CN1302310C - 原位实时探测薄膜生长状况的光反射差装置和方法 - Google Patents

原位实时探测薄膜生长状况的光反射差装置和方法 Download PDF

Info

Publication number
CN1302310C
CN1302310C CNB031539386A CN03153938A CN1302310C CN 1302310 C CN1302310 C CN 1302310C CN B031539386 A CNB031539386 A CN B031539386A CN 03153938 A CN03153938 A CN 03153938A CN 1302310 C CN1302310 C CN 1302310C
Authority
CN
China
Prior art keywords
light
original position
time detection
epitaxial
polarizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB031539386A
Other languages
English (en)
Other versions
CN1584663A (zh
Inventor
费义艳
吕惠宾
朱湘东
陈正豪
周岳亮
金奎娟
程波林
杨国桢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Physics of CAS
Original Assignee
Institute of Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Physics of CAS filed Critical Institute of Physics of CAS
Priority to CNB031539386A priority Critical patent/CN1302310C/zh
Publication of CN1584663A publication Critical patent/CN1584663A/zh
Application granted granted Critical
Publication of CN1302310C publication Critical patent/CN1302310C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明涉及原位实时探测薄膜生长状况的光反射差装置和方法,该装置包括:激光器输出光的前方安置起偏器,起偏器出射的偏振光经过前方的光路上安置~光偏振调制器,输出光路上安置一电光调制器件,经过调制的输出光入射外延室窗口后,入射到被探测的外延基片表面,经外延层膜表面反射后的光从外延室窗口输出,通过检偏器后输出到探测器,探测器、放大器和数据采集处理系统电联接。该装置独立于制膜系统外,不受制膜温度和气压等条件的限制。该方法能同时获得基频和倍频两路信号,可探测原胞层状外延生长的信息,具有应用面广、获取信息多、操作简便等特点,是用于监控薄膜层状外延生长和研究成膜机理的有力工具。

Description

原位实时探测薄膜生长状况的光反射差装置和方法
技术领域
本发明涉及一种光学仪器,特别是涉及一种光学原位实时探测薄膜外延生长状况的专用装置和方法。
背景技术
薄膜技术以其独特的优点和特性,已成为探索新材料和制备各种高性能器件的重要手段,薄膜科学已成为最活跃的前沿学科之一。人为控制原子尺度外延生长薄膜材料的组分、结构和特性,是制备高性能优质外延薄膜和人为设计新型功能材料及进行其相应物理化学等基础研究的基础,是凝聚态物理和材料科学方面最引人注目和感兴趣的领域。要外延生长特殊结构和特性的高质量薄膜材料,对于薄膜外延生长过程的原位实时探测与监控是至关重要的。
目前原位实时探测和监控薄膜外延生长状况的主要工具之一,是采用反射式高能电子衍射仪和椭偏测量仪;由于应用这两种仪器来探测和监控薄膜外延生长状况时,存在对于工作气压和温度等条件要求苛刻的缺点,因此它们的应用范围十分有限。我们已授权的中国专利号:97104431.7;发明名称:探测与监控薄膜外延生长和热退火的光反射差法及装置的组成如图1所示。它由激光器、透镜、反射镜、调制器、平面平行玻片、光电探测器、放大器和数据采集处理系统组成。但上述专利是通过采集倍频信号来得到薄膜外延生长状况的光反射差振荡信号。而不能同时监测基频和倍频两路信号,如果能同时监测基频和倍频两路信号,将得到更多的信息和结果。
发明内容
本发明的目的在于克服原有的实时探测与监控薄膜外延生长的光反射差法及装置的缺陷;为了能够同时探测基频和倍频信号,而观察到更多薄膜表面结构和氧化状态的实时信息,进一步探测薄膜的成膜过程,以制备更为理想的薄膜材料,从而提供一种用于原位实时探测薄膜层状外延生长状况的光反射差装置和方法。
本发明的目的是这样完成的:
本发明的原位实时探测薄膜生长状况的光反射差装置包括:激光器1、起偏器5、光偏振调制器6、光电探测器15、滤波电路16、放大器17和数据采集处理系统18;其特征在于:还包括电光调制器件7和检偏器14;其中激光器1输出光的前方安置一个起偏器5,起偏器5出射的偏振光经过前方的光路上安置一光偏振调制器6,输出光路上安置一电光调制器件7,经过调制的输出光入射外延室窗口10后,入射到被探测的外延基片表面,经外延层膜表面反射后的光从外延室窗口13输出,通过检偏器14后输出到探测器15,滤波电路16的一个电阻并联在探测器的输出端,另一个电阻并联在放大器的输入端;探测器15、放大器17和数据采集处理系统18电联接;即探测信号经滤波电路16滤波后输入放大器17放大,然后将放大后的信号输入到数据采集处理系统18。
所述的滤波电路16采用л型滤波,选用两个10K电阻和一个0.1μ的陶瓷电容,把电容的两端分别和一个电阻连接,把两个电阻和电容不连接的一端连接在一起并接地。
为了满足实际需要,还包括在激光器输出光的前方光路中需要改变光束方向的任何位置安放反射镜,或者在电光调制器件输出光的前方光路中安放一光栏,以达到限制与隔离杂散光,使实验取得更好的效果。
为了提高探测的灵敏度在本发明的专用装置中还包括在电光调制器件与光栏之间的光路上安置一透镜,其作用是减小激光束的发散度。
所述的光电探测器是光电二极管、锑镉汞、热释电、光电倍增管或光电转换探测器。
本发明的专用装置中安放一起偏器的目的是用来精确确定初始线偏振光的振动方向。
本发明的专用装置中的光偏振调制器是一台光弹调制器,设置它的目的是可将单一方向偏振的激光束调制成偏振方向由P到S,再由S到P,调制频率可由几十Hz到几万Hz偏振方向连续改变的调制激光束。
本发明的专用装置中的电光调制器件是一个普克盒,可以通过改变施加在普克盒上的电压来改变P偏振光和S偏振光之间的相移,电压从0伏到2000伏连续可调。
本发明的利用上述的专用装置进行薄膜外延生长状况的实时监测的方法,包括如下步骤:
1.先打开激光器,输出的激光入射到起偏器,从起偏器出射的偏振光通过前方的光偏振调制器,光偏振调制器将输入的单一偏振方向的激光调制为以一定频率在S偏振和P偏振之间连续变化的调制光;
2.被调制的激光通过光路上的电光调制器件,改变施加在电光调制器件上的电压,可以改变P偏振与S偏振光之间的相移,起到基频信号调零的作用;然后把被调制的光从与基片法线夹角为30~87°的角度由外延室窗口入射到外延室内的外延基片上,基片反射出的光从外延室窗口射出;
3.反射光从外延室窗口出射以后入射到检偏器,调节检偏器与P偏振方向的夹角,使倍频信号调零;从检偏器出射的光入射到光电探测器,光电探测器把光信号转变成电信号,信号经滤波电路滤波后输入到放大器(锁相放大器),放大后的信号输入到常规的数据采集处理系统,经过处理后得到实验结果,再由探测结果分析并反过来监控薄膜的外延生长。
本发明与原有的方法区别如下:增加了电光调制器件,用来在实验开始阶段将基频信号调零,这样能够探测基频信号;使用检偏器代替平面镜组来将倍频信号调零。
本发明的优点在于:
本发明的装置独立安置在薄膜外延生长系统之外,使用时不受温度、气压影响。由于该装置中增加了电光调制器件,用来在实验开始阶段将基频信号调零,这样能够探测基频信号;使用检偏器代替平面镜组来将倍频信号调零,可达到同时探测基频信号和倍频信号的目的,从而得到更多的关于薄膜在外延过程中的状态信息。并且可探测与监控原子尺度精度的薄膜外延生长,应用范围广,使用方便简单。
附图说明
下面结合附图及实施例对本发明进行详细地说明:
图1是已有的光反射差装置组成示意图。
图2是本发明的光反射差装置组成示意图。
图3(a)是本发明的一种实施例生长膜厚约为1/4探测光波长的光反射差振荡曲线,点划线代表基频信号,实线代表倍频信号。
图3(b)是用本发明的方法测得的对应于外延每一个原胞层的振荡信号。
图面说明如下:
1---激光器;   2,3---反射镜;      4,9---光栏;
5---起偏器;   6---光偏振调制器;   7---电光调制器件;
8---透镜;     10,13---外延室窗口;11---外延室;
12---外延基片;14---检偏器;        15---光电探测器;
16---滤波电路;17---放大器;        18---数据采集处理系统;
具体实施方式
实施例1:
按图2制作一本发明的原位实时探测薄膜生长状况的光反射差装置,参考图2,图中激光器1用输出偏振光波长632.8nm的He-Ne激光器;激光器1输出光的前方安置一个从New Focus购买的5524型偏振器5,起偏器5出射的偏振光经过前方的光路上安置一用美国Hinds公司生产的PEM90型光弹调制器6,输出光路上安置一电光调制器件7,该电光调制器件7使用Cleveland Crystals公司生产的IMPACT10型普克盒,经过调制的输出光入射外延室窗口10后,入射到被探测的外延基片表面,经外延层膜表面反射后的光从外延室窗口13输出,通过检偏器14后输出到探测器15,光电探测器15(用美国Newport-Klinger公司生产的818-B8-40型硅光电二极管)、放大器17和数据采集处理系统18电联接;即探测信号经滤波电路16滤波后输入放大器17放大,然后将放大后的信号输入到数据采集处理系统18。检偏器14使用CVI Laser公司CPAD-10.0-425-675型号的偏振器;放大器17用Stanford Research Systems的SR830DSP型号的锁相放大器;数据采集处理系统18由数据采集卡和电脑组成。
滤波电路16采用自制的л型滤波,选用两个10K电阻和一个0.1μ的陶瓷电容,把电容的两端分别和一个电阻连接,把两个电阻和电容不连接的一端连接在一起并接地。一个电阻并联在探测器的输出端,另一个电阻并联在放大器的输入端。
首先打开激光器1,输出的偏振光可以通过光栏4入射到起偏器5,也可以偏振光直接入射到起偏器5,通过起偏器的光进入光偏振调制器6,通过调制的光再通过光路上的电光调制器件7,改变施加在电光调制器件7上的电压可调节P偏振与S偏振光之间的相移,起到基频信号调零的作用;从电光调制器件出射的光可以通过透镜8或者是直接在30°-87°的入射角度范围从外延室窗口10入射到外延室内的外延基片12上,基片12反射的光从外延室窗口13射出入射到检偏器14,改变检偏器14和P偏振之间的夹角可以达到倍频信号调零的目的。通过检偏器14的光由光电探测器15接收,光电探测器15把光信号转变成电信号,电信号经滤波电路16滤波后,输入到放大器17,经放大后的信号再输入到常规的数据采集处理系统18,经过处理后得到结果,再将结果反过来控制外延生长。
实施例2:
参考图2,激光器1使用输出波长632.8nm、5mW、输出偏振光的He-Ne激光器,反射镜2和3改变光束方向,按照实验和实际需要,可以在光路中需要改变光束方向的任何位置安放反射镜,光栏4和9限制与隔离杂散光,起偏器5用来精确确定初始线偏振光的振动方向。光偏振调制器6是一台光弹调制器,它可将单一方向偏振的激光束调制成偏振方向由P到S,再由S到P,调制频率可由几十Hz到几万Hz偏振方向连续改变的调制激光束。电光调制器件7是一个普克盒,可以通过改变施加在普克盒上的电压来改变P偏振光和S偏振光之间的相移,电压从0伏到2000伏连续可调。透镜8的作用是减小激光束的发散度。检偏器14放置在出射窗口之后,透光轴与P偏振方向有一定的夹角。在实验开始阶段,调解普克盒上的电压和检偏器与P偏振之间的夹角大小来将基频和倍频信号分别调零。因此,从激光器1输出的偏振光,通过反射镜2和3后,再经过起偏器5,入射到光弹调制器6,考虑到放大器的响应频率,我们将调制器的频率调为50KHz,初始的P偏振光经过调制后,变成为频率50KHz由P到S、由S到P偏振的偏振调制光束。通过电光调制器件7后,光以30°-87°的入射角从外延室窗口10入射到外延室11内的外延基片12表面。经基片12反射后从窗口13射出,出射光经过出射窗口后的检偏器14后,由光电探测器15接收,并将光信号转变成电信号,探测器15的输出端与滤波电路16输入端连接,滤波电路可以是T型或л型滤波,目的是滤掉一些由电源或振动等产生的低频噪声,从而提高信号的分辨率和灵敏度。经滤波后的信号与锁相放大器17的输入端连接,放大器17的输出端与数据采集处理系统18连接,由数据采集处理系统18采集数据并输出实验结果。实验过程中只要我们微调普克盒7上的电压和检偏器14与P偏振方向的夹角,就可获得最佳的结果。
本实施例中反射镜2、3用Newport公司出售的直径25.4mm的He-Ne激光介质膜反射镜;光栏4、9用大恒公司生产的可调孔径光栏;起偏器5是从New Focus购买的5524型偏振器;光偏振调制器6用美国Hinds公司生产的PEM90型光弹调制器;电光调制器件7使用Cleveland Crystals公司生产的IMPACT10型普克盒;透镜8用自制的直径φ30mm、厚3mm、焦距400mm的石英透镜;检偏器14使用CVI Laser公司CPAD-10.0-425-675型号的偏振器;光电探测器15用美国Newport-Klinger公司生产的818-B8-40型硅光电二极管;滤波电路16采用自制的л型滤波,也就是在一个0.1μ的电容两端各接一个10K的电阻,把两个10K电阻的另外两端连接并接地,然后把一个电阻的两端与探测器的输出端连接,把另一个电阻的两端与放大器的输入端连接;放大器17用Stanford Research Systems的SR830 DSP型号的锁相放大器;数据采集处理系统18由数据采集卡和电脑组成。
图3是采用图2所示装置应用在激光分子束外延过程中,和采用本发明的方法观测到的连续外延生长时的光反射差振荡信号。光反射差法得到的信号是薄膜界面反射信号和表面原胞层生长过程中反射信号的叠加,图3(a)是生长膜厚约为1/4探测光波长的光反射差振荡曲线,点划线代表基频信号,实线代表倍频信号。光反射差信号一个大的振荡周期对应于外延生长的膜厚为1/4探测光的波长。若探测光用波长为632.8nm的He-Ne激光器,每一个大的周期对应的膜厚约是158.2nm。如图3(a)所示,基频信号比倍频信号的峰值位置超前1/4周期。若把大的振荡周期展开,就可观测到如图3(b)所示的对应于外延每一个原胞层的振荡信号。而且大周期不同位置对应的原胞层振荡的幅度是不同的。对于不同折射率的外延材料,得到光反射差信号周期是不同的。间歇式外延生长条件下,基频信号的形状和倍频信号的形状不同,表明两个信号探测到的表面信息不同。因此,我们的实验结果也表明,用光反射差法探测与监控薄膜的外延生长过程是一种灵敏度高、获取信息多、应用范围广、非常实用的薄膜外延生长原位实时监测方法。
实施例3:
本实施例的装置按实施例2制作做,只是检偏器14用一块以上的平面平行玻片代替,本实施例用两块。
实施例4:
本实施例的装置按实施例2制作做,只是电光调制器件7使用克尔盒。
实施例5:
本实施例的装置按实施例2制作做,只是激光器1选用半导体激光器。
实施例6:
本实施例的装置按实施例2制作做,只是放大器17选用自制差分放大器。
实施例7:
本实施例的装置按实施例2制作做,只是光偏振调制器6用一个高速旋转的半波片代替光弹调制器。
实施例8:
本实施例的装置按实施例2制作做,只是数据采集处理系统18选用函数记录仪直接绘出曲线。
实施例9:
本实施例的装置按实施例2制作做,只是光电探测器15用一个快响应热释电探测器代替光电二极管。

Claims (13)

1.一种原位实时探测薄膜生长状况的光反射差装置,包括:激光器(1)、起偏器(5)、光偏振调制器(6)、光电探测器(15)、滤波电路(16)、放大器(17)和数据采集处理系统(18);其特征在于:还包括电光调制器件(7)和检偏器(14);其中激光器(1)输出光的前方安置所述的起偏器(5),起偏器(5)出射的偏振光经过前方的光路上安置所述的光偏振调制器(6);光偏振调制器(6)的输出光路上安置所述的电光调制器件(7),经过调制的输出光入射外延室窗口(10)后,入射到被探测的外延基片(12)表面,经外延层膜表面反射后的光从另一个外延室窗口(13)输出,通过检偏器(14)后输出到光电探测器(15);光电探测器(15)、滤波电路(16)、放大器(17)和数据采集处理系统(18)电联接,其中滤波电路(16)的一个电阻并联在光电探测器(15)的输出端,另一个电阻并联在放大器(17)的输入端。
2.按权利要求1所述的原位实时探测薄膜生长状况的光反射差装置,其特征在于:还包括在电光调制器件(7)输出光路上安置一透镜(8)。
3.按权利要求1所述的原位实时探测薄膜生长状况的光反射差装置,其特征在于:还包括在激光器(1)与起偏器(5)之间的光路上安置第一光栏(4)。
4.按权利要求2所述的原位实时探测薄膜生长状况的光反射差装置,其特征在于:还包括在电光调制器件(7)后的透镜(8)输出光光路中安放第二光栏(9)。
5.按权利要求3所述的原位实时探测薄膜生长状况的光反射差装置,其特征在于:还包括在激光器(1)与第一光栏(4)之间的光路中安放一块反射镜(2),或者顺序安放两块反射镜(2、3)。
6.按权利要求1所述的原位实时探测薄膜生长状况的光反射差装置,其特征在于:所述的光偏振调制器是一台光弹调制器、半波片或起偏器。
7.权利要求1所述的原位实时探测薄膜生长状况的光反射差装置,其特征在于:所述的电光调制器件是一个普克盒或克尔盒。
8.按权利要求1所述的原位实时探测薄膜生长状况的光反射差装置,其特征在于:所述的滤波电路(16)采用л型滤波,选用两个10K电阻和一个0.1μ的陶瓷电容,电容的两端分别和一个电阻连接,两个电阻和电容不连接的一端连接在一起并接地。
9.按权利要求1所述的原位实时探测薄膜生长状况的光反射差装置,其特征在于:所述的光电探测器是光电二极管、锑镉汞、热释电、光电倍增管或光电转换探测器。
10.按权利要求1所述的原位实时探测薄膜生长状况的光反射差装置,其特征在于:所述的检偏器使用平面平行玻片。
11.按权利要求1所述的原位实时探测薄膜生长状况的光反射差装置,其特征在于:所述的滤波电路包括T型滤波电路或N型滤波电路。
12.按权利要求1所述的原位实时探测薄膜生长状况的光反射差装置,其特征在于:所述的激光器(1)包括He-Ne激光器、氩离子激光器或其它波长的单色连续激光器。
13.一种应用权利要求1所述的原位实时探测薄膜生长状况的光反射差装置进行原位实时探测的方法,包括如下步骤:
(1)打开激光器,调节激光器输出功率在5mW,输出的激光入射到起偏器,调节起偏器的透光轴方向,使其平行于基片入射平面的P偏振方向,从起偏器出射的偏振光通过前方的光偏振调制器,光偏振调制器的调制频率在50kHz,光偏振调制器引入的以调制频率周期变化的相位差能够将输入的单一偏振方向的激光调制为在S和P偏振之间偏振方向连续变化的调制光;
(2)使被调制的激光通过光路上的电光调制器件,通过改变施加在电光调制器件上的电压来改变P偏振与S偏振光之间的相移,起到基频信号调零的作用;被电光调制的光通过聚焦透镜,透镜焦距在400mm,聚焦后的激光从与基片法线夹角为30~87°的角度由外延室窗口入射到外延室内的外延基片上,基片反射出的光从外延室窗口射出;
(3)反射光从外延室窗口射出以后经过检偏器,调节检偏器与P偏振方向的夹角,使倍频信号调零;从检偏器出射的光入射到光电探测器,光电探测器把光信号转变成电信号,信号经滤波电路滤波后输入到锁相放大器,滤波电路的电阻选用10kΩ的电阻值,选用的电容值在0.1μ,放大后的信号输入到常规的数据采集处理系统,经过处理后得到实验结果,再由探测结果分析并反过来监控薄膜的外延生长。
CNB031539386A 2003-08-21 2003-08-21 原位实时探测薄膜生长状况的光反射差装置和方法 Expired - Fee Related CN1302310C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB031539386A CN1302310C (zh) 2003-08-21 2003-08-21 原位实时探测薄膜生长状况的光反射差装置和方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB031539386A CN1302310C (zh) 2003-08-21 2003-08-21 原位实时探测薄膜生长状况的光反射差装置和方法

Publications (2)

Publication Number Publication Date
CN1584663A CN1584663A (zh) 2005-02-23
CN1302310C true CN1302310C (zh) 2007-02-28

Family

ID=34597928

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB031539386A Expired - Fee Related CN1302310C (zh) 2003-08-21 2003-08-21 原位实时探测薄膜生长状况的光反射差装置和方法

Country Status (1)

Country Link
CN (1) CN1302310C (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101532944B (zh) * 2008-03-11 2012-07-04 中国科学院物理研究所 光反射差法检测生物芯片装置中的小孔部件与检测方法
CN105571515A (zh) * 2015-12-25 2016-05-11 中国石油大学(北京) 一种斜入射光反射差法探测样品三维结构的方法
CN108240975B (zh) * 2018-04-04 2024-03-29 中国科学技术大学 高时间分辨的取向检测光路及实验方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05149720A (ja) * 1991-11-29 1993-06-15 Kokusai Chodendo Sangyo Gijutsu Kenkyu Center 酸化物超電導膜の検査方法および検査装置
CN1176381A (zh) * 1996-09-12 1998-03-18 中国科学院上海技术物理研究所 一种原位检测直接带隙AlxGa1-xAs分子束外延薄膜材料组分方法和装置
US20020126283A1 (en) * 2000-08-10 2002-09-12 Bernard Drevillon Method for real-time control of the fabrication of a thin-film structure by ellipsometric measurement
GB2379735A (en) * 2001-09-14 2003-03-19 Qinetiq Ltd Method and apparatus for controlling the growth of thin film during deposition process by measuring the rate of change of optical thickness of the thin-film
CN2641641Y (zh) * 2003-08-25 2004-09-15 中国科学院物理研究所 用于原位实时探测薄膜生长状况的光反射差装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05149720A (ja) * 1991-11-29 1993-06-15 Kokusai Chodendo Sangyo Gijutsu Kenkyu Center 酸化物超電導膜の検査方法および検査装置
CN1176381A (zh) * 1996-09-12 1998-03-18 中国科学院上海技术物理研究所 一种原位检测直接带隙AlxGa1-xAs分子束外延薄膜材料组分方法和装置
US20020126283A1 (en) * 2000-08-10 2002-09-12 Bernard Drevillon Method for real-time control of the fabrication of a thin-film structure by ellipsometric measurement
GB2379735A (en) * 2001-09-14 2003-03-19 Qinetiq Ltd Method and apparatus for controlling the growth of thin film during deposition process by measuring the rate of change of optical thickness of the thin-film
CN2641641Y (zh) * 2003-08-25 2004-09-15 中国科学院物理研究所 用于原位实时探测薄膜生长状况的光反射差装置

Also Published As

Publication number Publication date
CN1584663A (zh) 2005-02-23

Similar Documents

Publication Publication Date Title
JP4512693B2 (ja) 偏光制御素子とその製造方法、並びに、顕微鏡
CN1834623A (zh) 半导体材料残余应力的测试装置及方法
CN2641641Y (zh) 用于原位实时探测薄膜生长状况的光反射差装置
WO2009030071A1 (fr) Puce de capteur spr de couplage entre guide d'ondes et réseau de puces de capteur correspondant
AU2916789A (en) Differential ellipsometer
CN101231239A (zh) 一种变入射角度光谱椭偏成像测量的系统和方法
CN204666496U (zh) 微悬臂梁热振动信号测量装置
CN1487264A (zh) 一种平面镜摆动姿态的检测装置及其方法
CN1302310C (zh) 原位实时探测薄膜生长状况的光反射差装置和方法
CN114813580A (zh) 一种材料相变检测装置及方法
CN101995292B (zh) 反射法测量有机聚合物薄膜材料的电光系数的方法及装置
US7317519B2 (en) Swept-angle SPR measurement system
CN107219191B (zh) 一种基于傅里叶变换的斜入射光反射差装置
CN201000428Y (zh) 用于纳米薄膜表面测量的变入射角度光谱椭偏成像装置
Xie et al. Chiral metasurface refractive index sensor with a large figure of merit
CN1804591A (zh) 基于步进扫描的红外调制光致发光谱的方法及装置
CN107356560B (zh) 全反射式斜入射光反射差扫描成像装置及其使用方法
CN1085835C (zh) 探测与监控薄膜外延生长和热退火的光反射差法及装置
CN108645516A (zh) 基于快轴可调弹光调制的全斯托克斯矢量检测装置及方法
Wolz et al. Time-domain photocurrent spectroscopy based on a common-path birefringent interferometer
CN108896181B (zh) 一种基于弹光调制器和声光的光谱偏振成像装置
KR20220015725A (ko) 공간 광 변조기를 이용한 박막의 두께 및 물성 측정 시스템
CN1139800C (zh) 波长调制偏振型表面等离子体波传感器
CN1139799C (zh) 相位调制偏振型表面等离子体波传感器
CA2428218C (fr) Appareil de detection en parallele du comportement de microoscillateurs mecaniques

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070228

Termination date: 20140821

EXPY Termination of patent right or utility model