CN1300453A - 用于卫星通信的低成本高性能便携式相控阵天线系统 - Google Patents

用于卫星通信的低成本高性能便携式相控阵天线系统 Download PDF

Info

Publication number
CN1300453A
CN1300453A CN 97182522 CN97182522A CN1300453A CN 1300453 A CN1300453 A CN 1300453A CN 97182522 CN97182522 CN 97182522 CN 97182522 A CN97182522 A CN 97182522A CN 1300453 A CN1300453 A CN 1300453A
Authority
CN
China
Prior art keywords
waveguide
polarization
layer
phased array
antenna system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 97182522
Other languages
English (en)
Other versions
CN1168178C (zh
Inventor
钟信贤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JUNG SIN HYON
Original Assignee
JUNG SIN HYON
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JUNG SIN HYON filed Critical JUNG SIN HYON
Priority to CNB97182522XA priority Critical patent/CN1168178C/zh
Publication of CN1300453A publication Critical patent/CN1300453A/zh
Application granted granted Critical
Publication of CN1168178C publication Critical patent/CN1168178C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

一种具有孔径层(14)的天线单元(10),被构成为一个单层印刷电路板,在该电路板上形成:一个天线单元阵列和多个带状线馈送网络电路;一个底端的接地层(16)和一个单层波导组合网络(18),该单层波导组合网络(18)组合带状线馈送网络的同相输出,该带状线馈送网络电磁耦合到波导组合网络的相应节点。每个天线单元最好是设置在天线孔径层的公共表面上的双极化八边形贴片天线单元。每个馈送网络电路最好为用空气介质层(15)与接地层(16)相分离的空气带状线馈送网络的形式,并且最好与天线单元位于天线孔径层的同一表面上。

Description

用于卫星通信的低成本高性能 便携式相控阵天线系统
发明背景
发明领域
本发明的领域一般涉及卫星通信的天线系统,特别是用于微波信号的发射和接收的小型、便携、便宜、轻便的平面相控阵天线系统。
现有技术的简要说明
卫星通信在90年代变得非常受欢迎。典型地用来接收直接广播卫星(DBS)电视信号的设备包括抛物面反射器碟形天线,它用作住宅和办公室的前端天线。目前,这些天线体积大、需要大的安装空间,并且过分炫耀,因而破坏了我们的居住环境的和谐。不过最近,便携的和更加用户友好的卫星天线系统正在变得流行,其原因是高移动、动态社会使得我们不断增加更高生活水平的需求,以及现代科学的进步。
通常,用于DBS信号的现代便携通信系统包括:用来从天线电路向空间和相反地从空间向天线电路传递信号能量的天线单元的平面网络。
接收DBS电视信号的天线在设计方面的主要困难是,即希望天线的体积和重量足够减小,同时又具有高得足以与流行的抛物面反射器碟形天线相媲美的增益。典型的接收DBS信号的天线需要约12GHz(在美国为12.2GHz~12.7GHz)的载频和约33.5dBi的增益。典型的平面天线系统被制作成这种小天线单元的阵列,以便为满意的电视图象提供足够的能量,每个天线单元能够接收约12GHz的信号。
最近,用于DBS接收的几种类型的平面天线已经被提出。有些这样的现代系统是印刷电路和微波传输带天线系统,利用了循环地或线性地辐射极化波的天线单元阵列,有时具有一个或多个波导。设计卫星通信的平面相控阵天线系统的主要问题是高制造成本、组合网络的高插入损耗,和在两个极化端口间提供具有良好隔离的双极化性能方面的困难。制造传统的印刷相控阵天线系统的主要成本是微波基片材料的成本和蚀刻处理的成本。此外,在当前使用的系统中,即使使用最好的现有微波基片材料,印刷阵列组合网络插入损耗对高增益卫星天线来说仍然是非常高的。
一些已发表的文章论述了一个日本工程师小组在采用多层、平行板、辐射线和缝隙天线原理和重新设计高效能平面天线样机方面所面临的问题。这些样机在以下文章中叙述:IEEE(电气和电子工程师协会),天线和传播学会国际论文集,1993,卷3,1993年6月28日至7月2日;IEEE,天线和传播学会国际论文集,1994,卷2,1994年6月19日至24日;天线和传播学会国际论文集,1994,卷3,1994年6月19日至24日;以及IEEE,天线和传播学会国际论文集,1995,卷4,1995年6月18日至23日。该小组所用方法的主要缺点是制造多层平行板系统的成本高以及系统性能随孔径尺寸的减小而降低。在该方法中,当孔径减至小于18英尺时,自平行板辐射线缝隙天线的端部的反射明显地降低了天线性能,因为大量的能量留在朝向天线的端部。此外,如这些文章所述的那样,至少两层平行板需要实现双极化性能。
尽管有用,但相控阵天线系统设计方面的已有的进步仍然不能满足今日之需要。具有双平行板的系统的制造成本高,对多层、双极化平面天线系统来说,它变得几乎不能用,微波传输带天线手册(1989,卷2)对此作了某些说明。根据该手册,需要九层以上的印刷电路来实现双极化性能要求。此外,在多层系统中,从天线阵列的输入端口到每个阵列单元的传输线的路径长度是非常长的,因而引发了阵列馈送的高插入损耗和高系统噪声。
天线增益对噪声温度的高比值是一个好的接收天线系统的另一个重要要求。天线孔径尺寸、孔径效率和阵列馈送的损耗是用来确定天线增益的主要因素。天线的低旁瓣辐射图案和低电阻插入损耗是实现天线的低噪声温度的关键。然而,在低旁瓣辐射图案与孔径效率之间存在一种折衷选择。天线的旁瓣越小,噪声温度和孔径效率将越小。因此,在阵列馈送电路设计中实现最低损耗,特别是最低电阻插入损耗是所有相控阵天线设计的最终目标。好的隔离要求可以通过设计下述天线来实现,其具有比共极化电平低的交叉极化电平和具有两个极化端口之间的关联电路的良好设计。
一些现代平面相控阵天线系统使用了波导,因为在所有的导波电路中它们具有最低的插入损耗。此外,波导具有最高的功率处理能力,但是制造成本高。遵循双极化要求的所有现有天线系统至少使用两级波导网络,因而制造成本急剧增加。
其它的现代平面相控阵天线系统使用了空气带状线,因为它们具有次最低插入损耗和好的功率处理性能,以及比较低的制造成本。
因此,需要一种高性能的接收卫星通信信号的相控阵天线系统,它具有天线增益对噪声温度的高比值、组合网络的低插入损耗、具有两个极化端口间良好隔离的双极化性能、和低制造成本。
本发明概述
现有系统的上述和其它缺点通过本发明的各个方面得以解决和克服,本发明包括:一个天线单元的阵列;和一个利用了波导原理和具有良好隔离的空气带状线馈送网络的混合波束组合网络系统。
因此,本发明的目的是提供一种小型、便携、便宜、轻便的接收直接广播卫星信号的平面相控阵天线系统。
本发明的另一个目的是提供一种高性能的相控阵天线系统,具有天线增益对噪声温度的高比值和低的制造成本。
本发明的一个具体目的是提供一种在宽频带带宽上具有高效率和极佳交叉极化性能的相控阵天线系统。在一个示范性实施例中,利用单层(但可能双面)印刷电路双极化阵列孔隙系统实现这一目的,所述的阵列孔隙系统包括:具有低插入损耗的空气带状线馈送网络和在与两个极化相关联的各自馈送网络电路之间提供低水平的交叉极化的单独的双极化天线单元,它与单层波导组合网络相结合,所述的单层波导组合网络使用阑片(irises)和/或楔尖(wedges)使阻抗匹配最佳化并实现适当的功率分配。
本发明的优选实施例是相控阵天线系统,具有:一个顶层,对所需辐射是透明的(最好取采用极低损耗的塑料制作的多孔板或实心板形式),并对各部件提供机械支承和保护;一个起天线孔径层作用的中间层(最好取在其上形成一个天线单元阵列和多个带状线馈送网络电路的单层印刷电路板形式,每个带状线馈送网络电路组合来自数个邻近天线单元的同相输出);一个起天线孔径层的接地层作用的底层,还包括一个用于组合来自各带状线馈送网络电路的同相输出的单层波导组合网络,电磁耦合到波导组合网络的相应转换(transition)探针孔。
每个天线单元最好是设置在天线孔径层公共表面上的双极化八边形贴片天线单元。每个馈送网络电路最好为由空气介质层与接地层相分开的空气带状线馈送网络电路的形式,并且最好设置在作为天线单元的天线孔径层的同一表面上。
每个馈送网络电路或者属于水平(或右旋圆)极化馈送子网络或者属于垂直(或左旋圆)极化馈送子网络。每个馈送子网络按具有数个并行馈送网络列的并-串馈送网络方案来设计,并且可以用来从天线单元接收正交极化波。每列馈送网络组合来自天线单元阵列的一个或多个(最好两个)邻近列的相同极化的输出。每个馈送子网络具有一些(例如,八个)馈送网络列,其每列具有多个串行馈线,每个串行馈线具有多个并行馈线。每个并行馈线组合来自若干(典型为四个)邻近的等距天线单元的相同极化的同相输出。每个天线单元具有两个馈送信号,从相应极化的每个馈送网络列产生一个。
单层波导组合网络最好是整体结构,包括一个水平(或右旋圆)极化波导部分,一个垂直(或左旋圆)极化波导部分,一个水平(或右旋圆)极化端,一个垂直(或左旋圆)极化端。双正交极化波导部分位于同一平面并且最好被不对称地设置在公共壁的任一侧,其每一个包含关于相应中心线对称设置的分支腔。在一个示范性实施例中,每个正交极化波导部分具有一个第一T形接头,两个第二T形接头,四个第三T形接头,两个将第一T形接头连接到两个第二T形接头的相应一个的第一直角弯头,和四个将每个第二T形接头连接到四个第三T形接头的相应一个的第二直角弯头。每个第三T形接头设有两个转换探针孔,因而,所接收的微波信号经插头探针从八个被相同极化的馈送网络电路输入给波导组合网络的八个相应的转换探针孔,该插头探针从馈送网络电路的每一个经接地层中的输入节点伸展到该波导内部。
通过下面的结合附图的详细说明可以进一步理解本发明的上述和附加特点以及优点。在图和书面说明中,标号指示本发明的各个部件,在所有附图和整个书面说明中,相同的标号表示相同的部件。
图1是本发明的优选实施例的相控阵天线系统的优选实施例的透视图,包括:一个以多孔板形式的顶层;一个以单层印刷电路板形式的中间天线孔径层,具有一个天线单元阵列和多个带状线馈送网络电路;一个起天线孔径层的接地层作用的底层;和一个单层波导组合网络;
图2是单层印刷电路板的顶视图,该印刷电路板包括一个印刷的八边形贴片天线单元的阵列和多个带状线馈送网络电路;
图3是多孔板的顶视图;
图4是天线单元阵列沿图1指示线1-1的剖视图,包括天线孔径层、接地层、单层波导组合网络和几个隔板和凸起(bosses);
图5是单层波导组合网络沿图4指示线2-2的剖视图,在每个波导子系统中具有三组级联的T形接头和两组直角弯头,每个T形接头利用三个阑片使功率分配性能最佳;
图6是单层波导组合网络的底视图,显示了双正交极化端口;
图7A是被设计为在具有带状线馈送网络的同一层中印刷的八边形片的天线单元的顶视图;
图7B是根据本发明另一优选实施例的被设计为八边形片的天线单元的顶视图,该八边形片具有在该片下面印刷的带状线馈送网络;
图8A是根据本发明另一优选实施例的波导组合网络的T形接头的剖视图,体现了利用阑片使T形接头性能最佳的波导电磁调谐原理;
图8B是根据本发明的再一优选实施例的波导组合网络的T形接头的剖视图,体现了利用一个楔尖和两个阑片使T形接头性能最佳的波导电磁调谐原理;
图9A是显示按两列十行排列的二十个天线单元阵列的共极化图案的示意图;
图9B是显示按两列十行排列的二十个天线单元阵列的交叉极化图案的示意图;
图10A显示了具有相等功率分配的波导T形接头的性能;和
图10B显示了具有不相等功率分配的波导T形接头的性能。
本发明的详细说明
本发明涉及一种可用于接收双极化直接广播卫星信号的便携、便宜、轻便的平面相控天线单元阵列。该系统具有混合型波束组合网络,特别是利用了印刷的空气带状线馈送网络和单层波导组合网络。
根据本发明的优选实施例,图1示出了相控阵天线单元系统的透视图。如图1所示,本发明的相控阵天线系统10包括:一个以多孔板12形式的窗口层;一个天线孔径层14,它为可能是双面的单层印刷电路板形式,具有一个天线单元20的阵列和形成馈送网络的多个带状线馈送网络电路22;一个天线孔径层14的接地层16;和一个放置在接地层16下面的单层波导组合网络18,所有部件在紧凑的矩形外壳中安装和结合为一体。多孔板12可以由金属最好是铝制成,也可以由塑料或已知的其它材料制成(需要说明的是该多孔板12可以由极低损耗的塑料材料制成的实心板构成)。接地层16和波导组合网络18由金属最好是铝制成或者由具有良好导电性的其它金属制成,该波导组合网络18螺接、焊接到接地层16或者与接地层16整体浇铸。
图2是单层印刷电路板14的顶视图。根据本发明的优选实施例,天线单元20阵列的每个天线单元20最好是双极化天线单元20,它设置在天线孔径层14的公共表面上,该阵列还具有多个带状线馈送网络电路22,其每一个组合来自几个相邻天线单元20的同相输出。天线孔径层14由一个印刷天线单元20的一个阵列20组成。几乎在天线孔径层14的每一行中有十七个天线单元20,几乎在天线孔径层14的每一列中有十个天线单元20,尽管本领域的技术人员能够理解可以按不同的配置放置更少或更多的单元。几个天线单元20被省略,以便为隔板位置29提供空间。
多孔板12对辐射是透明的,每个天线单元20位于图3所示的多孔板12的开口圆孔24之一的正下面。多孔板12和接地层16用来支承馈送网络电路22并增强对相控阵天线系统10的支承。
在另一个实施例(未示出)中,天线系统10可以被一个包括天线屏蔽器和一个泡沫聚苯乙烯层的罩子围住(未示出)。该泡沫聚苯乙烯层用来提供对天线单元20的支承并把损坏的风险降至最小。泡沫聚苯乙烯是极低介电常数和低射频损耗的材料,它的存在对相控阵天线系统10的信号接收性能没有明显的影响。天线屏蔽器最好由用防水塑料材料,例如ABS(丙烯腈-丁二烯-苯乙烯三元共聚物)树脂制成,以防止水的吸附。
天线孔径层14特别适用于接收为传统的DBS网络使用的格式的信号。每个馈送网络电路22最好为空气带状线馈送网络电路22(参见图2)的形式,它用空气介质层15(参见图1)与接地层16分离以便减小插入损耗,并且最好与天线单元20设置在天线孔径层14的同一表面上。本发明优选实施例中的每个馈送网络电路22属于两个分离的正交极化馈送子网络之一,即,水平极化馈送子网络21或垂直极化馈送子网络23,它们接收来自天线单元20的正交极化波。尽管所描述的实例利用了水平和垂直极化,但本领域的普通技术人员将明白这两种正交极化可以是右旋圆极化和左旋圆极化,例如组合具有相对±90°相移的天线单元20的水平和垂直极化输出。
水平极化馈送子网络21被设计为图2所示的并-串馈送网络线路,具有几个并行的水平极化馈送网络列26。同样的设计适用于垂直极化馈送子网络23,它具有几个并行的垂直馈送网络列28,并且连接到相同的天线单元20,但具有正交极化的信号。因此,在本发明的优选实施例中,几乎所有的相应极化的天线单元20都具有两个馈送信号,从每个馈送网络列26和28产生一个。
每个馈送网络列26和28组合来自天线单元20阵列的两个相邻列的相同极化的输出。如图2所示,垂直极化馈送网络列28和水平极化馈送网络列26相互交替排列。馈送网络列26和28的同相输出被电磁耦合到波导组合网络18。
如图2所示,每个馈送子网络21和23具有八个馈送网络列26和28,每个馈送网络列26和28被设计为并-串馈送网络线路,具有多个串行馈线35,每个串行馈线35具有多个并行馈线37。每个并行馈线37组合来自数个相邻等距天线单元20的相同极化的同相输出,该同相输出来自至少为两个、通常为四个相应的邻近天线单元20。放置在天线孔径层14边缘的一些并行馈线37组合仅来自两个相邻的等距天线单元20的相同极化的同相输出,这使得相控天线阵系统10不对称,但简化了本发明优选实施例的结构。由馈送网络列26和28、串行馈线35和并行馈线37组成的馈送网络电路22的馈送线路通常具有变化线宽和不同线长的横截面,以便在每个馈送网络列26和28内提供阻抗匹配。
馈送网络列26和28、串行馈线35和并行馈线37很短,以便减少插入损耗和增加相控阵天线系统10的频带带宽。在本发明的优选实施例中,为了把插入损耗减至最小,水平极化馈送子网络21和垂直极化馈送子网络23在印刷电路板天线孔径层14中相互交错。馈送网络列26和28可以印刷在薄膜基底上或者蚀刻在印刷电路天线孔径层14上。因而,印刷电路天线孔径层4被支承在最好以铜板印刷电路板形式的矩形介质基板上。
图4是本发明优选实施例的相控阵天线系统10的剖面图,它示出了印刷电路天线孔径层14,接地层16,单层波导组合网络18,底板19(图6)和几个水平的导销30、隔板33和凸起31。多孔板12由图3和图4所示的多个凸起31支承。凸起31穿过图2所示的印刷电路天线孔径层14,该孔径层14在凸起位置29上钻有孔,并在该凸起位置不设天线单元20以便为凸起31提供空间。印刷电路天线孔径层14由设置在接地层16上的几个隔板33支承,如图4所示。本发明的优选实施例的隔板33确定馈线22与接地层16之间的用来减小插入损耗的空气介质15层。隔板33应该具有均匀的尺寸并根据所述的层和所需的性能被精确地分隔。这些隔板33最好与波导18和接地层16整体浇铸。
从天线单元20接收的信号经天线波导组合网络18分别耦合到垂直极化端口64和水平极化端口66。端口64和66穿过波导组合网络18的底板19向下伸展(如图6所示),并与外部RF(射频)电子模块相耦接(未示出),所述的RF电子模块连接垂直极化端口64和水平极化端口66,经过上述极化端口接收的信号被组合并传递给接收机(未示出)。水平极化端口66与水平极化馈送子网络21连接,垂直极化端口64与垂直极化端口64连接。两个端口,即垂直极化端口64和水平极化端口66最好去耦。天线单元20阵列通常是对称的,对于极化端口64和66的每一个,相控阵天线系统10受益于相控阵天线系统10的对称辐射。
在本发明的优选实施例中,每个天线单元最好设置在天线孔径层14的公共表面上,并被设计为双极化八边形贴片天线单元50(如图7a和7b所示),但它也可以具有其它形状。每个双极化正交贴片天线单元50在两个正交位置馈入相应的馈送网络列26和28,因而生成两个空间上正交的相互独立的垂直和水平极化的线性极化波。这样,各双极化八边形贴片天线单元50在与两个极化的每一个关联的相应馈送网络电路22之间提供了低水平的交叉极化。
每个八边形贴片天线单元50经过水平极化馈线25和垂直极化馈线27馈入相应的交叉极化馈线37,该水平极化馈线25和垂直极化馈线27在水平馈送点42和垂直馈送点44这两个正交位置上连接八边形贴片天线单元50。因而,每个八边形贴片天线单元50具有与八边形贴片天线单元50一体形成的两个馈送点42和44,并在这两个馈送点42和4将入传播微波能量馈入馈送网络列26和28。
在本发明的一个优选实施例中,这些双极化八边形贴片天线单元50的水平馈线25和垂直馈线27被印刷在与八边形贴片天线单元50相同的层上,如图7A所示。在本发明的另一优选实施例中,它们被印刷在印刷电路天线孔径层14下面的分离层上,并电磁耦合到八边形贴片天线单元50,如图7B所示。
八边形贴片天线单元50可以由正方形贴片形成,通过切除四个角建立八个交替的边,其中有四个a边54和四个位于相应的a边之间的b边55。在图7A和图7B所示的优选实施例中,每个八边形贴片天线单元50的a边54和b边55的长度是不相同的,需要通过实验确定和使其最佳,以便实现所需的隔离和交叉极化性能。传统的正方形贴片天线单元具有相对差的隔离和交叉极化性能。本发明所示的八边形贴片天线单元50具有低水平的与两个极化的每一个相关联的相应馈送网络电路间的交叉极化和超过20dB的隔离改善。
图9A和图9B示出了二十个天线单元阵列的被测辐射图案,这些天线单元根据本发明优选实施例制作成八边形贴片天线单元50,并按二列十行放置。图9A是显示该阵列的示例性共极化辐射图案的示意图。图9B是显示该阵列的交叉极化水平低于图9A所示的共极化水平的辐射图。在该实验中,天线阵列效率高于75%并且获得了极好的交叉极化性能。
单层组合网络18组合来自数个带状线馈送网络电路22的同相输出,电路22经相应的转换探针孔40电磁耦合到波导组合网络18。图2和图4示出了从印刷电路天线孔径层14和馈送网络电路22向波导组合网络18电磁耦合能量用的插头探针30。该插头探针30被放置在印刷电路天线孔径层14中的对应孔32、接地层16中的输入节点(未示出)和波导组合网络18的转换探针孔40的内部(如沿图4的指示线2-2剖面的图5所示),并与馈送网络电路22连接。
在本发明的优选实施例中有十六个钻通模压铸部件的转换探针孔40,并且对应数量的插头探针30锡焊或焊接在天线孔径层14的对应馈送线路22。很清楚,可以有更少的或更多的转换探针孔。插头探针30的长度、它们(探针)距波导壁背部79的距离和转换探针孔40的直径是可控参数,以便使相控阵天线系统10的阻抗匹配最佳。插头探针30在诸如本发明的馈送网络电路22的电磁馈线与波导组合网络18的腔内的自由空间之间提供紧凑转换,充当一个变换器(transformer)。或者,在八边形贴片天线单元50内建立的矩形耦合槽(未示出)或许可用来替代插头探针30,从而提供了更容易的制造和降低的总装成本。
如图5所示,波导组合网络1 8最好被设计成单层结构,以便改善性能和降低制造成本。它充当一个波束形成部分,用来组合微波信号的接收,从而减小了相控阵天线系统10的插入损耗和增加了其增益。
波导组合网络18最好是一个包括以下部件的整体结构:一个水平极化波导部分63,一个垂直极化波导部分61,一个垂直波导端口64,以及一个水平波导端口66。水平和垂直极化波导部分63和61位于相同的平面并且最好被不对称地设置在公共壁76的任一侧,每一个波导部分包括:一个关于相应中心线对称地设置的分支腔71,T形接头60的三个级联分部和直角弯头55和62的两个级联分部,以提供直角转换,不过它也可能有其它组合。本发明优选实施例的天线波导组合网络18被设计为平面金属底板,最好是铝模压铸件,当然也可以用其它金属和按其它形状制造。
在一个示范性实施例中,每个水平极化和垂直极化波导部分61和63具有一个第一T形接头、两个第二T形接头68和四个第三T形接头69,两个第一直角弯头56将第一T形接头67与两个第二T形接头68的相应一个相连接,四个第二直角弯头62将每个第二T形接头68与四个第三T形接头69的相应一个相连接。每个第三T形接头69设有两个转化插针孔40,因而所接收的微波信号从八个相同的极化馈送网络电路22经插头探针30加给波导组合网络18的八个相应的转换探针孔40,该插头探针30从馈送网络电路22的每一个经接地层16中的输入节点(未示出)延伸到波导组合网络18的内部。
每个第三T形接头69经直角弯头62连接第二T形接头68的相应的一个,以致经第三T形接头69的每一个中的转换探针孔40接收的天线单元20的信号在相应的第三T形接头68处组合。第二T形接头68的输出信号耦接到相应的第一T形接头67,然后经极化端口64和66输出。
阻抗匹配系统被设置在本发明的波导组合网络18内,如图8a和8b所示。它由形状如同沿波导腔71周期性隔开的阑片70、75和77以及楔尖80这样的电磁反射体组成。阑片70、75和77以及楔尖80用来为第一T形接头67以及第二T形接头68和第三T形接头69提供阻抗匹配,以得到期望的功分比和极大地减少中心(单输入或组合输出)波导部分65与外侧(分离输出或双输入)波导部分60间结点上的反射微波能量。
图8A是根据本发明优选实施例的波导组合网络18的T形接头的剖视图,体现了利用阑片70、75和77使T形接头性能最佳的波导电磁匹配原理。图8B是根据本发明另一优选实施例的波导组合网络18的T形接头的剖视图,体现了利用一个楔尖80和两个阑片75和77使T形接头性能最佳的波导电磁匹配原理。
图8A示出了在波导组合网络18的T形接头67、68或69的每个入口65、72或74中优先使用的简易阑片70、75和77。阑片70、75和77的位置和长度通过实验选择,并用来把相控阵天线系统微调到所需的阻抗匹配。例如在图8A中,阑片-1 70的位置用来调整端口-2 72与端口-3 74之间的功率。在相等的功率分配情况下,阑片-1 70位于腔体端口-1 65的中心线73。当阑片-1 70向端口-2 72方向移动时,更多的功率从输入端口-1 65传送给端口-3 74。阑片-2 75和阑片-3 77用来进一步微调输入端口-1 65与端口-2 72之间以及输入端口-1 65与端口-3 74之间的T形接头处的阻抗匹配。
图8B输出了用来替代图8A所示的阑片-1 70的形如棱锥的楔尖80。阻抗匹配通过调整楔尖80基底的尺寸和其侧面与基底之间的角度来提供。与图8A所示的方法类似,楔尖80的位置通过实验确定,以便获得所期望的波导组合网络18的功率分配。
基于本发明展现的波导理论,开发和试验了如图5所示的具有相等和不相等功率分配的单层波导组合网络18。具有相等和不相等功率分配的测试性能分别在图10A和图10B中示出。可以看到,在感兴趣频带(12.2至12.7GHz)上分离几乎相等的功率被实现。在图10B所示的不相等功率分配的情况下,阑片70从波导腔中心线离开,以便向端口-2 72发送更多的能量和向端口-374发送更少的能量。需要说明的是该测量数据(图10A和图10B)包括从SMA连接器转换到波导的损耗。阑片70、75和77的长度和位置经验地确定以对每个T形接头67、68和69最优化。在图10B所示的实例中,阑片-1 70偏离具有相等功率分配的波导的输入端口-1 65的中心线0.05英寸。用本发明的波导组合网络18,其中从每个垂直或水平极化端口64或66到最远的转换探针孔40的传输线的总路径长度仅为10.92英寸,可以实现小于0.1dB的测量插入损耗。
从天线孔径14到波导组合网络18的均匀转换通过最佳转换设计来实现,这样就可以使天线单元20所接收的所有电磁场信号分量均匀地传送到第三T形接头69,再从这里经共用腔体71传送到第二T形接头68和第三T形接头67。当插头探针30逐渐接近天线孔径层14时所接收的微波信号能量逐渐降低,于是天线孔径层14边缘上的终端损耗就比较小,从而提供了低旁瓣辐射图案。
这里所述的相控阵天线系统10是用于卫星通信的高性能相控阵天线系统,具有天线增益对噪声温度的高比值、波束组合网络的极低插入损耗、两个极化端口间良好隔离的双极化性能,并且可以以低制造成本生产。
尽管已经结合优选实施例描述了本发明,但本发明的范围应由在后面的权利要求和它的所有等同物的范围来界定。

Claims (42)

1、一种相控阵天线系统,包括:
一个天线孔径层,具有
一个按多个子阵列安排的天线单元阵列,和
一个耦接到每一个所述天线单元的子阵列的相应馈送网络电路,用于把与相应子阵列中各天线单元关联的天线单元级(level)信号耦合至与整个子阵列关联的单一子阵列级信号;
一个天线孔径层的接地层,具有
一个单层波导网络层,用于把多个子阵列级端口与单个外部端口相耦接;和
电磁装置,用于把每个子阵列级信号耦合到子阵列级端口相应的一个。
2、根据权利要求1所述的相控阵天线系统,其中馈送网络电路是用空气介质层与接地层分离的一个空气带状线馈送网络。
3、根据权利要求1所述的相控阵天线系统,其中每个所述天线单元是一个双极化八边形贴片天线单元,包括:
一个具有第一预定长度的第一四边组,和一个具有第二预定长度的第二四边组,所述的第二预定长度与所述的第一预定长度不同,和
其中属于第二四边组的每个边被放置在属于第一四边组的两个边之间。
4、根据权利要求1所述的相控阵天线系统,其中所述的馈送网络电路与天线单元位于天线孔径层的相同表面上,并且与所述的天线单元一体形成。
5、根据权利要求1所述的相控阵天线系统,其中馈送网络电路位于天线单元下面的天线孔径层的相反表面上,并且通过磁耦合与天线单元连接。
6、根据权利要求1所述的相控阵天线系统,其中所述的馈送网络电路包括:
第一极化馈送子网络;和
第二极化馈送子网络,
第一馈送极化子网络和第二极化馈送子网络的每一个具有多个馈送网络列,每个所述的馈送网络列具有多个串行馈线和多个并行馈线。
7、根据权利要求6所述的相控阵天线系统,其中所述的馈送网络列、所述的串行馈线和所述的并行馈线的每一个通常具有一定尺寸的横截面,以保证所有馈送列阻抗相同。
8、根据权利要求1所述的相控阵天线系统,其中所述的波导网络是一个整体结构,包括:
第一极化波导部分;
第二极化波导部分,它与所述的第一极化波导部分并排设置;
一个位于所述第一极化波导部分内的第一极化端口,并起一个第一所述外部端口作用;和
一个位于所述第二极化波导部分内的第二极化端口,并起一个第二所述外部端口作用;
其中
所述的第一极化波导部分和所述的第二极化波导部分是共平面的并且被不对称设置在公共壁的任一侧上,和
每一个所述第一极化波导部分和所述第二极化波导部分包含关于相应中心线对称地设置的分支腔体。
9、根据权利要求8所述的相控阵天线系统,其中每个所述的波导部分包括:
第一T形接头;
多个第二T形接头;
多个第三T形接头;
多个第一直角弯头,每个所述第一直角弯头把第一T形接头与所述第二T形接头相应的一个耦接起来;和
多个第二直角弯头,每个所述第二直角弯头把每个所述第二T形接头与所述第三T形接头相应的一个耦接起来。
10、根据权利要求9所述的相控阵天线系统,其中
每个所述第三T形接头包括至少一个穿过天线孔径层和第三T形接头而形成的转换探针孔,和
用于把每个子阵列级信号耦合给子阵列级端口相应的一个的所述电磁装置包括:多个插头探针,每个所述的插头探针插入一个相应的所述转换探针孔之内,从该处伸出并与所述的馈送网络电路连接,
其中所接收的微波信号可以经所述转换探针孔从馈送网络电路供给波导网络层。
11、根据权利要求9所述的相控阵天线系统,其中第一极化是水平极化,第二极化是垂直极化。
12、根据权利要求9所述的相控阵天线系统,其中第一极化是右旋圆极化,第二极化是左旋圆极化。
13、根据权利要求9所述的相控阵天线系统,其中每个极化波导部分实质上包括两个第二T形接头,四个第三T形接头,两个第一直角弯头和四个第二直角弯头。
14、根据权利要求1所述的相控阵天线系统,其中所述波导组合网络层与接地层是整体并且是铝的模压铸件。
15、根据权利要求1所述的相控阵天线系统,其中所述的波导组合网络层还包括:
在所述的波导组合网络层内周期性隔开的多个电磁反射器,通过尺寸和位置调整,以最小返回终端损耗在所述波导组合网络层内提供阻抗匹配和预定功率分配,
16、根据权利要求1所述的相控阵天线系统,其中所述的波导组合网络层还包括:
在所述的波导组合网络层内周期性隔开的多个电磁阑片,通过尺寸和位置调整,以最小返回终端损耗在所述波导组合网络层内提供阻抗匹配和预定功率分配。
17、根据权利要求1所述的相控阵天线系统,其中
顶层被构成为一个多孔板;
天线孔径层被构成为一个单层印刷电路板;
每个所述天线单元是一个双极化八边形贴片天线单元,设置在所述天线孔径层的表面上,其中每个所述的双极化八边形贴片天线单元具有四个第一长度的边和四个不同于第一长度的第二长度的边,
所述的波导组合网络层是一整体结构,具有一个水平极化波导部分、一个与水平极化波导部分并排放置的垂直极化波导部分、一个位于所述水平极化波导部分内的水平极化端口,一个位于所述垂直极化波导部分内的垂直极化端口,
所述的水平极化波导部分和所述的垂直极化波导部分是共面的并且不对称地设置在公共壁的任一侧上,
每个水平极化波导部分和每个垂直极化波导部分含有关于相应的中心线对称设置的分支谐振腔;和
馈送网络电路是一个用空气介质层与接地层相分离的空气带状线馈送网络。
18、根据权利要求17所述的相控阵天线系统,其中所述的馈送网络电路与天线单元位于天线孔径层的同一面上,并且与所述的天线单元整体形成。
19、根据权利要求17所述的相控阵天线系统,其中所述的馈送网络电路位于天线单元下面的天线孔径层的不同面上,并且经磁耦合连接到天线单元。
20、根据权利要求17所述的相控阵天线系统,其中所述的馈送网络电路包括:
水平极化馈送子网络;和
垂直极化馈送子网络,
其中
水平极化馈送子网络和垂直极化馈送子网络的每一个具有多个馈送网络列,每个所述馈送网络列具有多个串行馈线和多个平行馈线,和
所述的馈送网络列、所述的串行馈线和所述的并行馈线的每一个通常有一个具有预定尺寸线宽的径向截面,从而使所有馈送列保持相同的阻抗。
21、根据权利要求17所述的相控阵天线系统,其中每个所述的水平波导极化部分和所述的垂直极化波导部分每个包括:
第一T形接头;
多个第二T形接头;
多个第三T形接头;
多个第一直角弯头,每个所述第一直角弯头将第一T形接头与所述第二T形接头相应的一个连接起来;和
多个第二直角弯头,每个所述第二直角弯头将每个所述第二T形接头与所述第三T形接头相应的一个连接起来。
22、根据权利要求21所述的相控阵天线系统,其中每个所述第三T形接头包括至少一个穿过天线孔径层和第三T形接头而形成的转换探针孔,和
耦合所述馈送网络电路和所述波导组合网络层的所述电磁装置包括多个插头探针,其中每个所述插头探针被插入到所述至少一个转换探针孔的每一个内,从此伸出并与所述馈送网络电路连接,
由此所接收的微波信号经所述的转换探针孔从馈送网络电路供给波导组合网络层。
23、根据权利要求17所述的相控阵天线系统,其中每个所述的水平极化波导部分和所述的垂直极化波导部分正好包括两个第二T形接头、四个第三T形接头、两个第一直角弯头和四个第二直角弯头。
24、根据权利要求17所述的相控阵天线系统,其中所述的波导组合网络层是一个平面金属底板,最好为铝或铝合金模压铸件,并且具有一预定形状和尺寸的截面。
25、根据权利要求17所述的相控阵天线系统,其中所述的波导组合网络层还包括一个匹配系统,具有在每个所述水平极化波导部分和所述垂直极化波导部分内周期性隔开的多个电磁反射器,和
一些所述电磁反射器被构成为阑片而另一些构成为楔尖,
由此在所述波导组合网络层内提供阻抗匹配和功率分配,以获得最小返回终端损耗。
26、根据权利要求1所述的相控阵天线系统,其中
顶层被形成一个多孔板;
天线孔径层被构成为单层印刷电路板;
每个所述的天线单元是双极化八边形贴片天线单元,被设置在所述天线孔径层的表面上,每个所述的双极化贴片天线单元具有第一长度的四个边和具有不同于第一长度的第二长度的四个边,
所述的波导组合网络层是一个整体结构,具有:一个右旋圆极化波导部分,一个与所述右旋圆极化波导部分并排放置的左旋圆极化波导部分,一个位于所述右旋圆极化波导部分内的右旋圆极化端口,和一个位于所述左旋圆极化波导部分内的左旋圆极化端口,
所述的右旋圆极化波导部分和所述的左旋圆极化波导部分是共面的并且被不对称地设置在公共壁的任一侧上,
每个所述右旋圆极化波导部分和所述左旋圆极化波导部分含有关于相应中心线对称地设置的分支腔体;和
馈送网络电路是用空气介质层与接地面分离的一个空气带状线馈送网络。
27、根据权利要求26所述的相控阵天线系统,其中所述的馈送网络电路与天线单元位于天线孔径层的同一表面上,并且与所述天线单元一体形成。
28、根据权利要求26所述的相控阵天线系统,其中所述的馈送网络电路位于天线单元下面的天线孔径层的不同表面上,并且经磁耦合连接天线单元。
29、根据权利要求26所述的相控阵天线系统,其中所述的馈送网络电路包括:
右旋圆极化馈送子网络;和
左旋圆极化馈送子网络;
右旋圆极化馈送子网络和左旋圆极化馈送子网络每个具有多个馈送网络列;
每个所述馈送网络列具有多个串行馈线和多个并行馈线,和
所述馈送网络列、所述串行馈线和所述并行馈线每个通常具有预定尺寸的线宽的径向截面,因而使所有馈送列的阻抗实际上保持相同。
30、根据权利要求26所述的相控阵天线系统,其中每个所述右旋圆极化波导部分和左旋圆极化部分包括:
第一T形接头;
多个第二T形接头;
多个第三T形接头;
多个第一直角弯头,每个所述第一直角弯头将第一T形接头与所述第二T形接头相应的一个连接起来;和
多个第二直角弯头,每个所述第二直角弯头将每个所述第二T形接头与所述第三T形接头连接起来。
31、根据权利要求30所述的相控阵天线系统,其中
每个所述第三T形接头至少包括一个穿过天线孔径层和第三T形接头而形成的转换探针孔,和
用于连接所述馈送网络电路和所述波导组合网络层的所述电磁装置包括:多个插头探针,每个所述插头探针插入所述探针孔相应的一个的内部,从此处伸出并与所述馈送网络电路连接,
由此所接收的微波信号经所述转换探针孔从馈送网络电路供给波导组合网络层。
32、根据权利要求26所述的相控阵天线系统,其中每个所述水平极化波导部分和所述垂直极化波导部分正好包括两个第二T形接头、四个T形接头、两个第一直角弯头和四个第二直角弯头。
33、根据权利要求6所述的相控阵天线系统,其中所述波导组合网络层是一个平面金属底板,最好是铝或铝合金模压铸件,并且具有预定形状和尺寸的截面。
34、根据权利要求26所述的相控阵天线系统,其中所述波导组合网络层还包括:
匹配系统,具有多个在每个所述水平极化波导部分和所述垂直极化波导部分内周期性隔开的多个电磁反射器,
其中所述电磁反射器的一些被构成为阑片,另一些被构成为楔尖,
由此在所述波导组合网络层内提供阻抗匹配和功率分配,并得到最小返回终止损耗。
35、一种天线单元结构,包括:
双极化八边形贴片天线系统,具有:一个有第一预定长度的第一四边组和一个有不同于第一预定长度的第二长度的第二四边组,其中每个属于第二四边组的每一边被放置在属于第一四边组的两个边之间;
用于所述天线单元的水平馈线,和
用于所述天线单元的垂直馈线,所述水平馈线和所述垂直馈线与所述八边形贴片天线单元一体形成,从而形成两个正交极化波。
36、根据权利要求35所述的相控阵天线系统,其中所述水平馈线和所述垂直馈线被设置在具有八边形贴片天线单元的同一层上。
37、根据权利要求35所述的相控阵天线系统,其中所述水平馈线和所述垂直馈线被设置在天线单元下面的分区层上,并且通过磁耦合连接八边形贴片天线单元。
38、一种波导功分器/组合器,包括:
多个T形接头:和
在每个所述T形接头上的电磁匹配装置,用于使所述T形接头上的阻抗匹配和功率分配最佳。
39、根据权利要求38所述的波导功分器/组合器,其中所述匹配装置是阑片。
40、根据权利要求39所述的波导功分器/组合器,其中每个阑片位于相应的T形接头的相应的中心端口,并且最佳阻抗匹配和功率分配通过改变每个阑片的尺寸和位置来得到。
41、根据权利要求38所述的波导功分器/组合器,其中所述匹配装置是楔尖。
42、根据权利要求41所述的波导功分器/组合器,其中每个楔尖位于一个相应T形接头的一个相应中心端口上,最佳阻抗匹配通过改变每个楔尖的角度和尺寸来得到,最佳功率分配通过改变每个楔尖的位置来得到。
CNB97182522XA 1997-12-29 1997-12-29 用于卫星通信的低成本高性能便携式相控阵天线系统 Expired - Fee Related CN1168178C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB97182522XA CN1168178C (zh) 1997-12-29 1997-12-29 用于卫星通信的低成本高性能便携式相控阵天线系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB97182522XA CN1168178C (zh) 1997-12-29 1997-12-29 用于卫星通信的低成本高性能便携式相控阵天线系统

Publications (2)

Publication Number Publication Date
CN1300453A true CN1300453A (zh) 2001-06-20
CN1168178C CN1168178C (zh) 2004-09-22

Family

ID=5178567

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB97182522XA Expired - Fee Related CN1168178C (zh) 1997-12-29 1997-12-29 用于卫星通信的低成本高性能便携式相控阵天线系统

Country Status (1)

Country Link
CN (1) CN1168178C (zh)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101026933B (zh) * 2005-12-30 2010-05-12 英特尔公司 印刷电路板波导
CN102027638A (zh) * 2008-05-13 2011-04-20 波音公司 双波束双选极化天线
CN102221337A (zh) * 2011-03-23 2011-10-19 大连海事大学 船载微波散射计反演油膜厚度装置
CN101296018B (zh) * 2008-05-26 2011-11-23 中国电子科技集团公司第五十四研究所 移动卫星通信相控阵天线波束形成跟踪方法
CN102394349A (zh) * 2011-07-08 2012-03-28 电子科技大学 一种基于强互耦效应的八角环平面双极化宽带相控阵天线
CN102598407A (zh) * 2009-11-02 2012-07-18 浦项工科大学校产学协力团 用于车辆的传输线和天线
CN103022662A (zh) * 2012-11-14 2013-04-03 广东隆伏通讯设备有限公司 一种新型“动中通”低轮廓卫星天线辐射板结构
CN103915691A (zh) * 2013-02-08 2014-07-09 优倍快网络公司 用于高速无线通信的叠层阵列天线及使用其的方法
CN105264714A (zh) * 2014-04-22 2016-01-20 华为技术有限公司 多极化基片集成波导天线
CN105281024A (zh) * 2014-07-21 2016-01-27 北京自动化控制设备研究所 一种小型化北斗导航天线阵元
CN106981713A (zh) * 2017-05-05 2017-07-25 上海旦迪通信技术有限公司 一种双极化卫星广播天线
CN107959127A (zh) * 2017-11-13 2018-04-24 中山香山微波科技有限公司 射频仿真系统及其球面阵列天线模块
CN108432049A (zh) * 2015-06-16 2018-08-21 阿卜杜拉阿齐兹国王科技城 有效平面相控阵列天线组件
CN109417225A (zh) * 2016-07-14 2019-03-01 华为技术有限公司 天线和包括天线的系统
CN111541052A (zh) * 2016-05-20 2020-08-14 罗克韦尔柯林斯公司 超超宽带aesa的系统和方法
CN111919338A (zh) * 2018-03-27 2020-11-10 株式会社村田制作所 天线模块
CN115332779A (zh) * 2022-09-19 2022-11-11 航天恒星科技有限公司 相控阵天线的封装组件
CN115603065A (zh) * 2022-09-21 2023-01-13 北京遥测技术研究所(Cn) 一种双极化相控阵天线

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101026933B (zh) * 2005-12-30 2010-05-12 英特尔公司 印刷电路板波导
CN102027638A (zh) * 2008-05-13 2011-04-20 波音公司 双波束双选极化天线
CN102027638B (zh) * 2008-05-13 2013-10-30 波音公司 双波束双选极化天线
CN101296018B (zh) * 2008-05-26 2011-11-23 中国电子科技集团公司第五十四研究所 移动卫星通信相控阵天线波束形成跟踪方法
CN102598407A (zh) * 2009-11-02 2012-07-18 浦项工科大学校产学协力团 用于车辆的传输线和天线
CN102221337A (zh) * 2011-03-23 2011-10-19 大连海事大学 船载微波散射计反演油膜厚度装置
CN102221337B (zh) * 2011-03-23 2012-07-04 大连海事大学 船载微波散射计反演油膜厚度装置
CN102394349A (zh) * 2011-07-08 2012-03-28 电子科技大学 一种基于强互耦效应的八角环平面双极化宽带相控阵天线
CN102394349B (zh) * 2011-07-08 2014-12-10 电子科技大学 一种基于强互耦效应的八角环平面双极化宽带相控阵天线
CN103022662B (zh) * 2012-11-14 2015-04-15 广东隆伏通讯设备有限公司 一种新型“动中通”低轮廓卫星天线辐射板结构
CN103022662A (zh) * 2012-11-14 2013-04-03 广东隆伏通讯设备有限公司 一种新型“动中通”低轮廓卫星天线辐射板结构
CN103915691B (zh) * 2013-02-08 2016-03-30 优倍快网络公司 用于高速无线通信的叠层阵列天线及使用其的方法
CN103915691A (zh) * 2013-02-08 2014-07-09 优倍快网络公司 用于高速无线通信的叠层阵列天线及使用其的方法
CN105264714B (zh) * 2014-04-22 2017-11-24 华为技术有限公司 多极化基片集成波导天线
CN105264714A (zh) * 2014-04-22 2016-01-20 华为技术有限公司 多极化基片集成波导天线
US10044109B2 (en) 2014-04-22 2018-08-07 Huawei Technologies Co., Ltd. Multi-polarization substrate integrated waveguide antenna
CN105281024A (zh) * 2014-07-21 2016-01-27 北京自动化控制设备研究所 一种小型化北斗导航天线阵元
CN108432049A (zh) * 2015-06-16 2018-08-21 阿卜杜拉阿齐兹国王科技城 有效平面相控阵列天线组件
CN111541052A (zh) * 2016-05-20 2020-08-14 罗克韦尔柯林斯公司 超超宽带aesa的系统和方法
CN109417225A (zh) * 2016-07-14 2019-03-01 华为技术有限公司 天线和包括天线的系统
CN109417225B (zh) * 2016-07-14 2020-07-14 华为技术有限公司 天线和包括天线的系统
CN106981713A (zh) * 2017-05-05 2017-07-25 上海旦迪通信技术有限公司 一种双极化卫星广播天线
CN106981713B (zh) * 2017-05-05 2023-12-01 上海旦迪通信技术有限公司 一种双极化卫星广播天线
CN107959127A (zh) * 2017-11-13 2018-04-24 中山香山微波科技有限公司 射频仿真系统及其球面阵列天线模块
CN111919338A (zh) * 2018-03-27 2020-11-10 株式会社村田制作所 天线模块
CN111919338B (zh) * 2018-03-27 2022-06-14 株式会社村田制作所 天线模块
CN115332779A (zh) * 2022-09-19 2022-11-11 航天恒星科技有限公司 相控阵天线的封装组件
CN115332779B (zh) * 2022-09-19 2023-04-14 航天恒星科技有限公司 相控阵天线的封装组件
CN115603065A (zh) * 2022-09-21 2023-01-13 北京遥测技术研究所(Cn) 一种双极化相控阵天线

Also Published As

Publication number Publication date
CN1168178C (zh) 2004-09-22

Similar Documents

Publication Publication Date Title
CN1168178C (zh) 用于卫星通信的低成本高性能便携式相控阵天线系统
US6297774B1 (en) Low cost high performance portable phased array antenna system for satellite communication
US4959658A (en) Flat phased array antenna
US5086304A (en) Flat phased array antenna
US6317094B1 (en) Feed structures for tapered slot antennas
CA2527642C (en) Wideband phased array radiator
WO1999034477A1 (en) Low cost high performance portable phased array antenna system for satellite communication
KR100841152B1 (ko) 모놀리식 안테나 피드 조립체를 포함하는 어레이 안테나 및제조 방법
US5872545A (en) Planar microwave receive and/or transmit array antenna and application thereof to reception from geostationary television satellites
US20040080455A1 (en) Microstrip array antenna
US20030122724A1 (en) Planar array antenna
US20060038732A1 (en) Broadband dual polarized slotline feed circuit
CN109742538B (zh) 一种移动终端毫米波相控阵磁偶极子天线及其天线阵列
CN114256626B (zh) 一种双频双圆极化高效共口径平板天线
CN114361801B (zh) 一种双极化高隔离度l波段小型化喇叭天线
US20050134514A1 (en) Millimeter wave antenna
CN111262025A (zh) 集成基片间隙波导波束扫描漏波天线
CN111224229B (zh) 一种基于镜像子阵列的卫星阵列天线
CN113782960B (zh) 正交线极化的小型化共口径天线
CN211670320U (zh) 一种isgw波束扫描漏波天线
KR20020075209A (ko) 다중 구조를 갖는 도파관 슬롯안테나
CN114204285A (zh) 一种具有高增益低旁瓣电平特性的毫米波阵列天线
CN1985406A (zh) 微带阵列天线
CN113140916B (zh) 一种多层脊波导天线馈电结构
CN213520331U (zh) 一种低剖面高效率双线极化天线阵

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20040922

Termination date: 20141229

EXPY Termination of patent right or utility model