CN1289220C - 用于对带材进行平直度测量的测量辊 - Google Patents

用于对带材进行平直度测量的测量辊 Download PDF

Info

Publication number
CN1289220C
CN1289220C CNB031364489A CN03136448A CN1289220C CN 1289220 C CN1289220 C CN 1289220C CN B031364489 A CNB031364489 A CN B031364489A CN 03136448 A CN03136448 A CN 03136448A CN 1289220 C CN1289220 C CN 1289220C
Authority
CN
China
Prior art keywords
measuring
band
strip
measuring roller
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB031364489A
Other languages
English (en)
Other versions
CN1467043A (zh
Inventor
安德烈亚斯·诺埃
罗尔夫·诺埃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BWG BERGWERK -UND WALZWERK-MASCHINENBAU GmbH
BWG Bergwerk und Walzwerk Maschinenbau GmbH
Original Assignee
BWG BERGWERK -UND WALZWERK-MASCHINENBAU GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BWG BERGWERK -UND WALZWERK-MASCHINENBAU GmbH filed Critical BWG BERGWERK -UND WALZWERK-MASCHINENBAU GmbH
Publication of CN1467043A publication Critical patent/CN1467043A/zh
Application granted granted Critical
Publication of CN1289220C publication Critical patent/CN1289220C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/08Investigating strength properties of solid materials by application of mechanical stress by applying steady tensile or compressive forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
    • B21B38/02Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product for measuring flatness or profile of strips
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/30Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring roughness or irregularity of surfaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/04Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring tension in flexible members, e.g. ropes, cables, wires, threads, belts or bands
    • G01L5/045Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring tension in flexible members, e.g. ropes, cables, wires, threads, belts or bands for measuring the tension across the width of a band-shaped flexible member
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/04Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring tension in flexible members, e.g. ropes, cables, wires, threads, belts or bands
    • G01L5/10Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring tension in flexible members, e.g. ropes, cables, wires, threads, belts or bands using electrical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/28Control of flatness or profile during rolling of strip, sheets or plates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0016Tensile or compressive
    • G01N2203/0017Tensile
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/026Specifications of the specimen
    • G01N2203/0262Shape of the specimen
    • G01N2203/0278Thin specimens
    • G01N2203/0282Two dimensional, e.g. tapes, webs, sheets, strips, disks or membranes

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • A Measuring Device Byusing Mechanical Method (AREA)

Abstract

本发明的主题涉及一种用于对带材(1)进行平直度测量的测量辊,它具有至少一个一体的、在测量辊长度(L)上螺旋形或直线地延伸的测量传感器,用于测定作用在部分地缠绕在测量辊(2)上的带材(1)的拉力,其中,测量传感器在拉力测量期间以其起始区(A)和终结区(E)至少部分地布置在带材(1)的接触角(α)内,其特征在于:上述测量传感器设计成测量梁(4),并在端部支承在测力装置上。

Description

用于对带材进行平直度测量的测量辊
技术领域
本发明涉及一种用于对带材进行平直度测量的测量辊
背景技术
金属带材在变形过程之后可能具有平直度误差,这种误差可以归因于在带材宽度上各带材条的长度差。轧制或矫正就属于这种通常在轧机和带材生产线上进行的变形过程。退火也可能导致不平度。
尤其是对于冷轧过程人们经常监测带材的某种波纹度,该波纹度由此产生,即,在带材纵向的带材厚度上出现交变的塑性延伸。此外除了这种平整度偏差以外还存在作为形状偏差的直度变化、例如带钢镰刀弯。
在现有技术中通常这样进行平直度测量,即,使带材承受拉力,将拉力除以带材宽度和带材厚度能够直接推断出拉应力。
如果不平度超过一定界限,则带材波纹度在尤其是金属带材继续加工成汽车部件时产生问题。作为平直度偏差的标准采用所谓的I单位IU,其中一IU对应于一10-5的拉应力差。即,一单个带材条允许具有一个<10-5的所属的长度偏差(Δl/l),以便能够规定不平度的1IU数值。
因为带材材料的生产者通常必需证实上述的平整度极限值,因此要求得平直度误差并且为此大多在轧机或带材生产线内部进行应有的平直度测量。相应的测量也可以并行地用于变形过程最佳化。
在现有技术中,不仅存在用于平直度测量的非接触方法(EP 1 116952 A2)而且存在借助于测量辊与通过的带材接触测定拉应力的方法(只实例性地参见DE 199 18 699 A1)。
对于非接触测量方法,大多借助于声波、超声波以及在电磁途径上获得平直度,而后一种方法采用机械测量过程并在实践中具有最广泛的应用。
按照DE 199 18 699 A1测量辊具有多个测量传感器,这些传感器与测量辊壁间隔距离地设置在空隙中。此外还已知,测量辊仿佛被分成所谓的扇形盘,这一点如同在EP 1 182 424 A1的主题中描述的那样。
在两种情况下借助于传感器在带材接触区径向进行力测量。通过这种方式,由如此测定的分拉力,其方式是通过分拉力除以带材宽度和带材厚度推断出局部的拉应力。
根据由于长度差引起的局部平直度误差在从属传感器上出现交替的分拉力,这些分拉力对应于同样变化的拉应力,这些拉应力表示材料带材上相对线性膨胀的尺度并由此表示材料带材的平直度。这在原理上是公知的并在Gert Muecke,Kai F.Karhausen和Paul-Dieter Puetz的论文“带材中的形状偏差:划分、产生、测量和消除以及定量的评价方法”(“Formabweichungen in Bndern:Einteilung,Entstehung,Messungund Beseitigung sowie quantitative Bewertungsmethoden”)中详细地进行了描述(钢和铁122(2002)第2期第33页和下一页)。
已知的机械测量方法存在原理上的缺陷,人们在带材宽度上仅得到有限数量的具有局部拉应力值的测量点。即,足够精确的答案要求大量的传感器,这不仅使测量辊昂贵而且使处理费用增加。此外测量在带材棱边上存在问题。因为在这里从属的传感器只能部分地被带材遮盖或接触。由此可能产生误差。当测量带材棱边位置时同样也涉及这种问题。
发明内容
本发明的目的是,提供这样的一种用于对上述形式带材进行平直度测量的测量辊,其以简单和功能合理的结构方式为特点,并适合于成本合算地实施测量过程。
为了实现上述目的,按本发明提供了这样一种用于对带材进行平直度测量的测量辊,它具有至少一个一体的、在测量辊长度上螺旋形或直线地延伸的测量传感器,用于测定作用在部分地缠绕在测量辊上的带材的拉力,其中,测量传感器在拉力测量期间以其起始区和终结区至少部分地布置在带材的接触角内,其特征在于:上述测量传感器设计成测量梁,并在端部支承在测力装置上。
按照本发明,在理想情况下,采用一唯一的传感器就足够了并且不存在现有技术由于有限的传感器数量和与此相关的分辨率极限而具有的缺陷。测量的精度更主要地取决于传感器的分辨率,其中在最简单的情况下涉及到一个和两个测力计,这些测力计承受作用于测量梁上的拉力。在此,如果测量辊在带材宽度上配备多个测量梁或分测量梁,则可在一定程度上提高分辨率。因为这些分测量梁分别覆盖测量辊的一小部分。
因此例如在三个分测量梁情况下,每个测量梁上最大的力就降低到整个带材拉力的1/3。因此通过这种方式随之而来自然也使测量精度提高3倍。
最后,可以这样提高分辨率,即,特别窄地构成测量梁并这样倾斜地设置,使得在带材和金属带材缠绕测量辊的接触角范围内仅分别包括测量梁的一个单独的部分。然后由这些测定的浮动平均值直接导出各自的拉应力分布函数。
推荐采用一体组合在测量辊上的(分)测量梁的特别窄而轻质的结构也基于这样的原因,即由此避免测量误差或失真,因为在这种情况下,作用于测量梁上的离心力在金属带材滚压时不起作用或只起可忽略不计的作用。
一种用于对带材进行平直度测量的测量辊由于特别简单的结构而受到青睐,这种结构最终转化为所获得的总力函数和由此导出的拉应力分布函数。这一点被看作是核心。
附图说明
下面借助仅描述一个实施例的附图详细阐述本发明;附图中:
图1a和1b为按照本发明的用于平直度测量的装置的立体图(图1a)和侧视简图(图1b),
图2为图1主题的俯视简图,减少到主要组成部分,
图3为金属带材在测量过程期间和之前的不同时刻,
图4为由图3的工作方式产生的曲线图,该曲线表示在带材宽度B或y上求得的拉力Fx
图5为在一种平整带材和一种波纹带材情况下所获得的总力函数F(y),
图6为拉力dF/dy,作为按照带材宽度y的总力函数F的导数,
图7为拉应力分布函数σx(y),与图6所给出的拉应力分布函数一样,
图8和9为按照本发明的测量辊的变化形式,
图10a局部地示出一个在垂直投影上具有一体组合测量梁的测量辊,
图10b为图10a主题的侧视图,
图11为图10b主题的立体图,
图12具有测力计的测量梁侧视图。
具体实施方式
在附图中示出了一个用于对带材1进行平直度测量的装置,按照本实施例,带材为金属带材1。在图1范围里,可以看到在通过带材生产线时的金属带材1的一部分,在生产线内,例如进行带材或金属带材1的轧制、退火或进行相对的带材处理过程。
一个至少在带材宽度B上延伸的传感器2属于本装置的主要结构,该传感器在本实施例中由测量辊2构成。实际上这个传感器或测量辊2的长度L选择成:
                        L≥B。
图2清楚地表明了这一点,图2以俯视图且示意地示出了具有所属测量辊2的图1中的金属带材1。在这里也可以看出,带材宽度坐标y从属于带材宽度B,而带材移动方向则在X方向上实现。最后,一个只标记出来的计算单元3属于主要结构,该计算单元收集由传感器和测量辊2提供的并在这个位置上测到的拉力Fx并对其进行处理。这些拉力和分拉力Fx在本实施例范围中在X方向上起作用。
测量辊2在其内部具有一个一体组合的测量梁4。这个测量梁4可以在测量辊2的整个长度L上有规则地螺旋延伸或者直线延伸,如同在图1a中所示的那样。在这方面,测量梁4分别在端部支承在两个测力计5或相应的测力装置上,这些测力装置基本在径向对作用于测量梁4的力进行采集并转换成可由计算单元3处理的电信号。
从原理上也可以设置一些销轴代替测量梁4,这些销轴固定在所属的透穿孔上并在与带材1接触时承受压力。即,类似于前面已经描述过的DE 199 18 699 A1那样工作。在此,销轴可以直接与测力装置连接,测力装置本身将相应的信号传给计算单元3。但是也可以是,让销轴在一内置的管里作为测量梁4工作,所述管再通过测力计5给出一个相应的拉力信号。所有这些在图2中借助于一个可选择的测量辊2来表示。
测量辊2用于记录带材或金属带材1的平直度。在这种情况下,在金属带材1在X方向上受拉力负荷时,该拉力负荷大到使所有无限小的带材条都绷得紧紧的,本发明利用了由波纹度引起的各带材条的长度差Δl与相对线性膨胀(在带材移动方向x上)
Δϵ x = Δl l
一致。由此得出拉应力差(在X方向上)
Δσ x = Δl l · E = ΔF x B · s
其中,E为带材材料的弹性模量,Fx为X方向上的拉力,B为带材宽度而s为带材厚度。
由上述关系式实现,拉应力的变化量Δσx可以通过测量拉力Fx导出(如果还将拉力Fx除以带材宽度B和带材厚度s)。这个力Fx或这个力的变化量ΔFx借助于测量辊2测定。在此不是直接测量在带材移动方向x上相应的拉力Fx,而确切地说是测量其径向分力Fx r,该分力由带材1缠绕测量辊2的接触面而产生。(参见图1b)。
根据图2和3可以看出,传感器2或测量辊2相对于带材移动方向x倾斜地设置。与现有技术相比,例如按照DE 199 18 699 A1,通过这种方式不仅可以分段地而且可以近乎连续地在带材宽度B或y上测定各作用于带材1上的拉力Fx
为此,测量辊2分别在时间上错开地测定各拉力Fx,如图3所示。这种在时间上的错开借助于三个不同的时刻t1、t2和t3来表示,这些时刻对应于测量辊2顶靠在移动的带材1上时的不同旋转角度。
对于时刻t1,传感器2/测量辊2或测量梁4的一个起始点或起始区A到达了在所谓的接触长度K内的带材1的一个带材棱边6。这个接触长度K确定了一个大小为K·B的接触面7(参见图3),该接触面与在其内部在测量梁4与带材1之间进行接触的面积相对应。接触角α对应于接触长度K(参见图1b)。
一旦测量梁4的起始点或起始区A到达带材棱边6,测力计5根据现在作用于测量梁4上的拉力Fx的径向分力Fx r记录一个信号。如果现在带材1在带材移动方向x上继续移动并且测量辊2在此在带材1上滚动,测量梁4则以其倾斜的布置逐渐地在整个接触面或测量面7上移动过去。
现在描述时刻t2。因为在这个移动过程中,测量梁4越来越浸入到接触面或测量面7中,在测力计5上测到的拉力Fx也越来越增大。这一直进行到测量梁4或测量辊2的一个终结点或终结区E离开接触面7,这继按照图3的状况之后实现。首先所测到的拉力Fx在增加后达到一个平台式水平,即当测量梁4完全设置在接触面或测量面7内部的时候,而当测量梁4从接触面7移出去的时候,所测到的拉力Fx又降低到零。在图4中示意地示出了这个曲线。
现在是这样,在一个精确平整的带材1情况下,拉力Fx线性地增加,因为不存在相对线性膨胀,即系数
Figure C0313644800081
为数值零。由此也不在拉力Fx上产生差值ΔFx。与此相反,波纹带材1在拉力Fx上产生波动,如同样在图4中对于一个不平整带材所表示的那样。
在观察图5时这个差值也清晰地表示出来,图5将一平整带材(点)与一波纹带材(正方形)进行比较,并且借助于一个取决于带材宽度或带材宽度坐标y的由各拉力Fx获得的总力函数F的坐标曲线图。
如果现在按照带材宽度坐标y求导这个总力函数F(y),即构成微分系数dF/dy,则得出相对于带材宽度坐标y的拉力分布,如在图6中所示的那样。在这种情况下,曲线也仍以点表示平整的带材,而波纹带材仍通过正方形表征。如果现在将这个微分系数dF/dy除以带材厚度s,则直接得到如图7所示的相对于带材宽度或带材宽度坐标y的拉应力分布函数σx(y)。在此,图6和7分别示出图4的一段,即平台前的上升段。当然也可以选择或补充地评价下降段。
借助于图8可以看出,在一种变化形式中,测量辊2在纵向上可以具有多个分测量梁4a、4b和4c。通过这种方式,可以将测量辊2分成多个、现在为三个纵向的测量区。由此可以放大分辨率,因为作用于各分测量梁4a、4b和4c上的最大拉力Fx只等于整个带材拉力的三分之一并由此相应地提高测量精度。
仅仅在图1b中表示出另一种选择,测量辊2在圆周上配有多个分测量梁4。示出总共三个在圆周上分布设置的分测量梁4a、4b和4c,它们与各自的测力计5共同起作用。通过这种方式,测量辊2每转一圈可以进行多个平直度测量。
最后,图9表示,测量梁4可以这样狭窄地实现并可以这样倾斜地设置,使得在测量期间测量梁4以其起始或起始区A和其终结或终结区E不再完全设置在接触角α内部或浸入到这个接触角中,这就如同在目前所述的优选方式范围中所努力实现地那样。相反,接触长度K和与此相关的接触面或测量面7设定为一范围,该范围在带材1移动时只是局部地,而不再是全部地对测量梁4加载。
结果是,在图9中标出的且负责测量拉力Fx的接触面8绝大部分地保持不变而只相对于起始和相对于终结有一偏差。由此对于拉力Fx产生一个数值,该数值几乎等于在带材宽度B或y上所测量的浮动平均值。
在这些方法中,拉力Fx的波动可以直接解释成所属的拉应力或由此得出的拉应力分布函数σx(y)。因为拉力的波动ΔFx在设想的接触面8的变化量dA情况下直接导致拉应力的变化Δσx(y)。由此得到在带材宽度y上所期望的拉应力分布函数σx(y)。无论如何在带材1上的所述拉应力分布函数σx(y)都作为结果产生在上述平直度测量终结时,其示意的形状表示在图1中。
可以设想,测量辊2总体上配有例如由碳化钨或硬铬层构成的外壳。外壳可以具有一个圆柱形的结构,但是不必一定如此。同样可以设想,测量辊2配有冷却剂输送管道,通过所述管道导入冷却剂,以便尽可能精确地进行平直度测量并消除温度影响。导入的冷却剂还保证所使用的测力计5免受由温度引起的损害。这对于按照所述方法要在一热轧机上工作的情况尤其有效。
此外可以设想,在按照图2的通过销轴代替测量梁4的实施例范围中,在销轴或传感器与测量辊2之间必然存在的缝隙要进行密封。这可以通过O形圈、塑料嵌入件或类似密封措施实现。通过这种方式可靠地防止污物的侵入。最后可以设想并包括在本发明的构思中,测量辊2配有一个或多个温度传感器。通过这种方式不仅可以采集移动的带材或金属带材1的温度并接着建立温度曲线。而且这种温度测量还能给出有关测量辊2对冷却剂实际要求的情况,以便使温度保持在约定的范围里或使测量期间的温度效应减小到最小。
如同尤其图10和11所表示的那样,测量梁4在垂直投影中相对于测量辊2的主轴线9以一个给定的倾斜角β延伸。由此测量梁4实际上在测量辊2的表面上形成一椭圆形弯曲。
最后要强调,借助于上述方法当然不仅仅能够获得在带材纵向或x方向上的拉力Fx和拉应力分布函数σx(y)。而且还可选择或附加地能够同样良好地建立和处理例如在y方向上的拉力。

Claims (5)

1.一种用于对带材(1)进行平直度测量的测量辊,它具有至少一个一体的、在测量辊长度(L)上螺旋形或直线地延伸的测量传感器,用于测定作用在部分地缠绕在测量辊(2)上的带材(1)的拉力,其中,测量传感器在拉力测量期间以其起始区(A)和终结区(E)至少部分地布置在带材(1)的接触角(α)内,其特征在于:上述测量传感器设计成测量梁(4),并在端部支承在测力装置上。
2.如权利要求1所述的测量辊,其特征在于:测量辊(2)在纵向上具有多个分测量梁(4a,4b,4c),它们将测量辊(2)分成不同的纵向测量区。
3.如权利要求1或2所述的测量辊,其特征在于:测量辊(2)在圆周方向具有多个分测量梁(4a,4b,4c),使得每转一圈进行多次平直度测量。
4.如权利要求1或2所述的测量辊,其特征在于:所述带材是通过带材生产线或轧机的金属带材。
5.如权利要求1或2所述的测量辊,其特征在于:所述测力装置是测力计(5)。
CNB031364489A 2002-06-04 2003-05-22 用于对带材进行平直度测量的测量辊 Expired - Fee Related CN1289220C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10224938A DE10224938B4 (de) 2002-06-04 2002-06-04 Verfahren und Vorrichtung zur Planheitsmessung von Bändern
DE10224938.5 2002-06-04

Publications (2)

Publication Number Publication Date
CN1467043A CN1467043A (zh) 2004-01-14
CN1289220C true CN1289220C (zh) 2006-12-13

Family

ID=29432650

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB031364489A Expired - Fee Related CN1289220C (zh) 2002-06-04 2003-05-22 用于对带材进行平直度测量的测量辊

Country Status (9)

Country Link
US (1) US6853927B2 (zh)
EP (1) EP1369186B1 (zh)
KR (1) KR100939061B1 (zh)
CN (1) CN1289220C (zh)
BR (1) BR0302094A (zh)
CA (1) CA2428377C (zh)
DE (1) DE10224938B4 (zh)
ES (1) ES2608576T3 (zh)
RU (1) RU2302307C2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103269810A (zh) * 2010-12-24 2013-08-28 三菱日立制铁机械株式会社 热轧设备以及热轧方法

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4053983B2 (ja) * 2001-10-05 2008-02-27 ズンドビク ゲゼルシャフト ミット ベシュレンクテル ハフツング 帯板の引張により応力を加えられた金属帯板における応力分布検出装置
DE10321865B4 (de) * 2003-05-14 2013-06-27 Betriebsforschungsinstitut VDEh - Institut für angewandte Forschung GmbH Messvorrichtung für ein längsbewegtes Band und Messverfahren für Prozessparameter einer Bandförderung
DE102004003676A1 (de) 2004-01-24 2005-08-11 Bwg Bergwerk- Und Walzwerk-Maschinenbau Gmbh Planheitsmessrolle
DE102004008303A1 (de) * 2004-02-20 2005-09-01 Bwg Bergwerk- Und Walzwerk-Maschinenbau Gmbh Verfahren zur Ermittlung von Planheitsfehlern in Bändern, insbesondere Stahl- und Metallbändern, und Planheitsmessrolle
FI20055019A (fi) * 2005-01-17 2006-07-18 Metso Paper Inc Rainan kireysprofiilin mittausmenetelmä ja sitä soveltava tela
JP4504874B2 (ja) * 2005-06-17 2010-07-14 三菱日立製鉄機械株式会社 形状検出装置及びその方法
DE112009000095T5 (de) * 2008-01-24 2011-02-17 Metso Paper, Inc. Papierherstellstreichstation mit druckempfindlicher Filmwalze
US20090321491A1 (en) * 2008-06-06 2009-12-31 Wick William R W Edge Detection System
DE102008030282B3 (de) * 2008-06-30 2009-10-22 Bwg Bergwerk- Und Walzwerk-Maschinenbau Gmbh Planheitsmessrolle und Verfahren zur Ermittlung von Planheitsfehlern eines Bandes
DE112009001939T5 (de) * 2008-09-10 2011-09-29 Metso Paper, Inc. Rollenschneidmaschinenbaugruppe mit einem Sensorsystem
CN101985134B (zh) * 2010-11-04 2014-01-01 中色科技股份有限公司 一种接触式板形测量仪
KR101330540B1 (ko) * 2011-06-29 2013-11-18 현대제철 주식회사 핀치롤용 경사도 측정장치
AT513245B1 (de) * 2012-12-11 2014-03-15 Siemens Vai Metals Tech Gmbh Planheitsmessung und Messung der Eigenspannungen für ein metallisches Flachprodukt
CN104138933B (zh) * 2013-05-10 2016-02-24 宝山钢铁股份有限公司 矫直宽厚板中浪控制方法
US9778390B2 (en) * 2014-10-08 2017-10-03 Halliburton Energy Services, Inc. Electromagnetic imaging for structural inspection
DE102014115023A1 (de) * 2014-10-16 2016-04-21 Bwg Bergwerk- Und Walzwerk-Maschinenbau Gmbh Planheitsmessrolle mit Messbalken in Bandlaufrichtung
EP3168570A1 (fr) 2015-11-10 2017-05-17 Primetals Technologies France SAS Méthode de mesure de planéité d'un produit métallique et dispositif associé
US10746640B2 (en) * 2017-03-21 2020-08-18 Textron Innovations Inc. Methods of making a tubular specimen with a predetermined wrinkle defect
US10744727B2 (en) 2017-03-21 2020-08-18 Textron Innovations Inc. Methods of making a specimen with a predetermined wrinkle defect
DE102018009611A1 (de) * 2018-12-11 2020-06-18 Vdeh-Betriebsforschungsinstitut Gmbh Messrolle zum Feststellen einer Eigenschaft eines über die Messrolle geführten bandförmigen Guts
DE102019001354A1 (de) * 2019-02-26 2020-08-27 VDEh- Betriebsforschungsinsititut GmbH Messrolle zum Feststellen einer Eigenschaft eines über die Messrolle geführten bandförmigen Guts
CN109732961A (zh) * 2019-03-15 2019-05-10 朝阳浪马轮胎有限责任公司 一种在线式带束层宽度测量装置
DE102019217569A1 (de) * 2019-06-25 2020-12-31 Sms Group Gmbh Planheitsmessvorrichtung zur Messung der Planheit eines metallischen Bandes
CN112122364B (zh) * 2019-06-25 2022-06-28 宝山钢铁股份有限公司 一种冷轧带钢表面波纹度的测量方法
CN110672412B (zh) * 2019-09-30 2021-12-21 太原理工大学 一种适用于万能拉伸试验机的板带张力模拟装置
CN111157336B (zh) * 2019-12-26 2022-05-27 宁夏建筑科学研究院股份有限公司 梁式结构现场载荷模拟实验检测装置及其检测方法
DE102021002661A1 (de) 2021-05-21 2022-11-24 Vdeh-Betriebsforschungsinstitut Gmbh Messrolle zum Feststellen einer Eigenschaft eines über die Messrolle geführten bandförmigen Guts, Verwendung einer Messrolle zum Feststellen einer Eigenschaft eines über die Messrolle geführten bandförmigen Guts sowie Verfahren zur Bestimmung der Lage einer Bandkante eines bandförmigen Guts
CN114812481B (zh) * 2022-05-25 2023-09-08 广东包庄科技有限公司 一种检测打包带直度的方法
DE102022125376A1 (de) * 2022-09-30 2024-04-04 VDEh-Betriebsforschungsinstitut Gesellschaft mit beschränkter Haftung Messrolle zum Messen eines Bandzugs, Vorrichtung und Verfahren

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1264100B (de) * 1964-02-13 1968-03-21 Asea Ab Anordnung bei Bandwalzwerken fuer die Messung der Verteilung des Bandzuges ueber dieBandbreite
DE2911621A1 (de) * 1978-03-31 1979-10-04 Loewy Robertson Eng Co Ltd Verfahren zum betreiben eines walzwerks zur erzeugung von metallbaendern
FR2422451A1 (fr) * 1978-04-13 1979-11-09 Usinor Procede et dispositif pour controler la planeite d'une bande metallique laminee a froid
US4261190A (en) * 1979-07-30 1981-04-14 General Electric Company Flatness control in hot strip mill
JPS5691918A (en) * 1979-12-27 1981-07-25 Mitsubishi Electric Corp Load redistribution controller for continuous rolling mill
US4445349A (en) * 1981-11-17 1984-05-01 White Consolidated Industries, Inc. Variable crown roll shape control systems
US4674310A (en) * 1986-01-14 1987-06-23 Wean United Rolling Mills, Inc. Strip tension profile apparatus and associated method
DE3701267A1 (de) * 1987-01-17 1988-07-28 Achenbach Buschhuetten Gmbh Planheitsmesseinrichtung fuer bandfoermiges walzgut
US5235835A (en) * 1988-12-28 1993-08-17 Furukawa Aluminum Co., Ltd Method and apparatus for controlling flatness of strip in a rolling mill using fuzzy reasoning
JP2584922Y2 (ja) * 1992-03-17 1998-11-11 石川島播磨重工業株式会社 形状検出装置
FR2710145B1 (fr) * 1993-09-17 1995-11-17 Gts Ind Procédé de mesure de la forme et/ou de la planéité d'un matériau en défilement, et dispositif pour sa mise en Óoeuvre.
DE19843899C1 (de) * 1998-09-24 2000-05-04 Bwg Bergwerk Walzwerk Verfahren und Vorrichtung zur Planheitsmessung von Bändern
DE19918699B4 (de) * 1999-04-26 2008-03-27 Betriebsforschungsinstitut VDEh - Institut für angewandte Forschung GmbH Meßrolle zum Feststellen von Planheitsabweichungen
DE19947572C2 (de) * 1999-05-28 2003-02-27 Ims Messsysteme Gmbh Verfahren zur Bestimmung der Planheit eines Materialbandes
DE10000845B4 (de) * 2000-01-12 2006-07-27 Bwg Bergwerk- Und Walzwerk-Maschinenbau Gmbh Verfahren und Vorrichtung zur berührungslosen Planheitsmessung von Metallbändern aus ferromagnetischen Werkstoffen
JP3690971B2 (ja) * 2000-08-07 2005-08-31 株式会社日立製作所 形状検出装置を有する圧延設備
US6658947B1 (en) * 2000-08-25 2003-12-09 T. Sendzimir, Inc. Strip flatness measuring device
FR2815705B1 (fr) * 2000-10-20 2003-04-18 Val Clecim Procede et dispositif de detection de planeite
US6668626B2 (en) * 2001-03-01 2003-12-30 Abb Ab System and a method for measuring and determining flatness
EP1634036A4 (en) * 2003-06-13 2007-08-01 Ebara Corp MEASURING DEVICE

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103269810A (zh) * 2010-12-24 2013-08-28 三菱日立制铁机械株式会社 热轧设备以及热轧方法
CN103269810B (zh) * 2010-12-24 2015-03-25 三菱日立制铁机械株式会社 热轧设备以及热轧方法

Also Published As

Publication number Publication date
DE10224938A1 (de) 2004-01-08
CA2428377A1 (en) 2003-12-04
CN1467043A (zh) 2004-01-14
US6853927B2 (en) 2005-02-08
BR0302094A (pt) 2004-09-08
EP1369186A3 (de) 2004-12-29
RU2302307C2 (ru) 2007-07-10
CA2428377C (en) 2009-03-31
EP1369186A2 (de) 2003-12-10
DE10224938B4 (de) 2010-06-17
EP1369186B1 (de) 2016-09-28
KR100939061B1 (ko) 2010-01-28
KR20030093981A (ko) 2003-12-11
US20030236637A1 (en) 2003-12-25
ES2608576T3 (es) 2017-04-12

Similar Documents

Publication Publication Date Title
CN1289220C (zh) 用于对带材进行平直度测量的测量辊
AU2011200884B2 (en) Methods and apparatus for monitoring and conditioning strip material
CN106041010B (zh) 一种连铸大方坯轻压下标定方法
US20100162830A1 (en) Torque-measuring flange
EP1780540A1 (en) Buried pipe examining method
Nguyen et al. Compression tests of cold-formed plain and dimpled steel columns
Ona et al. On strain distributions in the formation of flexible channel section development of flexible cold roll forming machine
Younes et al. A parameters design approach to improve product quality and equipment performance in hot rolling
US20200338609A1 (en) Method for channel decoupling of whole-roller flatness meter for cold-rolled strip
AT522036B1 (de) Verfahren zur Überwachung der Lebensdauer eines verbauten Wälzlagers
Kernosky et al. Development of a die shoulder force transducer for sheet metal forming research
CN108543815B (zh) 整辊式板形检测辊及其板形检测方法
CN105823411A (zh) 一种曲面轮廓测量方法
CN105716746A (zh) 一种将外力测量转化为内力测量的测力方法及其测力装置
JP5597593B2 (ja) 圧延材の捻転発生の検出方法、圧延材の捻転抑制方法及びこれらの方法が採用される圧延機
JPS63246607A (ja) 管棒材の曲り測定方法
Abeyrathna In-line shape compensation for roll forming through process parameter monitoring
AU2014202035B2 (en) An apparatus and machine-accessible medium
Watari et al. Cold-roll forming of small-diameter pipes with pre-notches
CN113740010B (zh) 基于挠度影响线Katz1分形维数的梁结构损伤识别方法
JP6057774B2 (ja) 圧延機におけるミル伸び式の同定方法
Su et al. Research on roll-forming bending angle distribution function based on five boundary conditions
JPH05322724A (ja) 連続製造された薄板の機械的性質の連続測定法及びその方法を実施するための装置
Maksimov et al. Comparative Analysis of the Techniques of Calculating the Parameters of Sheet Leveling on a Roller Leveler
DE102022100439A1 (de) Technik zur Messung des Verschleißes eines Kugelgewindetriebs

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20061213

Termination date: 20180522