Growing quantum dot epitaxial layer 207 Forming electrodes

具体实施方式Detailed ways

为了使本发明的目的及优点更加明显,以下通过详细描述具体实施例并结合附图进行说明。In order to make the objects and advantages of the present invention more obvious, specific embodiments are described in detail below and illustrated in conjunction with the accompanying drawings.

图1是根据本发明实施例的一种发光二极管结构示意图。将蓝宝石(sapphire)基片101置于金属有机化学汽相沉积(MOCVD)系统中,基片101除为蓝宝石(Sapphire)材料外,也可以是碳化硅(SiC)、硅(Si)、砷化镓(GaAs)、偏铝酸锂(LiAlO2)、镓酸锂(LiGaO2)和氮化铝(AlN)其中之一。Fig. 1 is a schematic structural diagram of a light emitting diode according to an embodiment of the present invention. The sapphire (sapphire) substrate 101 is placed in a metal organic chemical vapor deposition (MOCVD) system, and the substrate 101 can also be silicon carbide (SiC), silicon (Si), arsenic One of gallium (GaAs), lithium metaaluminate (LiAlO 2 ), lithium gallate (LiGaO 2 ), and aluminum nitride (AlN).

首先于500~600℃,成长一层20~50纳米(nm)厚的氮化镓(GaN)缓冲层(buffer layer)102,接着于该缓冲层102表面成长发光二极管结构层103,该发光二极管结构层103包含n型氮化镓层1030、多重量子阱结构层1032、p型氮化铝镓层1034和p型氮化镓层1036,其中该n型氮化镓层1030于该缓冲层102上,该n型氮化镓层1030的材料是氮化镓系列III-V族化合物。First, grow a gallium nitride (GaN) buffer layer (buffer layer) 102 with a thickness of 20-50 nanometers (nm) at 500-600°C, and then grow a light-emitting diode structure layer 103 on the surface of the buffer layer 102, the light-emitting diode The structural layer 103 includes an n-type gallium nitride layer 1030, a multiple quantum well structure layer 1032, a p-type aluminum gallium nitride layer 1034 and a p-type gallium nitride layer 1036, wherein the n-type gallium nitride layer 1030 is on the buffer layer 102 Above, the material of the n-type gallium nitride layer 1030 is a gallium nitride series III-V compound.

将基片温度升至1000~200℃,成长一层1~2微米(μm)厚的掺入硅(Si)杂质的n型氮化镓层(n-type GaN)1030,n型氮化镓层1030的材料是氮化镓系列III-V族化合物,之后将试片取出,置入金属有机化学汽相沉积(MOCVD)中,并将基片101温度升至700℃~900℃,成长氮化铟镓(InGaN)多重量子阱结构层1032作为发光层,接著成长一层镁掺杂(Mg doped)的p型氮化铝镓层1034,之后再成长一层镁掺杂的p型氮化镓层1036,最后再成长一层镁掺杂的p型量子点磊晶层107,p型量子点磊晶层107的材料是氮化铝铟镓系列化合物,平均粗糙度大于10埃(),是一层氮化铝铟镓(AlxGa(1-x-y)InvN)薄膜,0≤x,y<1,0≤x+y<1。这样便制作完成了发光二极管磊晶片。Raise the substrate temperature to 1000-200°C, grow a 1-2 micron (μm) thick layer of n-type gallium nitride (n-type GaN) 1030 doped with silicon (Si) impurities, n-type gallium nitride The material of layer 1030 is a gallium nitride series III-V group compound. Afterwards, the test piece is taken out and placed in metal-organic chemical vapor deposition (MOCVD), and the temperature of the substrate 101 is raised to 700°C-900°C to grow nitrogen The indium gallium nitride (InGaN) multiple quantum well structure layer 1032 is used as the light-emitting layer, followed by a magnesium-doped (Mg doped) p-type aluminum gallium nitride layer 1034, and then a magnesium-doped p-type aluminum gallium nitride layer is grown. Gallium layer 1036, and finally a layer of magnesium-doped p-type quantum dot epitaxial layer 107 is grown. The material of p-type quantum dot epitaxial layer 107 is aluminum indium gallium nitride series compound, and the average roughness is greater than 10 angstroms (A). , is a layer of aluminum indium gallium nitride (Al x Ga (1-xy) In v N) thin film, 0≤x, y<1, 0≤x+y<1. In this way, the light-emitting diode epitaxial wafer is fabricated.

将此磊晶片利用干法刻蚀的感应耦合等离子体-反应式离子蚀刻(inductively coupled plasma-reactive ion etching,ICP-RIE)程序,将部分p型量子点磊晶层107、p型氮化镓层1036、p型氮化铝镓层1034、氮化铟镓(InGaN)多重量子阱结构层1032去除,并露出n型氮化镓层1030表面。再将镍/金(Ni/Au)金属制作于p型量子点磊晶层107表面且电连接,作为p型欧姆接触电极108。而将钛/铝(Ti/Al)金属制作于n型氮化镓层103表面且电连接,作为n型欧姆接触电极109。借此能够设置一正向偏压,按照上述步骤便制作完成了本发明的晶粒结构。The epiwafer is dry-etched by inductively coupled plasma-reactive ion etching (ICP-RIE) procedure, and part of the p-type quantum dot epitaxial layer 107, p-type gallium nitride The layer 1036, the p-type AlGaN layer 1034, and the InGaN multiple quantum well structure layer 1032 are removed, and the surface of the n-type GaN layer 1030 is exposed. Then nickel/gold (Ni/Au) metal is fabricated on the surface of the p-type quantum dot epitaxial layer 107 and electrically connected to serve as the p-type ohmic contact electrode 108 . Titanium/aluminum (Ti/Al) metal is fabricated on the surface of the n-type GaN layer 103 and electrically connected to serve as the n-type ohmic contact electrode 109 . In this way, a forward bias voltage can be set, and the grain structure of the present invention is completed according to the above steps.

图2是根据本发明实施例的一种发光二极管的制造方法流程图。首先在步骤201中成长缓冲层:将蓝宝石(sapphire)基片101置于金属有机化学汽相沉积(MOCVD)系统中,于500~600℃成长一层20~50纳米(nm)厚的氮化镓(GaN)缓冲层(buffer layer)102。Fig. 2 is a flowchart of a method for manufacturing a light emitting diode according to an embodiment of the present invention. First grow the buffer layer in step 201: place the sapphire (sapphire) substrate 101 in a metal-organic chemical vapor deposition (MOCVD) system, and grow a layer of 20-50 nanometer (nm) thick nitride at 500-600°C. Gallium (GaN) buffer layer (buffer layer) 102 .

接着在步骤203中,成长发光二极管结构层103:将基片101温度升至1000~1200℃成长一层1~2微米(μm)厚的掺入硅(Si)杂质的n型氮化镓层(n-type GaN)1030,之后将试片取出,置入金属有机化学汽相沉积(MOCVD)中,并将基片温度升至700℃~900℃,成长氮化铟镓(InGaN)多重量子阱结构层1032作为发光层,接着成长一层镁掺杂的p型氮化铝镓层1034,之后再成长一层镁掺杂的p型氮化镓层1036。Next, in step 203, grow the light-emitting diode structure layer 103: raise the temperature of the substrate 101 to 1000-1200° C. to grow a 1-2 micron (μm) thick n-type gallium nitride layer doped with silicon (Si) impurities (n-type GaN) 1030, then take out the test piece, put it into metal organic chemical vapor deposition (MOCVD), and raise the substrate temperature to 700 ℃ ~ 900 ℃, grow indium gallium nitride (InGaN) multiple quantum The well structure layer 1032 is used as a light-emitting layer, followed by growing a magnesium-doped p-type AlGaN layer 1034 , and then growing a magnesium-doped p-type GaN layer 1036 .

最后在步骤205中,于p型氮化镓层1036上成长一层镁掺杂的p型量子点磊晶层107,这样便制作完成了发光二极管磊晶片。Finally, in step 205 , a magnesium-doped p-type quantum dot epitaxial layer 107 is grown on the p-type GaN layer 1036 , thus completing the fabrication of the LED epitaxial wafer.

在步骤207中,形成电极108、109:将此磊晶片利用干法刻蚀的感应耦合等离子体-反应式离子蚀刻(inductively coupled plasma-reactive ionetching,ICP-RIE)程序将部分p型量子点磊晶层107、p型氮化镓层1036、p型氮化铝镓层1034、氮化铟镓(InGaN)多重量子阱结构层1032去除,并露出n型氮化镓层1030表面,再将镍/金(Ni/Au)金属制作于p型量子点磊晶层107表面作为p型欧姆接触电极108,而将钛/铝(Ti/Al)金属制制作于n型氮化镓层1030表面作为n型欧姆接触电极109,按照上述步骤便制作完成了本发明的晶粒结构。In step 207, the electrodes 108 and 109 are formed: the epiwafer is partially etched with p-type quantum dots using an inductively coupled plasma-reactive ionetching (ICP-RIE) program of dry etching. Crystal layer 107, p-type gallium nitride layer 1036, p-type aluminum gallium nitride layer 1034, indium gallium nitride (InGaN) multiple quantum well structure layer 1032 are removed, and the surface of n-type gallium nitride layer 1030 is exposed, and nickel Gold/gold (Ni/Au) metal is made on the surface of p-type quantum dot epitaxial layer 107 as p-type ohmic contact electrode 108, and titanium/aluminum (Ti/Al) metal is made on the surface of n-type gallium nitride layer 1030 as The n-type ohmic contact electrode 109 is fabricated according to the above steps to complete the grain structure of the present invention.

虽然以上以一较佳实施例揭示了本发明,但其并非用来限定本发明。任何本技术领域的技术人员,在不脱离本发明的精神与范围内,应当能够作各种变更与改进,但其所作出的各种变更与改进仍不脱离本发明申请所要求保护的范围。Although the present invention is disclosed above with a preferred embodiment, it is not intended to limit the present invention. Any person skilled in the art should be able to make various changes and improvements without departing from the spirit and scope of the present invention, but the various changes and improvements they make still do not depart from the scope of protection claimed by the application of the present invention.

Claims (6)

1.一种发光二极管结构,设置有基片,其特征在于,该结构包含:1. A light-emitting diode structure, which is provided with a substrate, is characterized in that the structure comprises: 于该基片上的缓冲层,该缓冲层的材料是氮化镓(GaN)系列化合物;A buffer layer on the substrate, the material of the buffer layer is gallium nitride (GaN) series compounds; 于该缓冲层表面的发光二极管结构层,该发光二极管结构层是结合n型氮化镓层、多重量子阱结构层、p型氮化铝镓层和p型氮化镓层而构成,A light-emitting diode structure layer on the surface of the buffer layer, the light-emitting diode structure layer is composed of an n-type gallium nitride layer, a multiple quantum well structure layer, a p-type aluminum gallium nitride layer and a p-type gallium nitride layer, 其中,该n型氮化镓层于该缓冲层上,该n型氮化镓层的材料是氮化镓系列III-V族化合物,Wherein, the n-type gallium nitride layer is on the buffer layer, and the material of the n-type gallium nitride layer is a gallium nitride series III-V compound, 该多重量子阱结构层于该n型氮化镓层上,该多重量子阱结构层的材料是氮化铟镓系列化合物,The multiple quantum well structure layer is on the n-type gallium nitride layer, and the material of the multiple quantum well structure layer is an indium gallium nitride series compound, 该p型氮化铝镓层于该多重量子阱结构层上,该p型氮化铝镓层的材料是p型氮化铝镓系列III-V族化合物,The p-type aluminum gallium nitride layer is on the multiple quantum well structure layer, and the material of the p-type aluminum gallium nitride layer is a p-type aluminum gallium nitride series III-V compound, 该p型氮化镓层于该p型氮化铝镓层上,该p型氮化镓层的材料是p型氮化镓系列III-V族化合物;The p-type gallium nitride layer is on the p-type aluminum gallium nitride layer, and the material of the p-type gallium nitride layer is a p-type gallium nitride series III-V compound; 于该发光二极管结构层的该p型氮化镓层上的p型量子点磊晶层,该p型量子点磊晶层的材料是氮化铝铟镓系列化合物,其中,该发光二极管结构层的该n型氮化镓层、该多重量子阱结构层、该p型氮化铝镓层、该p型氮化镓层与该p型量子点磊晶层,部份均被蚀刻工序所移除;The p-type quantum dot epitaxial layer on the p-type gallium nitride layer of the light-emitting diode structure layer, the material of the p-type quantum dot epitaxial layer is aluminum indium gallium nitride series compounds, wherein the light-emitting diode structure layer The n-type gallium nitride layer, the multiple quantum well structure layer, the p-type aluminum gallium nitride layer, the p-type gallium nitride layer and the p-type quantum dot epitaxial layer are partially removed by the etching process remove; 于该p型量子点磊晶层上且电连接的p型欧姆接触电极,该p型欧姆接触电极的材料是镍/金金属;及A p-type ohmic contact electrode electrically connected on the p-type quantum dot epitaxial layer, the material of the p-type ohmic contact electrode is nickel/gold metal; and 于该发光二极管结构层的该n型氮化镓层上且电连接的n型欧姆接触电极,该n型欧姆接触电极的材料是钛/铝金属;借此能够于该发光二极管结构设置一正向偏压。The n-type ohmic contact electrode on the n-type gallium nitride layer of the light-emitting diode structure layer and electrically connected, the material of the n-type ohmic contact electrode is titanium/aluminum metal; thereby a positive electrode can be arranged on the light-emitting diode structure to the bias. 2.一种发光二极管的制造方法,其特征在于,包含以下步骤:2. A method for manufacturing a light-emitting diode, comprising the following steps: 设置基片;Set up the substrate; 于该基片表面成长一层缓冲层;growing a buffer layer on the surface of the substrate; 于该缓冲层表面成长发光二极管结构层,该发光二极管结构层是结合n型氮化镓层、多重量子阱结构层、p型氮化铝镓层和p型氮化镓层而构成;growing a light emitting diode structure layer on the surface of the buffer layer, the light emitting diode structure layer is composed of an n-type gallium nitride layer, a multiple quantum well structure layer, a p-type aluminum gallium nitride layer and a p-type gallium nitride layer; 于该发光二极管结构层的该p型氮化镓层表面上,成长p型量子点磊晶层,该p型量子点磊晶层与p型欧姆接触电极电连接,该p型欧姆接触电极的材料是镍/金(Ni/Au)金属,该n型氮化镓层与n型欧姆接触电极电连接,该n型欧姆接触电极的材料是钛/铝(Ti/Al)金属,借此得以设置一正向偏压。On the surface of the p-type gallium nitride layer of the light-emitting diode structure layer, a p-type quantum dot epitaxial layer is grown, and the p-type quantum dot epitaxial layer is electrically connected to a p-type ohmic contact electrode, and the p-type ohmic contact electrode The material is nickel/gold (Ni/Au) metal, the n-type gallium nitride layer is electrically connected to the n-type ohmic contact electrode, and the material of the n-type ohmic contact electrode is titanium/aluminum (Ti/Al) metal, thereby being able to Sets a forward bias voltage. 3.根据权利要求2所述的发光二极管元件的制造方法,其特征在于,该p型量子点磊晶层是氮化铝铟镓(AlxGa(1-x-y)InvN)薄膜,0≤x,y<1,0≤x+y<1。3. The method for manufacturing a light-emitting diode element according to claim 2, wherein the p-type quantum dot epitaxial layer is an aluminum indium gallium nitride (Al x Ga (1-xy) In v N) film, 0 ≤x, y<1, 0≤x+y<1. 4.根据权利要求2所述的发光二极管元件的制造方法,其特征在于,该基片是蓝宝石(Sapphire)、碳化硅(SiC)、硅(Si)、砷化镓(GaAs)、偏铝酸锂(LiAlO2)、镓酸锂(LiGaO2)和氮化铝(AlN)基片其中之一。4. The method of manufacturing a light-emitting diode element according to claim 2, wherein the substrate is sapphire (Sapphire), silicon carbide (SiC), silicon (Si), gallium arsenide (GaAs), metaaluminate One of lithium (LiAlO 2 ), lithium gallate (LiGaO 2 ) and aluminum nitride (AlN) substrates. 5.根据权利要求2所述的发光二极管元件的制造方法,其特征在于,该p型量子点磊晶层的厚度大于10埃()。5 . The method for manufacturing a light emitting diode element according to claim 2 , wherein the thickness of the p-type quantum dot epitaxial layer is greater than 10 angstroms (A). 6.根据权利要求2所述的发光二极管元件的制造方法,其特征在于,该p型量子点磊晶层的平均粗糙度大于10埃()。6 . The method for manufacturing a light emitting diode element according to claim 2 , wherein the average roughness of the p-type quantum dot epitaxial layer is greater than 10 angstroms (A).
CNB031501079A 2003-07-16 2003-07-16 Light-emitting diode structure and manufacturing method thereof Expired - Fee Related CN1306625C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB031501079A CN1306625C (en) 2003-07-16 2003-07-16 Light-emitting diode structure and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB031501079A CN1306625C (en) 2003-07-16 2003-07-16 Light-emitting diode structure and manufacturing method thereof

Publications (2)

Publication Number Publication Date
CN1571176A CN1571176A (en) 2005-01-26
CN1306625C true CN1306625C (en) 2007-03-21

Family

ID=34472620

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB031501079A Expired - Fee Related CN1306625C (en) 2003-07-16 2003-07-16 Light-emitting diode structure and manufacturing method thereof

Country Status (1)

Country Link
CN (1) CN1306625C (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100505342C (en) * 2005-10-14 2009-06-24 璨圆光电股份有限公司 LED chip
CN1996625A (en) * 2006-01-06 2007-07-11 大连路明科技集团有限公司 GaN base optical electronic part and its making method
KR20070102114A (en) * 2006-04-14 2007-10-18 엘지이노텍 주식회사 Nitride semiconductor light emitting device and manufacturing method thereof
CN102169929A (en) * 2011-02-25 2011-08-31 聚灿光电科技(苏州)有限公司 Manufacturing method of light-emitting diode (LED) with high light-extraction rate
CN102169930B (en) * 2011-03-07 2012-09-19 山东大学 A method for roughening the surface of light-emitting diodes assisted by metal nanoparticles
CN102354699B (en) * 2011-09-30 2016-05-25 映瑞光电科技(上海)有限公司 High pressure nitride LED device and manufacture method thereof
CN102723418A (en) * 2012-01-18 2012-10-10 许并社 Conformal coating white light LED chip structure possessing fluorescent characteristic passivation layer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001041225A2 (en) * 1999-12-03 2001-06-07 Cree Lighting Company Enhanced light extraction in leds through the use of internal and external optical elements
TW472400B (en) * 2000-06-23 2002-01-11 United Epitaxy Co Ltd Method for roughing semiconductor device surface to increase the external quantum efficiency

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001041225A2 (en) * 1999-12-03 2001-06-07 Cree Lighting Company Enhanced light extraction in leds through the use of internal and external optical elements
TW472400B (en) * 2000-06-23 2002-01-11 United Epitaxy Co Ltd Method for roughing semiconductor device surface to increase the external quantum efficiency

Also Published As

Publication number Publication date
CN1571176A (en) 2005-01-26

Similar Documents

Publication Publication Date Title
US8198114B2 (en) Vertical nitride semiconductor light emitting diode and method of manufacturing the same
KR100813756B1 (en) Semiconductor substrate for emitting emelment and semiconductor emitting device
CN100521120C (en) Highly efficient (B, Al, Ga, In) N based light emitting diodes via surface roughening
US20050082562A1 (en) High efficiency nitride based light emitting device
CN101009347A (en) Non polarity A side nitride film growing on the silicon(102) substrate and its making method and use
US20050026399A1 (en) Light emitting diode structure and manufacture method thereof
CN1645633A (en) Nitride semiconductor light emitting device and method of manufacturing the same
CN1306625C (en) Light-emitting diode structure and manufacturing method thereof
CN111326611B (en) Method for etching table top of III-nitride semiconductor light-emitting device
JP2005117006A (en) Nitride light emitting device
CN1306624C (en) Selectively grown LED structures
US20050145873A1 (en) Light-emitting diode
KR20050096010A (en) Nitride semiconductor light emitting diode and fabrication method thereof
KR100691277B1 (en) Gallium nitride based light emitting device and manufacturing method
JP4959184B2 (en) Method for manufacturing nitride-based semiconductor light-emitting device
CN2593370Y (en) GaN-based III-V compound semiconductor light-emitting device
CN101859835A (en) Light-emitting diode structure and manufacturing method thereof
KR100868361B1 (en) Nitride-based semiconductor light emitting device and its manufacturing method
KR20050116008A (en) Gallium nitride based semiconductor light emitting device and fabrication method thereof
CN2591781Y (en) Light-emitting device of gallium nitride-based III-V compound semiconductor LED
KR100647018B1 (en) Nitride semiconductor light emitting device
CN1571177A (en) Light-emitting diode structure and manufacturing method thereof
CN111968907A (en) Nitrogen polarity III group nitride coarsening method
CN101859844A (en) Light-emitting diode structure and manufacturing method thereof
CN218498088U (en) High-quality GaN epitaxial wafer

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20091218

Address after: Taoyuan County of Taiwan Province

Co-patentee after: LUMENS Limited by Share Ltd

Patentee after: Bright circle Au Optronics Co

Address before: Taoyuan County of Taiwan Province

Patentee before: Formosa Epitaxy Incorporation

CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070321

Termination date: 20170716