CN1291253A - 泡沫复合驱油方法 - Google Patents

泡沫复合驱油方法 Download PDF

Info

Publication number
CN1291253A
CN1291253A CN98813947.2A CN98813947A CN1291253A CN 1291253 A CN1291253 A CN 1291253A CN 98813947 A CN98813947 A CN 98813947A CN 1291253 A CN1291253 A CN 1291253A
Authority
CN
China
Prior art keywords
accordance
polymer
foam
oil
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN98813947.2A
Other languages
English (en)
Other versions
CN1093589C (zh
Inventor
王德民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daqing Petroleum Administration Bureau
Original Assignee
Daqing Petroleum Administration Bureau
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daqing Petroleum Administration Bureau filed Critical Daqing Petroleum Administration Bureau
Publication of CN1291253A publication Critical patent/CN1291253A/zh
Application granted granted Critical
Publication of CN1093589C publication Critical patent/CN1093589C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/92Compositions for stimulating production by acting on the underground formation characterised by their form or by the form of their components, e.g. encapsulated material
    • C09K8/94Foams
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/58Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Hydrogenated Pyridines (AREA)
  • Absorbent Articles And Supports Therefor (AREA)

Abstract

本发明涉及一种泡沫复合驱油方法,该方法包括:向地下含油层注入一种聚合物水溶液作为前置段塞;周期性地同时或交替注入一种非凝析气体和一种包括碱、表面活性剂以及聚合物的起泡组合物水溶液以在地下形成复合泡沫或周期性地注入该气体与所述的水溶液在地面预先形成的复合泡沫;注入一种聚合物水溶液作为保护段塞,然后进行后续水驱。

Description

泡沫复合驱油方法 发明领域 本发明涉及一种提高原油采收率的方法, 特别涉及一种泡沫复 合驱油方法。 发明背景 目前国内外的许多油田都采用注水幵发的方式幵采原油, 但由 于储层的非均质性以及不利的油水流度比, 水驱后仍有大量的剩余 油残留在地下。 为了幵采这些剩余油, 除了采用加密井等措施以外, 各种提高原油采收率的新方法( E0R ) 已逐步由室内研究过渡到矿 场实践, 并在世界上许多油田得到广泛应用。 在三次采油新技术中, 化学驱仍然是具有很大发展前途的方法之一。 在化学驱中, 复合驱 的应用日趋广泛, 并由砂岩储层扩大到碳酸盐岩储层。 在操作和质 量控制方面正在不断地加以完善。 此外, 为提高化学驱的效果及降 低生产费用, 开发研究了各种化学复合驱方法, 如: 碱-聚合物驱, 表面活性剂-碱驱, 表面活性剂-聚合物驱等二元复合驱, 以及碱 -表面活性剂 -聚合物的三元复合驱。 通过各种化学剂的协同作 用, 不仅可以降低化学剂的用量, 而且比单一化学驱或二元复合驱 具有更高的原油采收率。 对于这种三元复合驱油方法, 不仅进行了 广泛的室内机理研究, 而且在矿场进行了先导性试验, 已经取得较 为明显的效果, 其驱油机理主要为: 一方面三元复合体系中聚合物 的存在可使驱替相的粘度增加, 从而降低了油水之间的流度比, 扩 大了波及体积; 另一方面, 碱与表面活性剂二者的协同效应可使油 水之间形成超低界面张力, 使原油更容易从岩石矿物表面剥离, 从 而提高了驱油效率, 最终使采收率得到大幅度提高, 这方面的文献 可参见 SPE24144 , SPE21028 , SPE17538。
为了提高封堵高渗透层或贼层的能力, 人们经过了大量研究发 现, 泡沫要比聚合物或凝胶具有更好的进人并降低高渗透层渗透性 的性质, 其中泡沫一般又可分为普通泡沫和增强泡沫两类。 普通泡 沫一般是在注入的气体中加人表面活性剂, 使之在地面或地下生成 泡沫。 如 USP5363915提供了一种应用非离子表面活性剂、 非凝析气 和水形成的泡沫来提高原油采收率的技术, 该泡沫性质稳定, 可在 地下形成或在地面预先形成, 对含轻质油的碳酸盐地层应用最佳, 此外, USP5074358中介绍了其它形式的稳定泡沫。 另一类泡沫为增 强泡沫, 是指除表面活性剂外, 还存在一种使粘度增加的化学剂组 分, 例如: USP5307878利用聚合物增强泡沫来提高泡沫的稳定性和 减少气体锥进(指进) , 该聚合物增强泡沫就是由聚合物、 水性溶 剂、 表面活性剂和气体组成。 USP512947是利用聚合物增强泡沫处 理裂缝性地层来提高液态烃类的采收率。 所述的泡沫也是由聚合 物、 表面活性剂、 水性溶剂和气体组成。 泡沬将优先进入地层中存 在的裂缝, 但是, 上述泡沫提高原油采收率方法都是以提高驱替剂 的波及系数为目的, 泡沫中的化学剂组分并不能象三元体系那样与 原油形成超低界面张力, 因此,使最终的原油采收率一般在 50 ~ 60 %之间, 而三元复合驱油方法中, 聚合物的调剖能力比泡沫差很多, 从而限制了波及效率的提高, 驱替液仍然较容易地在高渗透层突破 和窜流, 最终原油采收率一般仍在 60 %左右。 因此, 有必要研究一 种充分发挥泡沫驱和三元复合驱协同优势的驱油方法, 进一步提高 地下含油层的原油采收率, 将残留在含油饱和度较高的低渗透层的 原油和注入水波及到而未能采出的原油一起采出至地面。 发明目的 本发明目的是针对三元复合驱油方法中波及系数不高及泡沫驱 中洗油效率较低的缺点, 充分发挥三元复合驱油方法的高洗油效率 和泡沫驱油方法中高波及效率的优势, 采用气体与三元复合体系同 时或交替注入方式在地面或地下形起泡沫, 来提高地下含油层的原 油采收率。 发明概述 本发明涉及一种提高地下含油层原油采收率的方法, 特别涉及 一种泡沫复合驱油方法, 该方法包括:
( 1 ) 向地下含油层注入一种聚合物水溶液作为前置段塞; ( 2 )周期性地同时或交替注入一种非凝析气体和一种起泡组 合物水溶液以在地下形成复合泡沫或周期性地注入该气体与所述的 水溶液在地面预先形成的复合泡沫, 所述的起泡组合物水溶液包括 碱、 表面活性剂以及聚合物;
( 3 ) 注入一种聚合物水溶液作为保护段塞。 发明的详细描述 本发明涉及一种提高地下含油层原油采收率的方法, 特别涉及 一种泡沫复合驱油方法, 该方法包括:
( 1 ) 向地下含油层注入一种聚合物水溶液作为前置段塞; ( 2 )周期性地同时或交替注人一种非凝析气体和一种起泡组 合物水溶液以在地下形成复合泡沫或周期性地注入该气体与所述的 水溶液在地面预先形成的复合泡沫, 所述的起泡组合物水溶液包括 碱、 表面活性剂以及聚合物;
( 3 ) 注入一种聚合物水溶液作为保护段塞。
在现有技术中, 不管是二元驱油, 或是三元复合驱油, 由于高 渗透层和 /或贼层的存在, 都不同程度地会发生锥进 (指进) 现象。 本发明的发明人经过大量的研究后发现, 在将复合驱油体系加入到 含油层中以进行驱油之前, 加人一种聚合物水溶液作为前置段塞, 一方面, 该聚合物水溶液将优先进人地层中的高渗透层和 /或贼层, 使其渗透率降低, 从而防止随后加人的泡沫中的气体沿高渗透通道 发生气窜; 另一方面, 聚合物分子在岩石表面吸附滞留, 可有效减 少后续泡沫中的各种有效物质在岩石表面吸附而造成的损失。
按照本发明的方法, 其中, 作为前置段塞的聚合物为分子量为 300 一 30 , 000道尔顿的水溶性生物聚合物和 /或合成聚合物。作为 生物聚合物, 包括黄原胶、 瓜耳胶( guar ); 作为合成聚合物, 包 括聚丙烯酰胺、 部分水解的聚丙烯酰胺在内的聚合物。
按照本发明的方法, 在向地下油层中加入作为前置段塞的聚合 物水溶液后, 周期性地同时或交替注人一种非凝析气体和一种包括 碱、 表面活性剂以及聚合物的起泡组合物水溶液以在地下形成复合 泡沫; 或是周期性地注入该气体与所述的水溶液在地面预先形成的 复合泡沫。 由于事先注入了作为前置段塞的聚合物水溶液, 因此, 同时或交替注入非凝析性气体和起泡溶液而在地下形成的泡沫或直 接注入非凝析性气体和起泡溶液在地面形成的泡沫在地层中的渗透 比较均匀, 不会发生锥进 (指进)现象。 本发明方法中所使用的非 凝析气体包括氮气、 天然气、 甲烷气、 空气或其混合物。 按照本发明的方法, 其中所使用的起泡组合物水溶液包括碱、 表面活性剂和聚合物。 所述的起泡组合物水溶液具有的最显著的特 点是可与原油形成超低界面张力并具有较高的粘度, 聚合物的加入 可使驱替相粘度增加, 降低了流度比, 扩大波及系数。 碱与表面活 性剂的协同作用可使该体系与原油形成超低界面张力, 其油水界面 张力值达到 l (T3mN/m数量级, 为超低界面张力体系。 因此可以提高 洗油效率, 使最终原油采收率大幅度提高。 按照本发明的泡沫复合 驱油方法, 一般可使最终原油采收率提高 25 ~ 30 %。
按照本发明, 所述的起泡组合物水溶液中, 以组合物水溶液的 总重量为基准计, 包括 0. 5-1. 5% (重量) 的碱, 0. 05 - 0. 5% (重 量)的表面活性剂和 0. 05 - 0. 5% (重量)的聚合物。 其中所述的碱 包括氢氧化钠、 氢氧化钾、 碳酸钾、 碳酸氢钾、 碳酸钠和 /或碳酸氢 钠, 优选为氢氧化钠和碳酸钠; 其中所述的表面活性剂包括离子型 表面活性剂或非离子型表面活性剂,所述的离子型表面活性剂包括 α -烯基磺酸盐, C12 - 16烷基硫酸钠, (:14 - 18垸基苯磺酸钠, 所述的非 离子型表面活性剂包括三乙醇胺;其中所述的聚合物为分子量为 300 - 30 , 000道尔顿的水溶性生物聚合物和 /或合成聚合物, 所述的 生物聚合物包括黄原胶、 瓜耳胶, 所述的合成聚合物包括聚丙烯酰 胺、 部分水解的聚丙烯酰胺。
按照本发明方法, 其中所使用的起泡组合物中, 所述的离子型 或非离子型表面活性剂与碱产生协同作用, 因而能与原油形成 10— 3mN/m数量级的超低界面张力, 并具有很强的发泡能力。
本发明方法的第三个步骤是注入聚合物保护段塞, 随后进行水 驱。 注入保护段塞的目的是对形成的泡沫进行有效的保护, 减少后 续水驱对泡沫的稀释破坏作用。 实践证明, 按照本发明方法注入所 述的聚合物保护段塞能充分地发挥泡沫的作用。 按照本发明方法, 作为保护段塞的聚合物为分子量为 300 - 30 , 000道尔顿的水溶性生物聚合物和 /或合成聚合物,其中所述的 生物聚合物包括黄原胶、 瓜耳胶, 所述的合成聚合物包括聚丙烯酰 胺、 部分水解的聚丙烯酰胺。
按照本发明方法, 进一步包括在注入所述的作为保护段塞的聚 合物水溶液后, 进行后续水驱的步骤。
本发明泡沫复合驱油方法的机理为: 一方面, 所形成的泡沫优 先进人并封堵地层中的高渗透孔隙, 使驱替流体(包括泡沫)转向 并进入低渗透层带, 扩大波及系数; 另一方面, 所注入的三元复合 体系与原油可形成超低界面张力, 使原油更容易从岩石表面剥离, 提高了洗油效率并具有一定的稳泡作用, 同时利用气体的上浮作 用, 提高上部中低渗透层原油动用程度, 从而使烃类, 即原油的采 收率得到大幅度提高。
本发明方法所使用的三元复合体系中的聚合物对由所述的三元 复合体系所形成的泡沫具有稳定作用。 作为本发明的一个实施例, 采用 0RS - 41作为表面活性剂, 采用 NaOH作为碱, 以不同用量的 部分水解聚丙烯酰胺( HPAM )作为聚合物配制三元复合体系并测定 了由这些三元复合体系产生的泡沫的半衰期。 结果如下表 1所示: 聚合物对泡沫的稳定性的影响
Figure IMGF000008_0001
如表 1 所示, 聚合物的加人使由组合物产生的泡沫的半衰期延 聚合物的加入量越大, 则泡沫的半衰期越长, 即泡沫的稳定性 越好。
在按照本发明的方法使用本发明的泡沫复合驱油体系进行采油 时, 将根据采油区的油藏条件如非均质、 化学剂的损耗情况以及经 济成本等来确定各种组分的加入量。 一般来说, 气体占整个体系的 孔隙的体积(地下条件)一般不低于 50 % , 液体用量为占整个体系 的孔隙的体积的 1 0 ~ 50 % , 聚合物前置段塞和保护段塞的用量为 分别占整个体系的孔隙的体积 2 % ~ 8 %和 1 0 % ~ 45 %。
根据油藏地质特点和井网情况, 可以减少聚合物前置段塞和保 护段塞的用量, 甚至可以取消这两个段塞或其中的某一个段塞。
本发明可有效提高地下含油层的原油采收率, 在水驱基础上, 一般可提高采收率 25 ~ 30 % 00 I P (原始地质储量) 。
以下结合实施例对本发明进行进一步的说明。 但应该理解的 是, 本发明并不限于这些实施例。 实施例 在二维人造岩心 ( I )上进行了驱油实验, 岩心几何尺寸为 4. 5 cm X 4. 5 cm χ 30cm , 岩心是石英砂经环氧树脂胶结而成, 平均 渗透率为 1 μ>η2左右, 共分三层, 正韵律分布, 渗透率变异系数为 0. 72, 原始含水矿化度为 6778mg/L, 原油采用矿场脱气脱水原油, 驱替水矿化度为 370 Qmg/L 。 实施例 1 制备组成如下的起泡组合物: 组分 用量(% (重量) ) 垸基芳烃磺酸盐 1 0. 3
水解聚丙烯酰胺 2 0. 12
NaOH 1. 0 水 3 余量
1商品名为 0RS- 41的表面活性剂, 美国 ICT公司产品。
2商品名为 1275A的聚合物, 分子量为 1700万, 水解度为 25 %, 英 国联合胶体公司产品。
3水的矿化度为 918. 3½g/L。 采用如上所述的人造岩心( I )进行驱油实验。 岩心用水饱和 后进行油驱水, 使岩心的原始含油达到饱和, 然后水驱油至岩心出 口含水 98 %时, 幵始在岩心出口压力为 8. OMPa的情况下注入上述 的起泡组合物水溶液和甲烷气体所形成的泡沫, 其中, 起泡组合物 水溶液的注入量为 0. 3PV, 气相为 Q. 36PV, 然后注入 Q. 283PV的浓 度为 60Gmg/L钓聚合物( 1275A )水溶液保护段塞, 最后水驱至岩 心出口含水 98 %为止, 实验结果如表 2所示: 泡沫驱实验结果 石 、渗透 孔隙度 原始含油 水驱采 泡沫驱采 总采收气液比 率 (kw μιη2) (φ) (%) 饱和度 (%) 收率 (%) 收率 (%) 率 (%)
0. 725 20. 1 66. 5 39. 5 29. 5 69. 0 1. 20 从表 2结果可见, 泡沫复合驱油方法可在水驱基础上提高采收 率 30 %左右, 总采收率约 70 %。 实施例 2 与实例 1 的实验过程基本一致, 有两个条件不同, 一是岩心出 口压力为常压; 二是气体与复合体系分 11个段塞注入, 气液比保持 在 1. 0。 实验结果如表 3所示: 表 3 气液交替注入实验结果
Figure IMGF000011_0001
从表 3结果可见, 液气交替注人方式仍能在水驱基础上提高采 收率 33. 5 %, 总采收率达到 73. 6 % , 说明在甲垸与起泡组合物水 溶液交替注入的情况下, 能在岩心中形成结构和性质都很好的复合 泡沫, 与在岩心前发泡具有相似的作用。
下面的实施例所采用的模型为两维纵向非均质复合韵律物理模 型( I I )。 模型( Π )的几何尺寸为 4. 5cm χ 4. 5cm χ 30cm , 模 型是石英砂经环氧树脂胶结而成, 平均渗透率为 Ιμηι2左右, 共分五 层, 中间无不渗透性隔层, 渗透率变异系数为 0. 61 , 从上至下各层 的渗透率分别为 190 X 10 m2、 650 X 10— 3μπι2、 390 X 10— 3μπι2、 2700 X 10 - 3μω 1100 X 1 (Τ 3μηι2。 饱和模型用水为人工合成模拟 盐水, 矿化度为 6778mg/L , 实验用油采用矿场脱气脱水原油, 配制 起泡组合物用水及驱替水为人工合成盐水, 矿化度为 37QQmg/L。 配 制聚合物水溶液盐水为人工合成盐水, 矿化度为 918. 3½g/L。 实验 温度为 45 °C。 实施例 3 采用组成与实施例 1所述相同的起泡组合物, 在如上所述的人 造岩心模型( Π )进行驱油实验。 岩心用水饱和后进行油驱水, 使 岩心的原始含油达到饱和, 然后用水以 lm/d的速度驱油至模型出口 含水 98 %, 计算水驱采收率。 然后在岩心出口压力为 8. OMPa的情 况下以约 lm/d的速度注入上述的起泡组合物水溶液和天然气所形成 的泡沫, 其中, 起泡组合物水溶液的注入量为 0. 3PV , 气相为 0. 36PV , 然后注人 0. 283PV的浓度为 600mg/L的聚合物( 1275A ) 水溶液保护段塞, 最后水驱至岩心出口含水 98 %为止, 实验结果如 下表 所示: 表 4 泡沫驱实验结果
Figure IMGF000012_0001
上述实验结果说明, 本发明尤其适合于正韵律地层。 实施例 4 釆用组成与实施例 1所述相同的起泡组合物, 在如上所述的人 造岩心模型 ( Π )进行驱油实验。 岩心用水饱和后进行油驱水, 使 岩心的原始含油达到饱和, 然后用水以 lm/d的速度驱油至模型出口 含水 98 %, 计算水驱采收率。 然后在岩心出口压力为 8. OMPa的情 况下,交替注入所述的起泡组合物和所述的天然气: ( 1 )注入 Q. 1PV 的起泡组合物和 0. 05PV的天然气; ( 2 ) 注入 0. 05PV的起泡组合 物和 0. 05PV的天然气; ( 3 )注入 0. 05PV的起泡组合物和 0. 05PV 的天然气; ( 4 ) 注人 0. 05PV的起泡组合物和 0. 05PV的天然气; ( 5 ) 注入 0. 05PV 的起泡组合物和 0. 1PV 的天然气。 然后注人 0. 283PV的浓度为 600mg/L的聚合物 ( 1275A )水溶液保护段塞, 最 后水驱至岩心出口含水 98 %为止, 实验结果如下表所示: 泡沫驱实验结果
Figure IMGF000013_0001
如上所述,采用本发明的方法可使原油的采收率可提高 25 - 30 % , 是适合于在非均质性油藏地质条件下提高原油采收率的一种非 常有效的方法。 ·
以上通过实施例对本发明进行了解释和说明, 但本发明并不限 于这些实施例。 应该理解的是, 在不偏离本发明的精神和发明实质 的前提下, 本领域的普通技术人员可以对本发明进行各种各样的修 改和补充。

Claims (16)

  1. 权 利 要 求
    1、 一种泡沫复合驱油方法, 包括:
    ( 1 ) 向地下含油层注入一种聚合 l水溶液作为前置段塞;
    .( 2 )周期性地同时或交替注人一种非凝析气体和一种起泡组 合物水溶液以在地下形成复合泡沫或周期性地注人该气体与所述的 水溶液在地面预先形成的复合泡沫, 所述的起泡组合物水溶液包括 碱、 表面活性剂以及聚合物;
    ( 3 ) 注入一种聚合物水溶液作为保护段塞。
    2、 按照权利要求 1所述的方法, 进一步包括后续水驱的步骤。
    3、按照权利要求 1所述的方法,其中所述的作为前置段塞的聚合物 为分子量为 3QG - 30, 000道尔顿的水溶性生物聚合物和 /或合成 聚合物。
    4 、 按照权利要求 3所述的方法, 其中所述的生物聚合物包括黄原 胶、 瓜耳胶。
    5、按照权利要求 3所述的方法, 其中所述的合成聚合物包括聚丙烯 酰胺、 部分水解的聚丙烯酰胺。
    6、 按照权利要求 1所述的方法, 其中所述的非凝析气体包括氮气、 天然气、 甲垸气、 空气或其混合物。
    7、按照权利要求 1所述的方法, 其中所述的起泡组合物水溶液包括 0. 5-1. 5% (重量)的碱, 0. 05 - 0. 5% (重量)的表面活性剂和 0. 05 - 0. 5% (重量) 的聚合物, 所述的百分比以组合物的总重量为基准 计。
    8、按照权利要求 7所述的方法, 其中所述的起泡水溶液为超低界面 张力体系, 其与所驱替的地下原油之间的界面张力值小于等于
    10— 3mN/m 。
    9、 按照权利要求 7所述的方法, 其中所述的碱包括氢氧化钠、 氢氧 化钾、 碳酸钾、 碳酸倾钾、 碳酸钠和 /或碳酸氢钠。
    10、 按照权利要求 7所述的方法, 其中所述的表面活性剂包括离子 型表面活性剂或非离子型表面活性剂。
    11、按照权利要求 7所述的方法,其中所述的聚合物为分子量为 300 - 30 , 000道尔顿的水溶性生物聚合物和 /或合成聚合物。
    12、按照权利要求 11所述的方法,其中所述的生物聚合物包括黄原 胶、 瓜耳胶。
    1 3、按照权利要求 11所述的方法,其中所述的合成聚合物包括聚丙 烯酰胺、 部分水解的聚丙烯酰胺。
    14、 按照权利要求 1所述的方法, 其中所述的作为保护段塞的聚合 物为分子量为 3QQ - 30 , 000道尔顿的水溶性生物聚合物和 /或合 成聚合物。
    15、按照权利要求 14所述的方法,其中所述的生物聚合物包括黄原 胶、 瓜耳胶。
    16、按照权利要求 14所述的方法,其中所述的合成聚合物包括聚丙 烯酰胺、 部分水解的聚丙烯酰胺。
    17、 按照权利要求 1所述的方法, 其中所述的气体占孔隙体积的至 少 50 %, 所述的起泡水溶液占孔隙体积的 10 - 50 %。
CN98813947A 1998-04-06 1998-04-06 泡沫复合驱油方法 Expired - Lifetime CN1093589C (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN1998/000057 WO1999051854A1 (fr) 1998-04-06 1998-04-06 Procede de recuperation du petrole par injection d'une solution aqueuse moussante

Publications (2)

Publication Number Publication Date
CN1291253A true CN1291253A (zh) 2001-04-11
CN1093589C CN1093589C (zh) 2002-10-30

Family

ID=4575046

Family Applications (1)

Application Number Title Priority Date Filing Date
CN98813947A Expired - Lifetime CN1093589C (zh) 1998-04-06 1998-04-06 泡沫复合驱油方法

Country Status (7)

Country Link
US (1) US6439308B1 (zh)
CN (1) CN1093589C (zh)
AU (1) AU6819398A (zh)
CA (1) CA2327744C (zh)
GB (1) GB2352260B (zh)
NO (1) NO322769B1 (zh)
WO (1) WO1999051854A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102434137A (zh) * 2011-12-16 2012-05-02 中国石油天然气股份有限公司 超低界面张力耦合式空气泡沫驱油方法
CN102618246A (zh) * 2012-03-08 2012-08-01 中国石油天然气股份有限公司 一种适用于油田开发的泡沫复合驱油方法
CN103225495A (zh) * 2013-03-14 2013-07-31 中国石油化工股份有限公司 一种由近及远逐段驱替方法
CN106958437A (zh) * 2017-05-16 2017-07-18 东北石油大学 一种油井压裂提高采收率新方法
CN108729893A (zh) * 2018-03-22 2018-11-02 中国石油化工股份有限公司 一种提高稠油油藏采收率的泡沫复合冷采方法
CN112240173A (zh) * 2019-07-18 2021-01-19 中国石油化工股份有限公司 一种基于泡沫循环的油气井冲砂洗井方法及用于油气井冲砂洗井的消泡液和起泡液
CN114517657A (zh) * 2020-11-20 2022-05-20 中国石油化工股份有限公司 一种用于高温高盐底水油藏的二元复合控水工艺

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7013972B2 (en) 2001-04-24 2006-03-21 Shell Oil Company In situ thermal processing of an oil shale formation using a natural distributed combustor
US6550542B2 (en) * 2001-07-17 2003-04-22 Conocophillips Company Fluid profile control in enhanced oil recovery
US7100994B2 (en) 2001-10-24 2006-09-05 Shell Oil Company Producing hydrocarbons and non-hydrocarbon containing materials when treating a hydrocarbon containing formation
US7055602B2 (en) * 2003-03-11 2006-06-06 Shell Oil Company Method and composition for enhanced hydrocarbons recovery
CA2451641A1 (en) * 2004-01-09 2005-07-09 Laurie A. Hodgins Method of placing blocking gel in gas producing formations in order to reduce water influx into the well bore
US20060076145A1 (en) * 2004-10-13 2006-04-13 Weatherford/Lamb, Inc. Gas lift using a gas/oil mixer
CN1304830C (zh) * 2005-03-30 2007-03-14 大庆石油学院 石英砂环氧树脂胶结非均质模型制作方法
US7597147B2 (en) 2006-04-21 2009-10-06 Shell Oil Company Temperature limited heaters using phase transformation of ferromagnetic material
WO2008051833A2 (en) 2006-10-20 2008-05-02 Shell Oil Company Heating hydrocarbon containing formations in a checkerboard pattern staged process
US20080171672A1 (en) * 2006-12-21 2008-07-17 Cano Manuel Luis Method and composition for enhanced hydrocarbons recovery
US7950453B2 (en) 2007-04-20 2011-05-31 Shell Oil Company Downhole burner systems and methods for heating subsurface formations
CN101126312B (zh) * 2007-08-17 2013-01-23 中国科学院武汉岩土力学研究所 波动石油开采法
RU2496067C2 (ru) 2007-10-19 2013-10-20 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Криогенная обработка газа
CA2713968C (en) 2008-02-07 2016-04-12 Shell Internationale Research Maatschappij B.V. Method and composition for enhanced hydrocarbons recovery
MY155522A (en) 2008-02-07 2015-10-30 Shell Int Research Method and composition for enhanced hydrocarbons recovery
MX2010008646A (es) * 2008-02-07 2010-08-31 Shell Int Research Metodo y composicion para la recuperacion mejorada de hidrocarburos.
WO2009100224A1 (en) * 2008-02-07 2009-08-13 Shell Oil Company Method and composition for enhanced hydrocarbons recovery
EP2240551A1 (en) * 2008-02-07 2010-10-20 Shell Internationale Research Maatschappij B.V. Method and composition for enhanced hydrocarbons recovery
CN102449103B (zh) 2009-04-16 2013-11-06 国际壳牌研究有限公司 从极高盐度的高温地层中强化烃采收的方法和组合物
EP2261298A1 (en) 2009-06-10 2010-12-15 Shell Internationale Research Maatschappij B.V. Method for enhanced hydrocarbon recovery
EA021454B1 (ru) 2009-07-09 2015-06-30 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Способ и композиция для повышения добычи углеводородов из пласта, содержащего сырую нефть с особыми группами растворимости и семействами химических соединений
EA201290780A1 (ru) 2010-02-12 2013-02-28 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Способ и композиция для интенсификации добычи нефти
US8701769B2 (en) 2010-04-09 2014-04-22 Shell Oil Company Methods for treating hydrocarbon formations based on geology
CN103025996B (zh) 2010-05-22 2016-02-03 斯特潘公司 从含油地层中采油的方法
US20120067571A1 (en) * 2010-09-17 2012-03-22 Shell Oil Company Methods for producing oil and/or gas
US20140005082A1 (en) 2010-12-29 2014-01-02 Julian Richard BARNES Method and composition for enhanced hydrocarbons recovery from a formation containing a crude oil
WO2012091881A2 (en) 2010-12-29 2012-07-05 Shell Oil Company Method and composition for enhanced hydrocarbons recovery from a formation containing a crude oil
RU2471041C2 (ru) * 2011-03-02 2012-12-27 Валерий Владимирович Бодров Способ очистки поверхностей от нефти и нефтепродуктов
WO2012143433A1 (en) 2011-04-20 2012-10-26 1/7Shell Internationale Research Maatschappij B.V. Method and composition for enhanced hydrocarbon recovery
WO2012158645A1 (en) 2011-05-16 2012-11-22 Stepan Company Surfactants for enhanced oil recovery
CN103562341A (zh) 2011-05-27 2014-02-05 国际壳牌研究有限公司 强化烃采收的组合物和方法
MY175582A (en) 2011-08-31 2020-07-01 Shell Int Research Composition and method for enhanced hydrocarbon recovery
US20140262275A1 (en) * 2013-03-15 2014-09-18 Chevron U.S.A. Inc. Alkali polymer surfactant sandwich
US9605198B2 (en) 2011-09-15 2017-03-28 Chevron U.S.A. Inc. Mixed carbon length synthesis of primary Guerbet alcohols
CN102650206A (zh) * 2012-04-25 2012-08-29 中国石油天然气股份有限公司 一种提高非均质油层采收率的方法
CN102828733B (zh) * 2012-09-04 2015-06-03 北京科技大学 一种使用泡沫复合体系开采油田剩余原油的方法
EP2738235A1 (en) 2012-11-29 2014-06-04 Shell Internationale Research Maatschappij B.V. Composition and process for demulsifying oil/water emulsions
EP2738234A1 (en) 2012-11-29 2014-06-04 Shell Internationale Research Maatschappij B.V. Composition and process for demulsifying oil/water emulsions
CN105026514A (zh) * 2013-03-06 2015-11-04 国际壳牌研究有限公司 内烯烃磺酸盐组合物
EP2781581A1 (en) 2013-03-21 2014-09-24 Shell Internationale Research Maatschappij B.V. Composition and process for demulsifying oil/water emulsions
EP2781582A1 (en) 2013-03-21 2014-09-24 Shell Internationale Research Maatschappij B.V. Composition and process for demulsifying oil/water emulsions
US20160230079A1 (en) 2013-09-26 2016-08-11 Shell Oil Company Composition and method for enhanced hydrocarbon recovery
US20160237337A1 (en) 2013-09-26 2016-08-18 Shell Oil Company Composition and method for enhanced hydrocarbon recovery
US20160215200A1 (en) 2013-09-26 2016-07-28 Shell Oil Company Composition and method for enhanced hydrocarbon recovery
CN103497751A (zh) * 2013-10-12 2014-01-08 陕西延长石油(集团)有限责任公司研究院 一种高效空气泡沫驱油体系
CN103589414B (zh) * 2013-11-21 2016-12-07 中国石油大学(华东) 锆冻胶分散体复合驱油体系及其制备方法
CN104060974B (zh) * 2014-03-27 2016-08-24 上海井拓石油开发技术有限公司 等流度驱油与调剖一体化技术
US10196555B2 (en) * 2014-10-30 2019-02-05 Chevron U.S.A. Inc. Subterranean producing zone treatment
CN105985483A (zh) * 2015-02-05 2016-10-05 中国石油天然气股份有限公司 一种包裹无机核的聚合物微粒及其制备方法和应用
CN104762078B (zh) * 2015-03-18 2017-12-15 西南石油大学 一种多功能空气泡沫驱用发泡体系
CN104989344B (zh) * 2015-06-04 2017-05-10 中国石油大学(华东) 一种确定氮气泡沫驱油过程中气体窜流程度的方法
CN108349832B (zh) 2015-10-19 2021-01-15 国际壳牌研究有限公司 用于生产苯乙烯的方法
CA3019768C (en) 2016-04-03 2022-05-03 Stepan Company Enhanced oil recovery methods
CN106220781A (zh) * 2016-07-21 2016-12-14 西安长庆化工集团有限公司 一种调剖用聚合物微球及其制备方法
WO2019076794A1 (en) 2017-10-18 2019-04-25 Shell Internationale Research Maatschappij B.V. SURFACE COMPOSITION
AR114937A1 (es) 2017-12-05 2020-11-11 Shell Int Research Un método para producir un sulfato de propoxi alcohol
CN110644956A (zh) * 2019-09-17 2020-01-03 中国石油天然气股份有限公司 一种提高低渗透油藏co2驱效果的方法
CN111648741A (zh) * 2020-06-02 2020-09-11 中国石油化工股份有限公司 一种中渗油藏的化学驱方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3330346A (en) * 1965-01-27 1967-07-11 Union Oil Co Method of treating a subterranean formation with a foam bank
US4044833A (en) * 1976-06-08 1977-08-30 Phillips Petroleum Company Acid foam fracturing
US4195689A (en) * 1978-11-06 1980-04-01 Cities Service Company Chemical waterflood process development
US4291765A (en) * 1979-08-02 1981-09-29 Mitchell Energy Corporation Water flooding process using multiple fluids
US4495995A (en) * 1980-05-19 1985-01-29 Phillips Petroleum Company Method for plugging and subsequent treatment of subterranean formations
US4513821A (en) * 1984-02-03 1985-04-30 Mobil Oil Corporation Lowering CO2 MMP and recovering oil using carbon dioxide
US4606407A (en) 1984-11-29 1986-08-19 Mobil Oil Corporation Programmed gelation of polymers for oil reservoir permeability control
US4609044A (en) * 1985-05-20 1986-09-02 Shell Oil Company Alkali-enhanced steam foam oil recovery process
US4676316A (en) * 1985-11-15 1987-06-30 Mobil Oil Corporation Method and composition for oil recovery by gas flooding
US4863618A (en) * 1986-11-07 1989-09-05 Shell Oil Company Oil recovery with water containing carbonate salt, CO2, and surfactant
US4813483A (en) * 1988-04-21 1989-03-21 Chevron Research Company Post-steam alkaline flooding using buffer solutions
US4911241A (en) * 1989-01-27 1990-03-27 Dowell Schlumberger Incorporated Constant viscosity foam
SU1760095A1 (ru) 1989-10-25 1992-09-07 Государственный Научно-Исследовательский И Проектный Институт Нефтяной Промышленности "Укргипрониинефть" Пенообразующий состав дл удалени жидкости с забо скважины
US5363915A (en) 1990-07-02 1994-11-15 Chevron Research And Technology Company Enhanced oil recovery technique employing nonionic surfactants
US5074358A (en) 1990-07-03 1991-12-24 Alberta Oil Sands Technology And Research Authority Surfactant-stabilized foams for enhanced oil recovery
US5129457A (en) 1991-03-11 1992-07-14 Marathon Oil Company Enhanced liquid hydrocarbon recovery process
US5199490A (en) * 1991-11-18 1993-04-06 Texaco Inc. Formation treating
US5307878A (en) 1993-01-07 1994-05-03 Marathon Oil Company Polymer enhanced foams for reducing gas coning
US5363914A (en) * 1993-03-25 1994-11-15 Exxon Production Research Company Injection procedure for gas mobility control agents
US5638902A (en) * 1995-03-30 1997-06-17 Martin; Waylan C. Water flow obstruction process
US5614473A (en) * 1995-05-22 1997-03-25 Rhone-Poulenc Inc. Use of high purity imidazoline based amphoacetate surfactant as foaming agent in oil wells
US5834406A (en) * 1996-03-08 1998-11-10 Marathon Oil Company Foamed gel for permeability reduction or mobility control in a subterranean hydrocarbon-bearing formation
US6022834A (en) * 1996-05-24 2000-02-08 Oil Chem Technologies, Inc. Alkaline surfactant polymer flooding composition and process
GB2318814B (en) * 1996-11-01 2001-02-21 Sofitech Nv Foamable gel composition

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102434137A (zh) * 2011-12-16 2012-05-02 中国石油天然气股份有限公司 超低界面张力耦合式空气泡沫驱油方法
CN102434137B (zh) * 2011-12-16 2014-08-06 中国石油天然气股份有限公司 超低界面张力耦合式空气泡沫驱油方法
CN102618246A (zh) * 2012-03-08 2012-08-01 中国石油天然气股份有限公司 一种适用于油田开发的泡沫复合驱油方法
CN102618246B (zh) * 2012-03-08 2014-07-23 中国石油天然气股份有限公司 一种适用于油田开发的泡沫复合驱油方法
CN103225495A (zh) * 2013-03-14 2013-07-31 中国石油化工股份有限公司 一种由近及远逐段驱替方法
CN103225495B (zh) * 2013-03-14 2016-01-13 中国石油化工股份有限公司 一种由近及远逐段驱替方法
CN106958437A (zh) * 2017-05-16 2017-07-18 东北石油大学 一种油井压裂提高采收率新方法
CN106958437B (zh) * 2017-05-16 2019-03-15 东北石油大学 一种油井压裂提高采收率新方法
CN108729893A (zh) * 2018-03-22 2018-11-02 中国石油化工股份有限公司 一种提高稠油油藏采收率的泡沫复合冷采方法
CN112240173A (zh) * 2019-07-18 2021-01-19 中国石油化工股份有限公司 一种基于泡沫循环的油气井冲砂洗井方法及用于油气井冲砂洗井的消泡液和起泡液
CN112240173B (zh) * 2019-07-18 2023-06-02 中国石油化工股份有限公司 一种基于泡沫循环的油气井冲砂洗井方法及用于油气井冲砂洗井的消泡液和起泡液
CN114517657A (zh) * 2020-11-20 2022-05-20 中国石油化工股份有限公司 一种用于高温高盐底水油藏的二元复合控水工艺

Also Published As

Publication number Publication date
GB2352260A (en) 2001-01-24
CA2327744C (en) 2004-07-13
GB0024418D0 (en) 2000-11-22
NO322769B1 (no) 2006-12-11
GB2352260B (en) 2002-10-23
AU6819398A (en) 1999-10-25
US6439308B1 (en) 2002-08-27
NO20004970L (no) 2000-10-24
NO20004970D0 (no) 2000-10-02
CA2327744A1 (en) 1999-10-14
WO1999051854A1 (fr) 1999-10-14
CN1093589C (zh) 2002-10-30

Similar Documents

Publication Publication Date Title
CN1093589C (zh) 泡沫复合驱油方法
Wassmuth et al. Polymer flood application to improve heavy oil recovery at East Bodo
Abidin et al. Polymers for enhanced oil recovery technology
US7926561B2 (en) Systems and methods for producing oil and/or gas
CN100591742C (zh) 一种提高油藏原油采收率的方法
CN104213870B (zh) 一种水驱稠油油藏人造泡沫油开采方法
CN101103176A (zh) 用于改进采油的组合物和方法
CN101314710A (zh) 泡沫调驱剂、驱油体系以及驱油方法
US4458760A (en) Oil recovery process for stratified high salinity reservoirs
US20140352958A1 (en) Process for enhancing oil recovery from an oil-bearing formation
Thomas et al. Status and assessment of chemical oil recovery methods
US3915230A (en) Surfactant oil recovery process
US4981176A (en) Method for using foams to improve alkaline flooding oil recovery
CN105315982A (zh) 一种二元复合驱后三相强化泡沫驱油体系
US11718785B2 (en) Enhancing foam stability using allium sativum oil
US4706750A (en) Method of improving CO2 foam enhanced oil recovery process
US20160215201A1 (en) Composition and method for enhanced hydrocarbon recovery
CN112523731B (zh) 一种利用高渗条带开采普通稠油的方法
US4553593A (en) Oil recovery method
CN104277809A (zh) 驱油组合物及其制备方法
CN115851251A (zh) 一种压裂驱油剂及其制备方法和应用
RU2190091C2 (ru) Способ вытеснения пеной
Renqing Development of enhanced oil recovery in Daqing
US4194563A (en) High conformance enhanced oil recovery process
US11739620B1 (en) Methodology to improve the efficiency of gravity drainage CO2 gas injection processes

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20021030