CN1290962C - Nano polishing liquid for high dielectric material strontium barium titanate chemical-mechanical polish - Google Patents
Nano polishing liquid for high dielectric material strontium barium titanate chemical-mechanical polish Download PDFInfo
- Publication number
- CN1290962C CN1290962C CN 200410093370 CN200410093370A CN1290962C CN 1290962 C CN1290962 C CN 1290962C CN 200410093370 CN200410093370 CN 200410093370 CN 200410093370 A CN200410093370 A CN 200410093370A CN 1290962 C CN1290962 C CN 1290962C
- Authority
- CN
- China
- Prior art keywords
- content
- polishing
- nano
- ammonium
- high dielectric
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000005498 polishing Methods 0.000 title claims abstract description 117
- 239000007788 liquid Substances 0.000 title claims abstract description 48
- WOIHABYNKOEWFG-UHFFFAOYSA-N [Sr].[Ba] Chemical compound [Sr].[Ba] WOIHABYNKOEWFG-UHFFFAOYSA-N 0.000 title claims description 10
- 229910002113 barium titanate Inorganic materials 0.000 title claims description 9
- 239000003989 dielectric material Substances 0.000 title abstract description 20
- 239000000126 substance Substances 0.000 claims abstract description 20
- 239000004094 surface-active agent Substances 0.000 claims abstract description 16
- 239000012530 fluid Substances 0.000 claims abstract description 13
- -1 pH regulators Substances 0.000 claims abstract description 10
- 239000003082 abrasive agent Substances 0.000 claims abstract description 5
- 239000002904 solvent Substances 0.000 claims abstract description 4
- 239000000463 material Substances 0.000 claims description 30
- 239000000203 mixture Substances 0.000 claims description 22
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 claims description 18
- 238000000034 method Methods 0.000 claims description 14
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 claims description 12
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical group OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims description 12
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 claims description 12
- AQLJVWUFPCUVLO-UHFFFAOYSA-N urea hydrogen peroxide Chemical compound OO.NC(N)=O AQLJVWUFPCUVLO-UHFFFAOYSA-N 0.000 claims description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 11
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 claims description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 9
- 235000019270 ammonium chloride Nutrition 0.000 claims description 9
- 239000013530 defoamer Substances 0.000 claims description 9
- 239000008367 deionised water Substances 0.000 claims description 8
- 229910021641 deionized water Inorganic materials 0.000 claims description 8
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 7
- YWYZEGXAUVWDED-UHFFFAOYSA-N triammonium citrate Chemical compound [NH4+].[NH4+].[NH4+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O YWYZEGXAUVWDED-UHFFFAOYSA-N 0.000 claims description 7
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims description 6
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 6
- 239000002518 antifoaming agent Substances 0.000 claims description 5
- 229920000555 poly(dimethylsilanediyl) polymer Polymers 0.000 claims description 5
- 229920000058 polyacrylate Polymers 0.000 claims description 5
- 125000005233 alkylalcohol group Chemical group 0.000 claims description 4
- 229910044991 metal oxide Inorganic materials 0.000 claims description 4
- 150000004706 metal oxides Chemical class 0.000 claims description 4
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 3
- 239000004202 carbamide Substances 0.000 claims description 3
- 239000008119 colloidal silica Substances 0.000 claims description 3
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical group O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 2
- 125000005211 alkyl trimethyl ammonium group Chemical group 0.000 claims description 2
- 238000001755 magnetron sputter deposition Methods 0.000 claims description 2
- 229910052710 silicon Inorganic materials 0.000 claims description 2
- 239000010703 silicon Substances 0.000 claims description 2
- 239000000758 substrate Substances 0.000 claims description 2
- 239000003352 sequestering agent Substances 0.000 claims 6
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims 4
- 239000013543 active substance Substances 0.000 claims 3
- 239000003795 chemical substances by application Substances 0.000 claims 3
- 150000001455 metallic ions Chemical class 0.000 claims 3
- 239000004160 Ammonium persulphate Substances 0.000 claims 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical group OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 claims 2
- SYNHCENRCUAUNM-UHFFFAOYSA-N Nitrogen mustard N-oxide hydrochloride Chemical compound Cl.ClCC[N+]([O-])(C)CCCl SYNHCENRCUAUNM-UHFFFAOYSA-N 0.000 claims 2
- LHIJANUOQQMGNT-UHFFFAOYSA-N aminoethylethanolamine Chemical compound NCCNCCO LHIJANUOQQMGNT-UHFFFAOYSA-N 0.000 claims 2
- LDDQLRUQCUTJBB-UHFFFAOYSA-N ammonium fluoride Chemical compound [NH4+].[F-] LDDQLRUQCUTJBB-UHFFFAOYSA-N 0.000 claims 2
- 235000011114 ammonium hydroxide Nutrition 0.000 claims 2
- 235000019395 ammonium persulphate Nutrition 0.000 claims 2
- 150000001450 anions Chemical class 0.000 claims 1
- 238000000151 deposition Methods 0.000 claims 1
- 230000008021 deposition Effects 0.000 claims 1
- 230000000873 masking effect Effects 0.000 claims 1
- 229910052454 barium strontium titanate Inorganic materials 0.000 abstract description 24
- 239000004065 semiconductor Substances 0.000 abstract description 16
- 230000005669 field effect Effects 0.000 abstract description 12
- 239000002738 chelating agent Substances 0.000 abstract description 10
- 230000000844 anti-bacterial effect Effects 0.000 abstract description 6
- 239000003899 bactericide agent Substances 0.000 abstract description 6
- 239000003990 capacitor Substances 0.000 abstract description 6
- 230000003746 surface roughness Effects 0.000 abstract description 6
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 abstract description 2
- 239000010936 titanium Substances 0.000 abstract description 2
- 229910052719 titanium Inorganic materials 0.000 abstract description 2
- 230000003670 easy-to-clean Effects 0.000 abstract 1
- LCGWNWAVPULFIF-UHFFFAOYSA-N strontium barium(2+) oxygen(2-) Chemical compound [O--].[O--].[Sr++].[Ba++] LCGWNWAVPULFIF-UHFFFAOYSA-N 0.000 abstract 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 12
- 239000007800 oxidant agent Substances 0.000 description 11
- 230000008569 process Effects 0.000 description 11
- 239000000243 solution Substances 0.000 description 10
- 238000011161 development Methods 0.000 description 9
- AVXURJPOCDRRFD-UHFFFAOYSA-N Hydroxylamine Chemical compound ON AVXURJPOCDRRFD-UHFFFAOYSA-N 0.000 description 7
- 229910004298 SiO 2 Inorganic materials 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 229910021529 ammonia Inorganic materials 0.000 description 6
- 239000010408 film Substances 0.000 description 6
- 229920000056 polyoxyethylene ether Polymers 0.000 description 6
- 229910001870 ammonium persulfate Inorganic materials 0.000 description 5
- LQZZUXJYWNFBMV-UHFFFAOYSA-N dodecan-1-ol Chemical compound CCCCCCCCCCCCO LQZZUXJYWNFBMV-UHFFFAOYSA-N 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 229910021645 metal ion Inorganic materials 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 229940051841 polyoxyethylene ether Drugs 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 239000010409 thin film Substances 0.000 description 5
- 229910010413 TiO 2 Inorganic materials 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 230000005684 electric field Effects 0.000 description 4
- 239000002105 nanoparticle Substances 0.000 description 4
- 229920000193 polymethacrylate Polymers 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 230000005641 tunneling Effects 0.000 description 4
- DDFHBQSCUXNBSA-UHFFFAOYSA-N 5-(5-carboxythiophen-2-yl)thiophene-2-carboxylic acid Chemical compound S1C(C(=O)O)=CC=C1C1=CC=C(C(O)=O)S1 DDFHBQSCUXNBSA-UHFFFAOYSA-N 0.000 description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 3
- 150000004820 halides Chemical class 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 239000000084 colloidal system Substances 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 238000005187 foaming Methods 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 2
- 150000004679 hydroxides Chemical class 0.000 description 2
- 238000001459 lithography Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000004377 microelectronic Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000009291 secondary effect Effects 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- FWJJTGXGFKILGS-UHFFFAOYSA-N 2-aminoethanol;2-[2-[bis(carboxymethyl)amino]ethyl-(carboxymethyl)amino]acetic acid Chemical compound NCCO.NCCO.NCCO.NCCO.OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O FWJJTGXGFKILGS-UHFFFAOYSA-N 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- BVTJGGGYKAMDBN-UHFFFAOYSA-N Dioxetane Chemical compound C1COO1 BVTJGGGYKAMDBN-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- SWLVFNYSXGMGBS-UHFFFAOYSA-N ammonium bromide Chemical compound [NH4+].[Br-] SWLVFNYSXGMGBS-UHFFFAOYSA-N 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- PNNLHGFFNNLCHM-UHFFFAOYSA-M azanium tetramethylazanium dihydroxide Chemical compound [NH4+].[OH-].[OH-].C[N+](C)(C)C PNNLHGFFNNLCHM-UHFFFAOYSA-M 0.000 description 1
- AERRGWRSYANDQB-UHFFFAOYSA-N azanium;dodecane-1-sulfonate Chemical compound [NH4+].CCCCCCCCCCCCS([O-])(=O)=O AERRGWRSYANDQB-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003093 cationic surfactant Substances 0.000 description 1
- 239000013522 chelant Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229940075614 colloidal silicon dioxide Drugs 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000000855 fungicidal effect Effects 0.000 description 1
- 239000000417 fungicide Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- MGIYRDNGCNKGJU-UHFFFAOYSA-N isothiazolinone Chemical group O=C1C=CSN1 MGIYRDNGCNKGJU-UHFFFAOYSA-N 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- ZVVSSOQAYNYNPP-UHFFFAOYSA-N olaflur Chemical compound F.F.CCCCCCCCCCCCCCCCCCN(CCO)CCCN(CCO)CCO ZVVSSOQAYNYNPP-UHFFFAOYSA-N 0.000 description 1
- 229960001245 olaflur Drugs 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 229920000548 poly(silane) polymer Polymers 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 230000005476 size effect Effects 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- LESFYQKBUCDEQP-UHFFFAOYSA-N tetraazanium;2-[2-[bis(carboxylatomethyl)amino]ethyl-(carboxylatomethyl)amino]acetate Chemical compound N.N.N.N.OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O LESFYQKBUCDEQP-UHFFFAOYSA-N 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
Landscapes
- Mechanical Treatment Of Semiconductor (AREA)
Abstract
本发明涉及一种用于半导体器件中高介电常数介电材料钛酸锶钡(BaxSr1-xTiO3,BST)化学机械抛光(CMP)的纳米抛光液。该CMP纳米抛光液包含有纳米研磨料、螯合剂、pH调节剂、表面活性剂、消泡剂、杀菌剂及溶剂等。该抛光液损伤少、易清洗、不腐蚀设备、不污染环境,主要用于新一代高密度存储器(DRAM)电容器介电材料及CMOS场效应管的栅介质——高介电常数介电材料钛酸锶钡的全局平坦化。利用上述纳米抛光液采用化学机械抛光方法平坦化高介电常数介电材料钛酸锶钡,抛光后表面的粗糙度降至0.8nm以下,抛光速率达200~300nm/min;抛光后表面全局平坦度高,损伤较少,是制备超高密度动态存储器(DRAM)及CMOS场效应管时高介电材料平坦化的一高效抛光液。The invention relates to a nano-polishing liquid used for chemical mechanical polishing (CMP) of barium strontium titanate ( BaxSr1 -xTiO3 , BST), a high-permittivity dielectric material in semiconductor devices. The CMP nano-polishing fluid contains nano-abrasives, chelating agents, pH regulators, surfactants, defoamers, bactericides and solvents. The polishing liquid has less damage, is easy to clean, does not corrode equipment, and does not pollute the environment. It is mainly used for the dielectric material of a new generation of high-density memory (DRAM) capacitors and the gate dielectric of CMOS field effect transistors—high dielectric constant dielectric material titanium Global planarization of barium strontium oxide. Using the above-mentioned nano-polishing liquid to planarize the high-permittivity dielectric material barium strontium titanate by chemical mechanical polishing, the surface roughness after polishing is reduced to below 0.8nm, and the polishing rate reaches 200-300nm/min; the surface is globally flat after polishing It has high precision and less damage. It is an efficient polishing solution for planarizing high dielectric materials when preparing ultra-high density dynamic memory (DRAM) and CMOS field effect transistors.
Description
技术领域technical field
本发明涉及一种化学机械抛光(CMP)用纳米抛光液及在下一代半导体器件中高介电常数材料的化学机械抛光中的应用。更确切地说用于下一代半导体器件(超高密度动态存储器(DRAM)和纳米尺寸CMOS场效应管)中高介电常数介质材料钛酸锶钡化学机械抛光用纳米抛光液及器件制备过程的应用,本发明属于微电子辅助材料及集成电路加工工艺技术领域。The invention relates to a nanometer polishing fluid for chemical mechanical polishing (CMP) and its application in chemical mechanical polishing of high dielectric constant materials in next-generation semiconductor devices. More precisely, it is used in the next generation of semiconductor devices (ultra-high-density dynamic memory (DRAM) and nano-sized CMOS field-effect transistors), and the application of nano-polishing fluid and device preparation process for chemical-mechanical polishing of high-permittivity dielectric materials barium strontium titanate , The invention belongs to the technical field of microelectronic auxiliary materials and integrated circuit processing technology.
背景技术Background technique
存储器和逻辑器件是半导体器件中最重要的组成部分,而介电材料在这两种器件中又属核心;它既可以用作动态随机存储器(DRAM)电容的介质材料以存储信息,也可以作为CMOS场效应管逻辑器件的栅介质。随着集成电路按照摩尔定律的飞速发展,器件的特征尺寸已缩小至90纳米,65nm和45nm工艺正在研发之中。但小尺寸效应使得加工工艺已经发展至接近极限,因此必须通过采用新的材料或提出新的器件模型来解决现存制约发展的因素。对于超高密度的DRAM,要求将数字信息存储在更小的面积内,进而要求在电容器的面积减小的情况下,保持其电容的值。在电容介质厚度不变时,保持同样的电容大小并减少电容面积的唯一方法是提高电容所填充介质的介电常数,即采用高介电常数介质材料。而对于场效应晶体管的栅介质,一般采用SiO2介质。但是随着器件尺寸的纳米化,为了抑制短沟道效应且保证器件有良好的器件特性,要求的栅介质层越来越薄,此时引起了诸多二次效应,如:电子的直接隧穿效应;栅介质层的栅电场急剧增加引起的漏电流使原有的基本器件特性恶化,甚至无法正常工作。为此,更小尺寸的场效应晶体管必须采用高介电常数材料作为栅介质替代传统的SiO2,以保证等效厚度不变的条件下,增加介质层的物理厚度,以减少直接隧穿效应和栅介质层承受的电场强度。钛酸锶钡(BST)薄膜作为一种优质高介电材料,通过合理选择Ba/Sr比,能使材料在室温应用温度下处于顺电相,避免了铁电畴开关效应引发的疲劳现象;它还具有相对较低的介电损耗、较小的漏电流,以及高的介电常数,这正好满足了下一代半导体器件对介电材料的要求,BST已被认为是用于开发下一代半导体器件,如超高密度DRAM及纳米尺寸CMOS场效应管的重要介质材料,ITRS预测2007年的65纳米工艺中BST将是高K材料的首选。随着器件特征尺寸的纳米化,IC工艺的光刻曝光分辨率要求越来越高,通过采用较短波长和较大数值孔径曝光系统可以提高分辨率,但同时又导致焦深变浅难题,这就要求曝光表面的高度平坦化,而目前实现晶片表面全局平坦化的唯一技术就是化学机械抛光(chemical mechanical polishing,CMP),尤其是对于特征尺寸小于0.25微米的IC工艺,CMP已成为关键工艺技术之一。结合BST在下一代半导体器件中的发展需求及纳米尺寸IC制造工艺对晶片表面的高度平坦化要求,有关BST的CMP研究显得日益重要,成为下一代半导体器件发展的瓶颈。查阅国内外专利及文献,迄今为止有关BST薄膜CMP的报道较少,US5695384公开了一种用于BST工件CMP的盐类抛光液,该发明专利提供的抛光液中含有85wt%的水,4wt%的NaCl,4wt%的H2O2及7wt%的胶体二氧化硅,抛光速率约35nm/min。由于抛光液中含有大量Na+,这对于半导体器件工艺危害极大,且抛光速率较低难以满足工业需求。Yong-Jin Seo等报道了有关采用溶胶-凝胶技术制备的BST薄膜的CMP,在文章中作者研究了TiO2作为磨料的抛光液性能,抛光速率可达320nm/min,但表面粗糙度高达1.50nm(Chemical mechanical polishing of Ba0.6Sr0.4TiO3film prepared by sol-gel method,Microelectronic Engineering 75(2004)149-154)。对于目前器件的发展需求及下一代器件的更高要求,晶片表面粗糙度要求小于1.0nm,甚至更小。针对超高密度DRAM及纳米尺寸CMOS场效应管的高K材料BST的CMP,仍需要一种纳米抛光液,实现高效率(抛光速率满足工业需求)、高平坦(表面粗糙度小于1.0nm)、低缺陷的抛光表面。Memory and logic devices are the most important components of semiconductor devices, and dielectric materials are at the core of these two devices; it can be used as a dielectric material for dynamic random access memory (DRAM) capacitors to store information, and as a The gate dielectric of CMOS field effect transistor logic devices. With the rapid development of integrated circuits in accordance with Moore's Law, the feature size of devices has shrunk to 90 nanometers, and 65nm and 45nm processes are under development. However, due to the small size effect, the processing technology has been developed close to the limit, so it is necessary to solve the existing factors that restrict the development by adopting new materials or proposing new device models. For ultra-high-density DRAM, it is required to store digital information in a smaller area, and then it is required to maintain the value of its capacitance when the area of the capacitor is reduced. When the thickness of the capacitor dielectric is constant, the only way to maintain the same capacitance and reduce the capacitor area is to increase the dielectric constant of the capacitor filled medium, that is, to use a high dielectric constant dielectric material. For the gate dielectric of field effect transistors, SiO 2 dielectric is generally used. However, with the nanometerization of the device size, in order to suppress the short channel effect and ensure that the device has good device characteristics, the required gate dielectric layer is getting thinner and thinner. At this time, many secondary effects are caused, such as: direct tunneling of electrons Effect; the leakage current caused by the sharp increase of the gate electric field of the gate dielectric layer deteriorates the original basic device characteristics, and even fails to work normally. For this reason, field effect transistors with smaller dimensions must use high dielectric constant materials as the gate dielectric to replace the traditional SiO 2 , so as to ensure that the physical thickness of the dielectric layer is increased under the condition of constant equivalent thickness, so as to reduce the direct tunneling effect and the electric field strength of the gate dielectric layer. Barium strontium titanate (BST) thin film is a high-quality high-dielectric material. By selecting the Ba/Sr ratio reasonably, the material can be in the paraelectric phase at room temperature and application temperature, avoiding the fatigue phenomenon caused by the ferroelectric domain switching effect; it It also has relatively low dielectric loss, small leakage current, and high dielectric constant, which just meet the requirements of the next generation of semiconductor devices for dielectric materials. BST has been considered to be used in the development of next generation semiconductor devices , such as the important dielectric material of ultra-high density DRAM and nanometer-sized CMOS field effect transistors, ITRS predicts that BST will be the first choice for high-K materials in the 65-nanometer process in 2007. With the nanometerization of the feature size of the device, the lithography exposure resolution of the IC process is required to be higher and higher. The resolution can be improved by using a shorter wavelength and larger numerical aperture exposure system, but at the same time it leads to the problem of shallow depth of focus. This requires a high degree of planarization of the exposed surface, and the only technology to achieve global planarization of the wafer surface is chemical mechanical polishing (CMP), especially for IC processes with feature sizes smaller than 0.25 microns, CMP has become a key process One of the techniques. Combined with the development needs of BST in the next generation of semiconductor devices and the high planarization of the wafer surface required by the nano-sized IC manufacturing process, the CMP research on BST is becoming increasingly important and has become a bottleneck for the development of the next generation of semiconductor devices. Check domestic and foreign patents and documents, so far there are few reports about BST thin film CMP, US5695384 discloses a kind of salt polishing solution for BST workpiece CMP, contains 85wt% water in the polishing solution provided by this invention patent, 4wt% NaCl, 4wt% H 2 O 2 and 7wt% colloidal silica, the polishing rate is about 35nm/min. Because the polishing solution contains a large amount of Na + , it is extremely harmful to the process of semiconductor devices, and the polishing rate is too low to meet the industrial needs. Yong-Jin Seo et al. reported the CMP of BST films prepared by sol-gel technology. In the article, the author studied the performance of TiO 2 as an abrasive polishing fluid. The polishing rate can reach 320nm/min, but the surface roughness is as high as 1.50 nm (Chemical mechanical polishing of Ba 0.6 Sr 0.4 TiO 3 film prepared by sol-gel method, Microelectronic Engineering 75 (2004) 149-154). For the development needs of current devices and the higher requirements of next-generation devices, the surface roughness of the wafer is required to be less than 1.0nm, or even smaller. For the CMP of high-K material BST of ultra-high-density DRAM and nano-sized CMOS field effect transistors, a nano-polishing liquid is still needed to achieve high efficiency (polishing rate meets industrial needs), high flatness (surface roughness is less than 1.0nm), Low defect polished surface.
发明内容Contents of the invention
基于目前半导体器件(DRAM和纳米尺寸CMOS场效应管)的快速发展及特征尺寸的不断缩小,且对高介电材料表面平坦要求越来越高,本发明针对下一代半导体器件(DRAM和纳米尺寸CMOS场效应管)关键材料——高K(介电常数)的介质材料BST开展CMP研究,提供了BST-CMP的纳米抛光液及利用该抛光液对BST进行化学机械抛光,为下一代高性能、高密度、高可靠性半导体器件的发展提供保障。Based on the rapid development of current semiconductor devices (DRAM and nanometer size CMOS field effect transistors) and the continuous reduction of feature size, and the higher and higher requirements for high dielectric material surface flatness, the present invention is aimed at next generation semiconductor devices (DRAM and nanometer size CMOS field effect transistor) key material - high K (dielectric constant) dielectric material BST to carry out CMP research, provide BST-CMP nano-polishing liquid and use the polishing liquid to perform chemical mechanical polishing on BST, for the next generation of high-performance , high-density, high-reliability semiconductor device development to provide protection.
对于DRAM而言,要想实现超高密度存储,必须采用高K介质材料且更小的特征尺寸工艺;而对于晶体管,随着特征尺寸的纳米化,为了抑制短沟道效应且保证器件有良好的器件特性,栅介质层越来越薄,引起了诸多二次效应,如:电子的直接隧穿效应、栅介质层的栅电场急剧增加引起的漏电流使原有的基本器件特性恶化,为此更小尺寸的场效应晶体管必须采用高介电常数材料作为栅介质以替代传统的SiO2,从而可保证在等效厚度不变的条件下,增加介质层的物理厚度,以减少直接隧穿效应和栅介质层承受的电场强度。随着下一代半导体器件特征尺寸越来越小,光刻分辨率要求越来越高,高分辨率的改善引发了焦深变浅的问题,使得对材料表面的平坦度提出了更高的要求。高K材料BST是下一代半导体器件中重要的介质材料,对其平坦化研究的重要性类似于深亚微米IC工艺中Cu互连的CMP。但迄今为止,关于高K材料BST的CMP研究甚少,本发明提供了高K材料BST-CMP的纳米抛光液,并利用该抛光液对高K材料BST薄膜CMP。For DRAM, in order to achieve ultra-high density storage, high-K dielectric materials and smaller feature size processes must be used; for transistors, with the nanometerization of feature sizes, in order to suppress the short channel effect and ensure good device performance The device characteristics of the gate dielectric layer are getting thinner and thinner, causing many secondary effects, such as: the direct tunneling effect of electrons, the leakage current caused by the sharp increase of the gate electric field of the gate dielectric layer, which deteriorates the original basic device characteristics, for This smaller-sized field effect transistor must use a high dielectric constant material as the gate dielectric to replace the traditional SiO 2 , so as to ensure that the physical thickness of the dielectric layer is increased under the condition of the same equivalent thickness to reduce direct tunneling effect and the electric field strength of the gate dielectric layer. With the feature size of next-generation semiconductor devices getting smaller and smaller, the lithography resolution requirements are getting higher and higher. The improvement of high resolution has caused the problem of shallow depth of focus, which puts forward higher requirements for the flatness of the material surface. . The high-K material BST is an important dielectric material in next-generation semiconductor devices, and the importance of its planarization research is similar to the CMP of Cu interconnects in deep submicron IC processes. But so far, there is little research on the CMP of the high-K material BST. The present invention provides a nano-polishing liquid of the high-K material BST-CMP, and uses the polishing liquid to CMP the high-K material BST thin film.
本发明涉及到的化学机械抛光纳米抛光液中含有纳米研磨料、氧化剂、螯合剂、表面活性剂、抛光促进剂、消泡剂、杀菌剂、pH调节剂和溶剂。The chemical mechanical polishing nano-polishing liquid involved in the present invention contains nano-abrasives, oxidants, chelating agents, surfactants, polishing accelerators, defoamers, bactericides, pH regulators and solvents.
本发明提供的CMP纳米抛光液中包括至少一种氧化剂。氧化剂有助于将薄膜材料氧化至相应的氧化物、氢氧化物或离子。所述的氧化剂可选自还原时形成羟基的化合物或价态可降低的高价离子化合物,如过氧化氢、过氧化氢脲、过硫酸铵中任意一种或两种。其中优过氧化氢脲、过硫酸铵或其混合物作为氧化剂。The CMP nano-polishing liquid provided by the present invention includes at least one oxidizing agent. The oxidizing agent helps to oxidize the thin film material to the corresponding oxide, hydroxide or ion. The oxidizing agent can be selected from compounds that form hydroxyl groups during reduction or high-valent ion compounds that can reduce their valence, such as any one or both of hydrogen peroxide, urea hydrogen peroxide, and ammonium persulfate. Among them, urea hydrogen peroxide, ammonium persulfate or their mixtures are preferred as the oxidizing agent.
本发明提供的纳米抛光液中氧化剂含量可为0.5wt%至15.0wt%;优选氧化剂含量为0.5wt%至10.0wt%;最佳的氧化剂含量为1.0wt%至7.0wt%。若采用过氧化氢脲氧化剂,脲与过氧化氢摩尔比范围为0.50∶1~2∶1。如果过氧化氢脲中含有33.5wt%过氧化氢,66.5wt%脲,则过氧化氢脲的最佳含量相应为3.0wt%至21.0wt%。The content of oxidant in the nano-polishing liquid provided by the invention can be 0.5wt% to 15.0wt%; the preferred oxidant content is 0.5wt% to 10.0wt%; the optimum oxidant content is 1.0wt% to 7.0wt%. If urea hydrogen peroxide is used as an oxidizing agent, the molar ratio of urea to hydrogen peroxide ranges from 0.50:1 to 2:1. If 33.5wt% hydrogen peroxide and 66.5wt% urea are contained in the urea hydrogen peroxide, the optimum content of urea hydrogen peroxide is correspondingly 3.0wt% to 21.0wt%.
本发明提供的CMP纳米抛光液中包括至少一种螯合剂。螯合剂的作用是与抛光表面的金属离子及抛光液中少量的金属离子形成螯合物,有助于减少抛光表面金属离子的污染及增大抛光产物的体积,使得抛光后清洗容易去除。所述的螯合剂可选自无金属离子的螯合剂,如乙二胺四乙酸铵、柠檬酸铵、羟乙基乙二胺四乙酸铵中任意一种或其中任意两种混合物。优选柠檬酸铵、羟乙基乙二胺四乙酸铵中的一种或其混合物。The CMP nano-polishing liquid provided by the invention includes at least one chelating agent. The role of the chelating agent is to form a chelate with the metal ions on the polishing surface and a small amount of metal ions in the polishing solution, which helps to reduce the pollution of the metal ions on the polishing surface and increase the volume of the polishing product, making it easy to remove after polishing. The chelating agent can be selected from metal ion-free chelating agents, such as any one of ammonium ethylenediaminetetraacetate, ammonium citrate, and hydroxyethylammonium ethylenediaminetetraacetate or any two mixtures thereof. One of ammonium citrate, ammonium hydroxyethylethylenediaminetetraacetate or a mixture thereof is preferred.
所述的纳米抛光液中螯合剂的含量可为0.1wt%至10.0wt%;优选螯合剂的含量为0.1wt%至5.0wt%;最佳螯合剂含量为0.3wt%至3.0wt%。The content of the chelating agent in the nano-polishing liquid can be 0.1wt% to 10.0wt%; the preferred content of the chelating agent is 0.1wt% to 5.0wt%; the optimum content of the chelating agent is 0.3wt% to 3.0wt%.
本发明提供的CMP纳米抛光液中包括至少一种金属氧化物纳米研磨料。研磨料主要作用是CMP时的机械磨擦,可选自氧化铝、氧化钛、胶体氧化硅及其混合物。所述的研磨料优选氧化钛、胶体二氧化硅及其混合物。The CMP nano-polishing liquid provided by the present invention includes at least one metal oxide nano-abrasive material. The main function of the abrasive is mechanical friction during CMP, which can be selected from aluminum oxide, titanium oxide, colloidal silicon oxide and mixtures thereof. The abrasive is preferably titanium oxide, colloidal silicon dioxide and mixtures thereof.
用于本发明的研磨料平均粒径小于200纳米,最佳平均粒径为10~120纳米。所述的研磨料为金属氧化物的水分散体或金属氧化物的胶体溶液。The average particle diameter of the grinding material used in the present invention is less than 200 nanometers, and the optimum average particle diameter is 10-120 nanometers. The grinding material is an aqueous dispersion of metal oxides or a colloidal solution of metal oxides.
所述的CMP纳米抛光液中研磨料含量可为1.0wt%至30.0wt%;优选研磨料的含量为1.0wt%至20.0wt%;最佳研磨料含量为2.0wt%至15.0wt%。The abrasive content in the CMP nano-polishing liquid can be 1.0wt% to 30.0wt%; the preferred abrasive content is 1.0wt% to 20.0wt%; the optimum abrasive content is 2.0wt% to 15.0wt%.
本发明提供的CMP纳米抛光液中包括至少一种表面活性剂。表面活性剂的作用主要包括使得抛光液中研磨料分散的高稳定性;CMP过程中优先吸附在材料表面的表面,化学腐蚀作用降低,由于凹处受到摩擦力小,因而凸处比凹处抛光速率大,起到了提高抛光凸凹选择性;表面活性剂还有助于抛光后的表面污染物清洗。用于本发明的表面活性剂可以为非离子表面活性剂、阳离子表面活性剂、阴离子表面活性剂;可选自无金属离子的烷基醇聚氧乙烯基醚、烷基三甲基溴化铵、聚丙烯酸铵、聚甲基丙烯酸铵的任意一种或两种;优选烷基醇聚氧乙烯基醚、聚丙烯酸铵、聚甲基丙烯酸铵及其混合物。The CMP nano-polishing liquid provided by the present invention includes at least one surfactant. The role of the surfactant mainly includes high stability of the dispersion of the abrasive in the polishing liquid; during the CMP process, it is preferentially adsorbed on the surface of the material surface, and the chemical corrosion is reduced. Because the friction force of the concave part is small, the convex part is more polished than the concave part. The high speed improves the polishing selectivity; the surfactant also helps to clean the surface pollutants after polishing. Surfactants used in the present invention can be nonionic surfactants, cationic surfactants, anionic surfactants; can be selected from metal ion-free alkyl alcohol polyoxyethylene ethers, alkyltrimethylammonium bromide , ammonium polyacrylate, ammonium polymethacrylate, any one or both; preferably alkyl alcohol polyoxyethylene ether, ammonium polyacrylate, ammonium polymethacrylate and mixtures thereof.
所述的CMP纳米抛光液中表面活性剂含量为0.01wt%至2.0wt%;优选表面活性剂含量为0.01wt%至1.0wt%;最佳表面活性剂含量为0.01wt%至0.5wt%。The surfactant content in the CMP nano-polishing liquid is 0.01wt% to 2.0wt%; the preferred surfactant content is 0.01wt% to 1.0wt%; the optimum surfactant content is 0.01wt% to 0.5wt%.
本发明提供的CMP纳米抛光液中包括至少一种抛光促进剂。考虑BST薄膜材料经过化学反应后的产物去除,通过氧化剂的处理形成了BaO,SrO,TiO2等相应氧化物,在碱性溶液作用下形成相应的氢氧化物,但是这几类氢氧化物均是水中的微溶物,甚至不溶物,容易沉积在抛光表面形成颗粒粘污及影响进一步的材料去除。本发明加入一种不含金属离子的卤化物作为促进剂,与上述氢氧化物形成溶于水的卤化物,增强了表面膜的去除作用,加快了抛光速率;抑制了表面颗粒的形成,减少了划伤和粗糙度。用于本发明的抛光促进剂选自无金属离子的卤化物,如氟化铵、氯化铵及溴化铵任意一种或两种;优氟化铵、氯化铵及其混合物。The CMP nano-polishing liquid provided by the invention includes at least one polishing accelerator. Considering the removal of BST film materials after chemical reactions, the corresponding oxides such as BaO, SrO, TiO 2 are formed through the treatment of oxidants, and the corresponding hydroxides are formed under the action of alkaline solution, but these types of hydroxides are all It is a slightly soluble or even insoluble substance in water, which is easy to deposit on the polishing surface to form particle sticky dirt and affect further material removal. In the present invention, a metal ion-free halide is added as an accelerator to form a water-soluble halide with the above-mentioned hydroxide, which enhances the removal of the surface film and accelerates the polishing rate; inhibits the formation of surface particles and reduces scratches and roughness. The polishing accelerator used in the present invention is selected from halides without metal ions, such as any one or two of ammonium fluoride, ammonium chloride and ammonium bromide; ammonium fluoride, ammonium chloride and mixtures thereof.
所述的CMP纳米抛光液中抛光促进剂含量为0.5wt%至5.0wt%;优选表面活性剂含量为0.5wt%至4.0wt%;最佳表面活性剂含量为0.8wt%至2.0wt%。The polishing accelerator content in the CMP nano-polishing liquid is 0.5wt% to 5.0wt%; the preferred surfactant content is 0.5wt% to 4.0wt%; the optimum surfactant content is 0.8wt% to 2.0wt%.
本发明提供的CMP纳米抛光液中包括一种消泡剂,抛光液中表面活性剂的加入通常导致泡沫的产生,不利于工艺生产控制,通过加入极少量消泡剂实现低泡或无泡抛光液,便于操作使用。本发明所述的消泡剂选自聚硅烷化合物,如聚二甲基硅烷。The CMP nano-polishing liquid provided by the present invention includes a defoaming agent. The addition of surfactants in the polishing liquid usually leads to the generation of foam, which is not conducive to process production control. Low-foaming or no-foaming polishing can be achieved by adding a very small amount of defoaming agent. Liquid, easy to operate and use. The defoamer in the present invention is selected from polysilane compounds, such as polydimethylsilane.
所述的CMP纳米抛光液中消泡剂含量可为20至200ppm;优选消泡剂含量为40至150ppm;最佳消泡剂含量为40至120ppm。The defoamer content in the CMP nano-polishing liquid can be 20-200ppm; the preferred defoamer content is 40-150ppm; the optimum defoamer content is 40-120ppm.
本发明提供的CMP纳米抛光液中包括一种杀菌剂,抛光液中含有许多有机物,长期存放容易形成霉菌,导致抛光液变质,为此向抛光液中加入少量杀菌剂以达到此目的。本发明所述的杀菌剂选自噻唑类啉酮化合物,如异构噻唑啉酮。The CMP nano-polishing liquid provided by the present invention includes a bactericide. The polishing liquid contains a lot of organic matter. Long-term storage is easy to form mold and cause the polishing liquid to deteriorate. For this reason, a small amount of bactericide is added to the polishing liquid to achieve this purpose. The bactericide described in the present invention is selected from thiazolinone compounds, such as isomeric thiazolinones.
所述的CMP纳米抛光液中杀菌剂含量可为10至50ppm;优选消泡剂含量为10至30ppm;最佳消泡剂含量为10至20ppm。The bactericide content in the CMP nano-polishing liquid can be 10 to 50 ppm; the preferred defoamer content is 10 to 30 ppm; the optimum defoamer content is 10 to 20 ppm.
本发明提供的CMP纳米抛光液中包括至少一种pH调节剂。pH调节剂主要是调节抛光液的pH值,使得抛光液稳定,有助于CMP的进行。用于本发明的pH调节剂可选自氨水、氢氧化钾、四甲基氢氧化铵、羟基胺中的任意一种或两种混合物;优选无金属离子化合物,如氨水、四甲基氢氧化铵、羟基胺及其任意两种混合物。The CMP nano-polishing solution provided by the present invention includes at least one pH regulator. The pH regulator is mainly to adjust the pH value of the polishing liquid, so as to make the polishing liquid stable and help the CMP to proceed. The pH regulator used in the present invention can be selected from any one or two mixtures of ammonia, potassium hydroxide, tetramethylammonium hydroxide, hydroxylamine; preferably no metal ion compounds, such as ammonia, tetramethylammonium hydroxide Ammonium, hydroxylamine, and mixtures of any two thereof.
所述的纳米抛光液pH值为7~12,优选pH为8~11.5,最佳pH值为8.5~11。The pH value of the nano-polishing solution is 7-12, preferably 8-11.5, and the optimum pH value is 8.5-11.
本发明提供的纳米抛光液中溶剂为去离子水。The solvent in the nano-polishing liquid provided by the invention is deionized water.
本发明提供的纳米抛光液可用于高介电常数材料CMP,尤其是用于制备超高密度DRAM及纳米尺寸CMOS场效应管的高介电常数的介质材料,所述的高介电常数材料钛酸锶钡通式为BaxSr1-xTiO3,其中0<x<1.0。The nano-polishing liquid provided by the present invention can be used for high dielectric constant material CMP, especially for the preparation of high dielectric constant dielectric materials of ultra-high density DRAM and nano-sized CMOS field effect transistors, and described high dielectric constant material titanium The general formula of barium strontium acid is Ba x Sr 1-x TiO 3 , where 0<x<1.0.
本发明提供的纳米抛光液对高介电常数材料钛酸锶钡进行化学机械抛光可应用于:在硅衬底上利用磁控溅射或溶胶-凝胶制膜技术沉积高介电常数的介质层BST薄膜(详见实施例8),其抛光速率达200~300nm/min,与文献报道值相当,但抛光后表面粗糙度降至0.8nm以下,所以是一种较理想的化学机械抛光液。The nano-polishing solution provided by the present invention can be applied to the chemical mechanical polishing of the high dielectric constant material strontium barium titanate: using magnetron sputtering or sol-gel film forming technology to deposit high dielectric constant media on silicon substrates Layer BST thin film (see embodiment 8 for details), its polishing rate reaches 200~300nm/min, is suitable with the literature report value, but after polishing, the surface roughness drops below 0.8nm, so it is a kind of ideal chemical mechanical polishing liquid .
以上所述的高K介质材料BST针对目前IC刻蚀工艺条件难以实现较好刻蚀,而相关化学机械抛光研究较少,通过采用本发明提供的纳米抛光液,可以实现高K介质材料BST薄膜的全局平坦化,抛光后表面的粗糙度RMS小于0.8nm,满足制备高性能、小尺寸半导体器件的高平坦化要求。The above-mentioned high-K dielectric material BST is difficult to achieve better etching for the current IC etching process conditions, and there are few related chemical mechanical polishing studies. By using the nano-polishing solution provided by the present invention, the high-K dielectric material BST film can be realized The global planarization of the surface, the roughness RMS of the polished surface is less than 0.8nm, which meets the high planarization requirements for the preparation of high-performance and small-sized semiconductor devices.
具体实施方式Detailed ways
通过以下实施例进一步阐明本发明的实质性特点和显著进步。但本发明绝非仅限于实施例。Further illustrate substantive characteristics and remarkable progress of the present invention by following examples. However, the present invention is by no means limited to the Examples.
【实施例1】【Example 1】
纳米抛光液的配制:抛光液中含有10~30纳米的二氧化硅胶体20wt%,过氧化氢脲12.0wt%;羟乙基乙二胺四乙酸铵在0.3wt%;十二烷基醇聚氧乙烯基醚0.2wt%;氯化铵1.0wt%,聚二甲基硅烷50ppm,异构噻唑啉酮10ppm,四甲基氢氧化铵为pH调节剂,pH值为10.8,其余为去离子水。Preparation of nano-polishing liquid: the polishing liquid contains 20wt% of silica colloid of 10-30 nanometers, 12.0wt% of urea hydrogen peroxide; 0.3wt% of ammonium hydroxyethyl ethylenediamine tetraacetate; Oxyethylene ether 0.2wt%; ammonium chloride 1.0wt%, polydimethylsilane 50ppm, isomeric thiazolinone 10ppm, tetramethylammonium hydroxide as pH regulator, pH value is 10.8, the rest is deionized water .
【实施例2】【Example 2】
纳米抛光液的配制:抛光液中含有10~30纳米的二氧化硅胶体5wt%,40纳米的二氧化钛4wt%,过氧化氢脲10.0wt%;柠檬酸铵0.5wt%;聚丙烯酸铵0.3wt%,十二烷基醇聚氧乙烯基醚0.1wt%;氯化铵1.5wt%,聚二甲基硅烷50ppm,异构噻唑啉酮10ppm,羟胺为pH调节剂,pH值为9.8,其余为去离子水。Preparation of nano-polishing liquid: the polishing liquid contains 5wt% of silica colloid of 10-30 nanometers, 4wt% of titanium dioxide of 40 nanometers, 10.0wt% of urea hydrogen peroxide; 0.5wt% of ammonium citrate; 0.3wt% of ammonium polyacrylate , dodecyl alcohol polyoxyethylene ether 0.1wt%; ammonium chloride 1.5wt%, polydimethylsilane 50ppm, isomeric thiazolinone 10ppm, hydroxylamine is the pH regulator, the pH value is 9.8, and the rest are ionized water.
【实施例3~7】
注:研磨料优选平均粒径为10~120纳米;消泡剂为聚二甲基硅烷,加入量为50ppm;杀菌剂为异构噻唑啉酮,加入量为10ppm。Note: The average particle size of the abrasive is preferably 10-120 nanometers; the defoamer is polydimethylsilane, and the addition amount is 50ppm; the fungicide is isothiazolinone, and the addition amount is 10ppm.
【实施例8】【Embodiment 8】
CMP试验:采用美国CETR公司的CP-4抛光机,抛光垫为IC 1000/SubaIV,抛光机底盘转速100rpm,抛光头转速97rpm,抛光液流量200ml/min,压力为3psi,抛光液分别采用上述1~7实施例提供的组成,抛光垫样品为Si/BST。抛光表面由原子力显微镜(AFM)测出粗糙度RMS,结果见表2。由表可以看出,本发明提供的纳米抛光液进行BST-CMP,抛光速率可达200~300nm/min,且抛光后表面粗糙度RMS已经降到0.8nm以下,可满足高性能半导体器件的平坦化要求。CMP test: the CP-4 polishing machine of CETR Company of the United States is adopted, the polishing pad is IC 1000/SubaIV, the polishing machine chassis speed is 100rpm, the polishing head speed is 97rpm, the polishing liquid flow rate is 200ml/min, and the pressure is 3psi. Compositions provided in Embodiment 7, the polishing pad sample is Si/BST. The RMS roughness of the polished surface was measured by an atomic force microscope (AFM), and the results are shown in Table 2. As can be seen from the table, the nano-polishing solution provided by the present invention carries out BST-CMP, and the polishing rate can reach 200-300nm/min, and the surface roughness RMS after polishing has dropped below 0.8nm, which can meet the flatness of high-performance semiconductor devices. requirements.
表2抛光试验结果
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 200410093370 CN1290962C (en) | 2004-12-22 | 2004-12-22 | Nano polishing liquid for high dielectric material strontium barium titanate chemical-mechanical polish |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 200410093370 CN1290962C (en) | 2004-12-22 | 2004-12-22 | Nano polishing liquid for high dielectric material strontium barium titanate chemical-mechanical polish |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1648190A CN1648190A (en) | 2005-08-03 |
CN1290962C true CN1290962C (en) | 2006-12-20 |
Family
ID=34869407
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 200410093370 Expired - Lifetime CN1290962C (en) | 2004-12-22 | 2004-12-22 | Nano polishing liquid for high dielectric material strontium barium titanate chemical-mechanical polish |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1290962C (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101335232B (en) * | 2007-06-28 | 2010-12-08 | 海力士半导体有限公司 | CMP method of semiconductor device |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100383209C (en) * | 2006-05-31 | 2008-04-23 | 河北工业大学 | Chemical mechanical anhydrous polishing liquid and planarization method for lithium cesium borate crystal |
JP4499751B2 (en) * | 2006-11-21 | 2010-07-07 | エア プロダクツ アンド ケミカルズ インコーポレイテッド | Formulation for removing photoresist, etch residue and BARC and method comprising the same |
JP2009164188A (en) * | 2007-12-28 | 2009-07-23 | Fujimi Inc | Polishing composition |
CN101235255B (en) * | 2008-03-07 | 2011-08-24 | 大连理工大学 | A kind of polishing liquid that chemical mechanical polishing semiconductor wafer is used |
CN101638557A (en) * | 2008-08-01 | 2010-02-03 | 安集微电子(上海)有限公司 | Chemi-mechanical polishing liquid |
CN101724346A (en) * | 2008-10-10 | 2010-06-09 | 安集微电子(上海)有限公司 | Chemical mechanical polishing solution |
CN102142458B (en) * | 2010-01-28 | 2014-03-05 | 中国科学院微电子研究所 | MOS field effect transistor |
CN101857774B (en) * | 2010-06-01 | 2013-12-25 | 上海新安纳电子科技有限公司 | Polishing composition for improving chemical-mechanical polishing rate of silicon substrate and application thereof |
CN102127372B (en) * | 2010-12-17 | 2013-10-23 | 天津理工大学 | A kind of nano-polishing fluid and application thereof for chemical mechanical polishing of vanadium oxide |
TWI421334B (en) * | 2010-12-21 | 2014-01-01 | Uwiz Technology Co Ltd | Slurry composition and use thereof |
CN102220088A (en) * | 2011-05-10 | 2011-10-19 | 天津理工大学 | Alkaline nanometer polishing slurry for chemical mechanical planarization of zinc oxide, and application thereof |
CN102212316A (en) * | 2011-05-10 | 2011-10-12 | 天津理工大学 | Acidic nano polishing solution for chemical mechanical planarization of zinc oxide and application thereof |
CN102343547A (en) * | 2011-10-20 | 2012-02-08 | 天津理工大学 | Thermochemistry mechanical polishing method of sapphire substrate material and polishing solution |
CN103094326B (en) * | 2011-11-05 | 2016-08-03 | 中国科学院微电子研究所 | Semiconductor device with a plurality of transistors |
CN109233644B (en) * | 2018-09-19 | 2021-03-12 | 广州亦盛环保科技有限公司 | Fine polishing solution and preparation method thereof |
CN115365996A (en) * | 2022-08-23 | 2022-11-22 | 福建省南安市宏炜新材料有限公司 | Chemical mechanical polishing process of N-Si substrate |
-
2004
- 2004-12-22 CN CN 200410093370 patent/CN1290962C/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101335232B (en) * | 2007-06-28 | 2010-12-08 | 海力士半导体有限公司 | CMP method of semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
CN1648190A (en) | 2005-08-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1290962C (en) | Nano polishing liquid for high dielectric material strontium barium titanate chemical-mechanical polish | |
CN1300271C (en) | Nano polishing liquid for sulfuric compound phase changing material chemical mechanical polishing and its use | |
CN102127372B (en) | A kind of nano-polishing fluid and application thereof for chemical mechanical polishing of vanadium oxide | |
KR100823457B1 (en) | Copper Chemical Mechanical Polishing Composition Containing Zeolite | |
JP2008512871A (en) | Aqueous slurry containing metalate-modified silica particles | |
TW201016806A (en) | Chemical-mechanical polishing compositions and methods of making and using the same | |
WO2018120809A1 (en) | Chemical-mechanical polishing liquid for flattening barrier layer | |
CN1858133A (en) | Polishing liquid for chemical and mechanical polsihing of computer hard disc base sheet | |
CN102441819B (en) | Chemical and mechanical polishing method for sulfur phase-change material | |
CN110088359B (en) | High temperature CMP compositions and methods of use thereof | |
TWI812595B (en) | Chemical mechanical polishing slurry for planarization of barrier film | |
US6746314B2 (en) | Nitride CMP slurry having selectivity to nitride | |
CN1632023A (en) | Abrasive-free polishing liquid for chemical mechanical polishing of chalcogenide phase change materials and its application | |
CN104726028A (en) | Chemical mechanical polishing liquid and use method thereof | |
CN118530666B (en) | Chemical mechanical polishing solution | |
JP4637398B2 (en) | Polishing composition and polishing method using the same | |
US8512593B2 (en) | Chemical mechanical polishing slurry compositions, methods of preparing the same and methods of using the same | |
CN1864925A (en) | Roughness Control Method in ULSI Multilayer Copper Wiring Chemical Mechanical Polishing | |
CN102212316A (en) | Acidic nano polishing solution for chemical mechanical planarization of zinc oxide and application thereof | |
CN111378382A (en) | Chemical mechanical polishing solution and application thereof | |
CN103146307B (en) | Nano polishing solution for chemical/mechanical polishing | |
KR20180065558A (en) | High selectivity slurry composition of oxide film to tungsten film | |
CN108250972B (en) | Chemical mechanical polishing solution for barrier layer planarization | |
WO2013091275A1 (en) | Chemical-mechanical polishing solution for flattening of through silicon via barrier layer | |
US20220145131A1 (en) | Slurry composition for polishing silicon oxide film, and polishing method using same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
ASS | Succession or assignment of patent right |
Owner name: SHANGHAI XINANNA ELECTRONIC TECHNOLOGY CO., LTD. Free format text: FORMER OWNER: SHANGHAI INST. OF MICROSYSTEM +. INFORMATION TECHN, CHINESE ACADEMY OF SCIENCES Effective date: 20120514 |
|
C41 | Transfer of patent application or patent right or utility model | ||
COR | Change of bibliographic data |
Free format text: CORRECT: ADDRESS; FROM: 200050 CHANGNING, SHANGHAI TO: 201506 JINSHAN, SHANGHAI |
|
TR01 | Transfer of patent right |
Effective date of registration: 20120514 Address after: 201506 No. 285, Lane 6, Tiangong Road, Jinshan Industrial Zone, Shanghai, China Patentee after: SHANGHAI XIN'ANNA ELECTRONIC TECHNOLOGY Co.,Ltd. Address before: 200050 Changning Road, Shanghai, No. 865, No. Patentee before: Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences |
|
CX01 | Expiry of patent term | ||
CX01 | Expiry of patent term |
Granted publication date: 20061220 |