CN1286762A - 无源补偿的光纤 - Google Patents

无源补偿的光纤 Download PDF

Info

Publication number
CN1286762A
CN1286762A CN98813903.0A CN98813903A CN1286762A CN 1286762 A CN1286762 A CN 1286762A CN 98813903 A CN98813903 A CN 98813903A CN 1286762 A CN1286762 A CN 1286762A
Authority
CN
China
Prior art keywords
optical fiber
point
support member
fixity
passively compensated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN98813903.0A
Other languages
English (en)
Inventor
T·W·麦克杜格尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Co
Original Assignee
Minnesota Mining and Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minnesota Mining and Manufacturing Co filed Critical Minnesota Mining and Manufacturing Co
Publication of CN1286762A publication Critical patent/CN1286762A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02057Optical fibres with cladding with or without a coating comprising gratings
    • G02B6/02076Refractive index modulation gratings, e.g. Bragg gratings
    • G02B6/02171Refractive index modulation gratings, e.g. Bragg gratings characterised by means for compensating environmentally induced changes
    • G02B6/02176Refractive index modulation gratings, e.g. Bragg gratings characterised by means for compensating environmentally induced changes due to temperature fluctuations
    • G02B6/0218Refractive index modulation gratings, e.g. Bragg gratings characterised by means for compensating environmentally induced changes due to temperature fluctuations using mounting means, e.g. by using a combination of materials having different thermal expansion coefficients
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29304Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by diffraction, e.g. grating
    • G02B6/29316Light guides comprising a diffractive element, e.g. grating in or on the light guide such that diffracted light is confined in the light guide
    • G02B6/29317Light guides of the optical fibre type
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02057Optical fibres with cladding with or without a coating comprising gratings
    • G02B6/02076Refractive index modulation gratings, e.g. Bragg gratings
    • G02B6/0208Refractive index modulation gratings, e.g. Bragg gratings characterised by their structure, wavelength response
    • G02B6/02085Refractive index modulation gratings, e.g. Bragg gratings characterised by their structure, wavelength response characterised by the grating profile, e.g. chirped, apodised, tilted, helical
    • G02B6/02095Long period gratings, i.e. transmission gratings coupling light between core and cladding modes

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)

Abstract

一种无源补偿的光纤(20),它包括一根光纤以及在第一固定点(2)和第二固定点(4)处与光纤固定的支撑件(5)。当温度升高时,第一固定点和第二固定点之间的距离因支撑件的膨胀而增大。当温度改变时,支撑件(5)膨胀,即第一点(2)和第二点(4)之间的距离增大。膨胀产生的应变通过粘结剂(8)传送到包层(40)、纤芯(30)和LPG(31)。由热膨胀的支撑件(5)传送给LPG(31)的应变抵消或补偿了长周期光栅(31)因温度变化而产生的中心波长移动。

Description

无源补偿的光纤
发明背景
本发明涉及光纤和长周期光栅。
光纤用来导光,而所述的光一般是电信中使用的光信号。通常,一根光纤包括内纤芯和外包层。外包层的折射率小于内纤芯。折射率之差造成内反射,迫使光沿内纤芯传播,并且防止光从光纤中漏出。
有些光纤包括长周期光栅。长周期光栅是对内纤芯折射率进行一系列扰动而形成的。如何生产具有长周期光栅的光纤在本领域中是众所周知的,例如美国专利第5,430,817号对此就有描述。一般来说,光纤是由高纯度的SiO2或诸如锗硅酸盐等其它光学材料制成的。长周期光栅可以通过以下方式形成:即首先用氢或氘充填光纤,然后有选择地使光纤纤芯对紫外线曝光。一般,纤芯通过包层曝光于某个强度图案而形成扰动,而强度图案是通过发射紫外线光束并使其穿过幅度掩模而产生的。扰动间隔性产生了由中心波长表征的光栅,在中心波长处,光不再传播通过光纤。具有不同扰动间距的长周期光栅具有不同的中心波长。一般,长周期光栅的扰动间距至少比输入光的波长大10倍。一般,对于700和1500纳米之间的中心波长,周期在15-1500微米范围内。另外,长周期光栅的扰动跨度可以长达若干厘米。
长周期光栅用在光纤中,例如它可以象陷波滤波器那样从光信号中过滤出选定的波长。当光信号通过纤芯传播并且与长周期光栅相遇时,光的特定波长,即光栅的中心波长从纤芯的导模转换成包层的非导模。导模可以传过光纤的纤芯。包层的非导模则通过包层消耗掉,并且不传过光纤。中心波长从导模至非导模的转换是扰动间距以及导模与非导模之间有效折射率之差的函数。一般,对于单模光纤,只存在一个纤芯导模,但有几个包层非导模。另外,包层的每个非导模用唯一的有效折射率来表征。因此,对于一给定的扰动间距,存在几个包层非导模,从而存在几个可以将光从导模转换成非导模的中心波长。另外,对于一给定的中心波长,存在几个可以将光从导模转换成非导模的扰动间距。
具有长周期光栅的光纤可以用作放大的自发发射(ASE)滤光器,掺铒光纤放大器(EDFA)增益均衡器和传感器。使用具有长周期光栅的光纤的场合不断增长。但是,长周期光栅对温度变化敏感。一般,温度每变化100℃,1550纳米的中心波长就会移动2至30纳米。重要的是,例如在电信应用中,要求长周期光栅的中心波长对100℃的温度范围是恒定的。
发明概述
总的来说,在一个方面,本发明提供了一种无源补偿的光纤,该光纤具有一根光纤和一个支撑件。支撑件在第一固定点和第二固定点处与光纤固定。当温度升高时,第一固定点和第二固定点之间的距离因支撑件的膨胀而增大。
无源补偿光纤包括在两点上用环氧树脂与光纤固定的不锈钢制的、铝制的或铜制的支撑件。环氧树脂可以是紫外线可固化的。无源补偿光纤还包括一涂层、一外包层和一内纤芯。内纤芯在第一固定点和第二固定点之间具有一长周期光栅。
在另一方面,本发明提供了一种制造无源补偿光纤的方法。该方法包括以下步骤:对于具有一中心波长的长周期光栅,识别应变响应和热响应;选择其线膨胀系数可以补偿光纤的支撑件;以及将光纤在第一固定点和第二固定点处与支撑件固定。
在另一方面,本发明提供了一种制造无源补偿光纤的方法。该方法包括以下步骤:计算光纤设计,以便补偿具有一中心波长的光纤和具有一热膨胀系数的基底;制造一光纤,该光纤具有用计算得到的光纤设计所构造的长周期光栅;在第一固定点和第二固定点处,将制造得到的光纤固定在支撑件上。
在另一个方面,本发明提供了一种用于补偿光纤的方法。该方法包括以下步骤:提供一根光纤;将光纤固定在第一固定点和第二固定点处;并且响应于温度的升高,增加第一固定点和第二固定点之间的距离。
最好,补偿方法是无源的。
本发明通过将具有LPG的光纤固定在一个热膨胀的支撑件上,提供了一种无源补偿的LPG器件。
附图概述
图1是一示意图,示出了无源补偿的长周期光栅器件;
图2是一曲线图,示出了无源补偿的长周期光栅器件在25℃和100℃下的传输输出信号;
图3是一曲线图,为一个纤芯导模和多个包层非导模之间的耦合示出了中心波长与扰动间距的关系;和
图4是一曲线图,示出了SiO2有效折射率每一微小变化下有效折射率的变化对包层非导模的关系。
较佳实施例的描述
参照图1,无源补偿的LPG器件10包括一光纤20,该光纤具有纤芯30、包层40和用于保护光纤20的涂层50。纤芯30包括长周期光栅31,它具有多个沿LPG器件10之中心轴间隔分布的折射率扰动32,这些扰动占据距离D。可以去除涂层50中包裹在长周期光栅31外的部分105,以露出包层40。暴露的包层40在第一点2和第二点4处通过粘结剂8与支撑件5固定。
当温度变化时,LPG 31的中心波长移至例如较长的波长。在LPG器件10中,支撑件5的热膨胀给LPG 31带来了应变,该应变使中心波长沿反方向移动到例如较短的波长。因此,通过给LPG 31施加应变可以抵消或补偿因温度引起的中心波长的移动。当温度变化时,支撑件5膨胀,即第一点2和第二点4之间的距离增加。膨胀产生应变,应变通过粘结剂8传送到包层40、纤芯30和LPG 31。从热膨胀支撑件5传送到LPG 31的应变抵消或补偿了因温度引起的长周期光栅31之中心波长的移动。
中心波长对温度变化和应变变化的响应可以用来确定补偿中心波长移动所需要的应变量。温度和应变对中心波长的影响是: dλ = dλ dT ΔT + dλ dϵ Δϵ - - - - - - ( 1 ) 其中dλ/dT是在温度每一微小变化下中心波长的变化,称为热系数,而dλ/dε是在应变每一微小变化下中心波长的变化,称为应变系数。Δε等于施加在光栅上的应变,而ΔT等于温度变化。带LPG的光纤具有正的热系数。带LPG的光纤具有正的或负的应变系数。对于无源补偿,如此设计具有LPG的光纤,使光纤具有负的应变系数。下面将进一步地详细讨论光纤的设计。热系数包括了所有的温度影响(即,纤芯折射率的变化、包层折射率的变化,以及玻璃的热膨胀)。同样,应变系数包括了所有的应变影响(即,纤芯折射率的变化、包层折射率的变化,以及光栅间距的变化)。
当中心波长没有变化,即dλ=0时对应变和温度的影响达到了补偿。整理等式1,补偿可以在以下情况下实现 dλ dT ΔT = - dλ dϵ Δϵ - - - - - - ( 2 ) 整理等式2,得到: - dλ / dT dλ / dϵ = Δϵ ΔT = CTE - - - - - - ( 3 ) 由于dλ/dε<0,所以热系数与应变系数的比是负的。因此,等式3的左侧是正的,并且等于施加在光栅上的应变Δε与温度变化ΔT的比。比值Δε/ΔT还等于材料的热膨胀系数(CTE)。因此,当带有LPG的光纤与CTE等于等式3左侧的支撑件固定时,达到补偿。
返回来参照图1,用包层30之厚度为58微米,纤芯40之厚度为9微米的光纤20制造无源补偿的LPG器件10。包层由SiO2制成,而纤芯通过掺GeO2的SiO2制成。纤芯的有效折射率为1.45,包层的有效折射率为1.4446。纤芯40包括LPG 31,LPG 31沿LPG器件10的中心轴具有多个折射率的扰动32,扰动间距为70.5微米,总长为2.5厘米。去除涂层50中45毫米长的包裹在LPG 31周围的部分105。光纤20的热系数和应变系数被测定为0.048纳米/℃和-0.0028纳米/微应变。将这些值用于等式3中,以确定补偿所需的CTE值。将光纤20固定在离开LPG 31一端10毫米的第一点2处和离开LPG 31另一端10毫米的第二点处。用紫外线可固化的粘结剂8将光纤固定在CTE为24微应变/℃的铝制支撑件5上,其中粘结剂例如采用电子材料公司出产的EMCAST 1060A,电子材料公司位于Colorado州Breckenridge市。一般将粘结剂8固定在光纤10的包层40上,大致离开LPG 31的任何一端10毫米。
参照图2,当温度从25℃升高到100℃时,监视稳定化LPG器件10的中心波长。温度每一微小变化下中心波长的变化被测定为0.0017纳米/℃。稳定化LPG器件使中心波长对温度变化的灵敏度降低到1/25。
对于具有LPG且其LPG具有所测温度和应变系数的光纤,支撑件可以由CTE满足等式3的任何材料制成,例如,不锈钢、铝或黄铜。但是,CTE值的范围局限于已知的支撑件材料的CTE值。因此,CTE等于对光纤测得的热系数与应变系数之比的支撑件材料可能不存在。在该情况下,可以使用CTE能够最佳满足等式3的支撑件,或者制造具有LPG且LPG具有不同扰动间距的光纤。一般来说,用较小扰动间距制造的光纤可以用现有的支撑件材料来补偿。例如,假设以100微米的扰动间距制造中心波长为1800纳米的光纤(光纤A),并以300微米的扰动间距制造中心波长为1800纳米的另一根光纤(光纤B)。在两根光纤中,由于光纤A具有较小的扰动间距,所以光纤A比光纤B更可能用现有的材料来补偿。
可以计算是否能够补偿具有特定扰动间距和中心波长的光纤。可以通过设计光纤来影响温度和应变系数,例如设计几何形状、材料和扰动间距。等式3中定义的补偿还通过下式与光纤的折射率变化相关: CTE = - dn SiO 2 dT ( 1 - dn effdlad dn SiO 2 ) dλ / dL - - - - - - ( 4 ) 其中nSiO2是熔融石英的折射率,dnSiO2/dT是6.7×10-6(1/℃),而dλ/dL是LPG在扰动间距每一微小变化下中心波长的变化。已知支撑件材料的CTE值,例如不锈钢的CTE值为11微应变/℃。两个未知量是dneffclad/dnSiO2和dλ/dL,它们对于每种包层非导模是不同的,但它们可计算。另外,中心波长可以从一个导模耦合到几个非导模。因此,选择这样的非导模,即对于一给定的中心波长,其dneffclad/dnSiO2和dλ/dL最接近满足等式4。
通过考虑光纤的几何形状、纤芯折射率、包层折射率和整块SiO2的折射率,解本征值问题,从而计算dneffclad/dnSiO2和dλ/dL的量。建立并解本征值问题的过程类似于为光纤建模而建立方程并解本征值问题时所描述的过程。Monerie在IEEE J.Q.Electronics CE-18,p.535(1982)中,以及Snyder和Love在光学波导理论中对后一过程均有描述。
参照图3,本征值的计算结果可以用来产生中心波长对扰动间距的曲线图。曲线图中的每条实线表示纤芯导模与单个包层非导模之间的耦合。从右至左按升序对这些包层非导膜编号。本征值的计算结果还可用来确定每个包层非导模的斜率dλ/dL。由图可见,最低的包层非导模具有正的斜率,即dλ/dL>0。但是,许多较高的包层非导模具有负的斜率。斜率dλ/dL与LPG应变系数dλ/dε的关系如等式5所示:dλ/dE=(dλ/dL)L    (5)其中L是室温下的光栅间距,并且还表示在应变每一微小变化下扰动间距的变化。因此,当斜率dλ/dL为负时,应变系数是负的。因此,如此制造LPG,使得在纤芯导模和具有负斜率dλ/dL<0的较高包层非导模之间产生中心波长的耦合,从而将LPG设计成具有负的应变系数。
除了斜率之外,每个包层非导模还具有dneffclad/dnSiO2值。参照图4,本征值问题带来的结果可用来绘制dneffclad/dnSiO2值对包层非导模的关系图。每个包层非导模都具有一组唯一的dλ/dL和dneffclad/dnSiO2值。因此,对于一特定的中心波长,等式4可以用若干个包层非导模确定哪个模式最能有效补偿。
注意,在上述实施例中,除去了光纤的涂层,以便直接将应变从热膨胀支撑件通过包层和纤芯传送到LPG。不去除涂层也能制作无源补偿的LPG器件。将带涂层的固定在一种支撑件材料上。在等式3中包含涂层的应变和热响应,由此可以计算无源补偿所需的支撑件材料的CTE。
尽管以上描述了无源补偿的LPG器件,但还可以对具有LPG的光纤进行有源补偿。
其它实施例包含在以下权利要求书的范围内。

Claims (13)

1.一种无源补偿的光纤器件(10),其特征在于,包括:
一根光纤(20);和
一支撑件(5),它在第一固定点(2)和第二固定点(4)处与光纤固定,当温度升高时,第一固定点和第二固定点之间的距离因支撑件的膨胀而增大。
2.如权利要求1所述的无源补偿光纤,其特征在于,支撑件是不锈钢的。
3.如权利要求1所述的无源补偿光纤,其特征在于,支撑件是铝的。
4.如权利要求1所述的无源补偿光纤,其特征在于,支撑件是铜的。
5.如权利要求1-4中任何一项所述的无源补偿光纤,其特征在于,在两点处,用环氧树脂将支撑件与光纤固定。
6.如权利要求1-5中任何一项所述的无源补偿光纤,其特征在于,环氧树脂是紫外线可固化的。
7.如权利要求1-6中任何一项所述的无源补偿光纤,其特征在于,光纤包括涂层(50)。
8.如权利要求1-7中任何一项所述的无源补偿光纤,其特征在于,光纤包括外包层(40)和具有长周期光栅(31)的内纤芯(30)。
9.如权利要求8所述的无源补偿光纤,其特征在于,长周期光栅在第一固定点和第二固定点之间。
10.一种制造无源补偿光纤的方法,其特征在于,包括以下步骤:
对于具有一中心波长的长周期光栅,识别应变响应和热响应;
选择具有线膨胀系数可以补偿光纤的支撑件;
在第一固定点和第二固定点处,将光纤与支撑件固定。
11.一种制造无源补偿光纤的方法,其特征在于,包括以下步骤:
计算光纤设计,以便补偿具有一中心波长的光纤和具有一热膨胀系数的基底;
用计算得到的光纤设计制造具有一长周期光栅的光纤;
在第一固定点和第二固定点处,将制造得到的光纤固定在支撑件上。
12.一种用于补偿光纤的方法,其特征在于,
提供一根光纤;
将光纤固定在第一固定点和第二固定点处,并且
响应于温度的升高,增加第一固定点和第二固定点之间的距离。
13.如权利要求12所述的方法,其特征在于,补偿是无源的。
CN98813903.0A 1998-03-17 1998-07-10 无源补偿的光纤 Pending CN1286762A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US4009098A 1998-03-17 1998-03-17
US09/040,090 1998-03-17

Publications (1)

Publication Number Publication Date
CN1286762A true CN1286762A (zh) 2001-03-07

Family

ID=21909040

Family Applications (1)

Application Number Title Priority Date Filing Date
CN98813903.0A Pending CN1286762A (zh) 1998-03-17 1998-07-10 无源补偿的光纤

Country Status (6)

Country Link
US (1) US6529671B2 (zh)
EP (1) EP1064576A1 (zh)
JP (1) JP2002507760A (zh)
CN (1) CN1286762A (zh)
AU (1) AU8481298A (zh)
WO (1) WO1999047955A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1314980C (zh) * 2003-07-14 2007-05-09 美国飞泰尔有限公司 温度补偿的光纤光栅组件
CN109417264A (zh) * 2016-05-10 2019-03-01 Ii-Vi有限公司 输出波长稳定的紧凑型激光源

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1305113B1 (it) * 1998-12-21 2001-04-10 Cselt Centro Studi Lab Telecom Dispositivo a reticolo di bragg in fibra ottica con compensazionepassiva della temperatura.
US6704143B1 (en) 2000-10-23 2004-03-09 Adc Telecommunications, Inc. Method and apparatus for adjusting an optical element to achieve a precise length
US20040105618A1 (en) * 2000-12-29 2004-06-03 Lee Nicholas A. Apparatus and method for making temperature compensated optical fiber diffraction gratings
FR2822240B1 (fr) * 2001-03-16 2003-09-05 Highwave Optical Tech Dispositif athermique a fibre optique comprenant un composant integre
CA2342098C (en) * 2001-03-23 2008-08-26 Itf Optical Technologies Inc.-Technologies Optiques Itf Inc. Optical filter device for temperature dependence control
JP4028340B2 (ja) * 2002-10-01 2007-12-26 古河電気工業株式会社 温度補償型光ファイバグレーティング部品
US7095910B2 (en) * 2003-01-31 2006-08-22 Honeywell International, Inc. Wavelength division multiplexing coupling device
KR100913366B1 (ko) * 2007-07-18 2009-08-20 성균관대학교산학협력단 SPR(Surface PlasomonResonance)현상을 이용한 광 바이오 센서

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4593969A (en) 1983-10-28 1986-06-10 Chevron Research Company Ruggedized grated optical fiber
US4636031A (en) 1983-10-28 1987-01-13 Chevron Research Company Process of tuning a grated optical fiber and the tuned optical fiber
US5042898A (en) * 1989-12-26 1991-08-27 United Technologies Corporation Incorporated Bragg filter temperature compensated optical waveguide device
US5367589A (en) 1993-10-22 1994-11-22 At&T Bell Laboratories Optical fiber package
US5430817A (en) 1994-03-31 1995-07-04 At&T Corp. Optical systems and devices using long period spectral shaping devices
US5469520A (en) 1994-09-30 1995-11-21 United Technologies Corporation Compression-tuned fiber grating
US5703978A (en) 1995-10-04 1997-12-30 Lucent Technologies Inc. Temperature insensitive long-period fiber grating devices
JP2000503415A (ja) * 1996-01-16 2000-03-21 コーニング インコーポレイテッド 非感熱性光学素子
US5641956A (en) * 1996-02-02 1997-06-24 F&S, Inc. Optical waveguide sensor arrangement having guided modes-non guided modes grating coupler
US5926599A (en) 1996-06-13 1999-07-20 Corning Incorporated Optical device and fusion seal
US5757540A (en) 1996-09-06 1998-05-26 Lucent Technologies Inc. Long-period fiber grating devices packaged for temperature stability
US5694503A (en) 1996-09-09 1997-12-02 Lucent Technologies Inc. Article comprising a temperature compensated optical fiber refractive index grating
US5841920A (en) 1997-03-18 1998-11-24 Lucent Technologies Inc. Fiber grating package
US6266462B1 (en) * 1998-02-12 2001-07-24 Ultraband Fiber Optics Acousto-optic filter
US5987200A (en) 1997-10-27 1999-11-16 Lucent Technologies Inc. Device for tuning wavelength response of an optical fiber grating
US5999671A (en) 1997-10-27 1999-12-07 Lucent Technologies Inc. Tunable long-period optical grating device and optical systems employing same
US5991483A (en) 1998-02-10 1999-11-23 Lucent Technologies Inc. Optical fiber grating packages
US6128424A (en) * 1998-03-31 2000-10-03 Litton Systems Inc. Dual purpose input electrode structure for MIOCs (multi-function integrated optics chips)
US6055348A (en) * 1998-09-23 2000-04-25 Lucent Technologies Inc. Tunable grating device and optical communication devices and systems comprising same
US6181852B1 (en) * 1998-09-23 2001-01-30 Lucent Technologies Inc. Optical grating device with variable coating
KR100283866B1 (ko) * 1998-10-02 2001-03-02 박호군 광섬유 증폭기의 이득 조절 장치 및 방법
US6278819B1 (en) * 1999-10-12 2001-08-21 Corning Incorporated Method and apparatus for manufacturing optical fiber components

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1314980C (zh) * 2003-07-14 2007-05-09 美国飞泰尔有限公司 温度补偿的光纤光栅组件
CN109417264A (zh) * 2016-05-10 2019-03-01 Ii-Vi有限公司 输出波长稳定的紧凑型激光源

Also Published As

Publication number Publication date
EP1064576A1 (en) 2001-01-03
WO1999047955A1 (en) 1999-09-23
US20020181926A1 (en) 2002-12-05
US6529671B2 (en) 2003-03-04
JP2002507760A (ja) 2002-03-12
AU8481298A (en) 1999-10-11

Similar Documents

Publication Publication Date Title
US5641956A (en) Optical waveguide sensor arrangement having guided modes-non guided modes grating coupler
Ke et al. Analysis of phase-shifted long-period fiber gratings
James et al. Optical fibre long-period grating sensors: characteristics and application
Silva et al. Temperature and strain-independent curvature sensor based on a singlemode/multimode fiber optic structure
US5757540A (en) Long-period fiber grating devices packaged for temperature stability
EP1144969B1 (en) Strain-isolated bragg grating temperature sensor
WO1995030926A1 (en) Variable property light transmitting device
US9267854B2 (en) Strain and temperature discrimination using fiber bragg gratings in a cross-wire configuration
US6865194B1 (en) Strain-isolated Bragg grating temperature sensor
CN1286762A (zh) 无源补偿的光纤
US6278810B1 (en) Measurement of distributed strain and temperature based on higher order and higher mode Bragg conditions
GB2155621A (en) Optical fibre sensors
JP3797880B2 (ja) Fbg歪みセンサー
Wang et al. Strain Characteristics of ${\hbox {CO}} _ {2} $-Laser-Carved Long Period Fiber Gratings
Ma et al. Fiber strain sensor based on incline plane-shaped long period fiber grating induced by CO 2 laser polishing
Bal et al. Temperature independent bend measurement using a pi-phase shifted FBG at twice the Bragg wavelength
Zhu et al. EDFA gain flattening using phase‐shifted long‐period grating
Fuhr et al. A novel signal demodulation technique for chirped Bragg grating strain sensors
Khun-In et al. Coupled mode characteristics from the perturbation of 3D printed long-period fiber grating devices
KR100279518B1 (ko) 일정한 온도 특성을 가지는 브라그 회절격자장치
Gerami et al. Analysis of Multimode Interference in a Fabricated Fiber Optic Refractive Index Sensor
JP2000329626A (ja) 温度張力測定ファイバグレーティングセンサ
ITTO981063A1 (it) Dispositivo a reticolo di bragg in fibra ottica con compensazionepassiva della temperatura.
JP2001343263A (ja) 光導波路グレーティングセンサ及び複数物理量の同時計測方法
JP2023521128A (ja) 光ファイバ圧力センサおよびその感知の方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication