CN1280615C - 具有直管的科里奥利流量计 - Google Patents
具有直管的科里奥利流量计 Download PDFInfo
- Publication number
- CN1280615C CN1280615C CNB028244974A CN02824497A CN1280615C CN 1280615 C CN1280615 C CN 1280615C CN B028244974 A CNB028244974 A CN B028244974A CN 02824497 A CN02824497 A CN 02824497A CN 1280615 C CN1280615 C CN 1280615C
- Authority
- CN
- China
- Prior art keywords
- measuring tube
- pipeline section
- oscillation
- tube
- transition piece
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/76—Devices for measuring mass flow of a fluid or a fluent solid material
- G01F1/78—Direct mass flowmeters
- G01F1/80—Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
- G01F1/84—Coriolis or gyroscopic mass flowmeters
- G01F1/8409—Coriolis or gyroscopic mass flowmeters constructional details
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D39/00—Application of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by plating; Tube expanders
- B21D39/06—Application of procedures in order to connect objects or parts, e.g. coating with sheet metal otherwise than by plating; Tube expanders of tubes in openings, e.g. rolling-in
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/76—Devices for measuring mass flow of a fluid or a fluent solid material
- G01F1/78—Direct mass flowmeters
- G01F1/80—Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
- G01F1/84—Coriolis or gyroscopic mass flowmeters
- G01F1/8409—Coriolis or gyroscopic mass flowmeters constructional details
- G01F1/8413—Coriolis or gyroscopic mass flowmeters constructional details means for influencing the flowmeter's motional or vibrational behaviour, e.g., conduit support or fixing means, or conduit attachments
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/76—Devices for measuring mass flow of a fluid or a fluent solid material
- G01F1/78—Direct mass flowmeters
- G01F1/80—Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
- G01F1/84—Coriolis or gyroscopic mass flowmeters
- G01F1/845—Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits
- G01F1/8468—Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits
- G01F1/849—Coriolis or gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits vibrating measuring conduits having straight measuring conduits
Landscapes
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Measuring Volume Flow (AREA)
Abstract
该传感器包括:至少一个测量管(1),用于引导流体,该测量管具有一入口端和一出口端,并且至少周期性振动。该测量管(1)利用导入入口端的第一管段(11)和导入出口端的第二管段(12)与一管道相连,用于使得流体能够流经该测量管(1)。测量管(1)被支座(2)可振荡地支撑,支座(2)由第一过渡件(21)固定至第一管段(11)并被利用第二过渡件(22)固定至第二管段(12)。特别为了在流动的流体中生成依赖于质量流量的科里奥利力和/或为了生成依赖于粘度的摩擦力,测量管(1)在操作期间执行围绕振荡轴(S)的机械振动,该振荡轴(S)虚拟连接上述两管段(11,12)。为了令测量管(1)的支撑免于扭曲,两个过渡件(21,22)中至少有一个具有带有第一止动棱(31)的止块(3),该第一止动棱(31)部分接触相关管段(11)或(12),并至少逐段在振荡轴(S)的方向上延伸。利用止块(3),支座(2)和测量管(1)的相对扭曲在很大程度上被防止,即使在与热相关的膨胀和没有使用其它焊接或软焊连接的情况中。
Description
技术领域
本发明涉及一种振动型传感器。特别地,本发明涉及这种振动型传感器的测量管在用于支撑测量管的支座中的固定,该振动型传感器特别是基于科里奥利原理工作的质量流量传感器。
背景技术
原理上,对于这种用于测量管道中流经的流体的“线上”传感器,仅有两种测量管,它们是直测量管和任意弯曲或者甚至盘卷的测量管环,其中U形是优选的管形式。于是,编号为4127028、4524610、4768384、4793191、4823614、5253533、5610342、6006609的美国专利以及本受让人的尚未公开的欧洲专利申请01112546.5描述了振动型传感器,特别用于在流动的流体中产生由质量流量决定的科里奥利力,和/或产生由粘度决定的摩擦力,这种传感器
-具有至少一个用于引导流体的测量管,该测量管具有入口端和出口端,并且至少周期性振动,该测量管
--利用导入入口端的第一管段和导入出口端的第二管段与一管道相连,用于使得流体能够流经该测量管,并且
--在操作期间,执行围绕振荡轴的机械振动,该振荡轴虚拟连接上述两管段,并且
-具有用于振荡地支撑测量管的支座,该支座被利用第一过渡件固定至第一管段并被利用第二过渡件固定至第二管段。
特别地,在用于测量质量流速的科里奥利质量流量传感器的情况中,主要由于对称的原因,当使用直测量管或合适测量管环时采用两个测量管。当静止时,两个管在两个平行平面内相互平行延伸,并且往往流体也平行流经它们。对于两种变型之一,即具有两平行直管的变型,仅作为例子可以参考美国专利4768384、4793191和5610342,而对于另一种变形,即具有两平行(特别是相同形状的)U形管环,例如参见美国专利4127028。
除了以科里奥利原理工作的双管质量流量传感器的上述类型,在市场中已经建立了另一种类型的传感器,即仅使用一个直或弯的测量管。这种传感器在例如美国专利4524610、4823614、5253533、6006609和未公开的欧洲专利申请01112546.5中有所说明。
另外,美国专利4823614说明,测量管的每一端插入入口侧或出口侧过渡件的匹配孔,并且通过正面和背面的焊接、软焊、铜焊而固定在其中;参见在一些图中可见的材料焊珠。然后过渡件被固定在外部支座中。
正如已经在美国专利5610342中讨论的,在上述焊接、软焊、铜焊期间向测量管到过渡件的安装位置提供的所需热量在冷却后可以产生残余机械应力,其能够导致应力腐蚀裂纹,特别是当流体正被测量时,以或多或少的程度侵袭测量管的材料。为了尽可能完全地消除对于科里奥利质量流量传感器的测量管的这种应力腐蚀裂纹的危险,已经在美国专利5610342中同样提出了在过渡件中固定测量管的改进方法,其中测量管的每一端被分别插入入口侧或出口侧过渡件的相应孔中,并利用位于该端中的轧辊工具,无需引入热量便压向孔内壁。适于这种方法的轧辊工具在例如美国专利4090382中有所说明,该专利涉及锅炉或热交换器的管的密封。
然而,对于由这种方法制造的传感器的研究显示,在存在温度波动,特别是在可能的温度骤变(例如可以在常规执行的例如使用极热的洗液的清洗操作的情况中发生)的情况中,通常相互加紧的上述过渡件和测量管的不同膨胀性能能够导致由过渡件施加于测量管的夹紧力落至低于临界值。这可以表明由于热导致的膨胀,过渡件和测量管失去了由碾压带来的机械接触,使得支座能够相对于测量管绕上述振荡轴扭曲。对于这种不是完全被排除的支座扭曲的情况,特别是具有测量管的传感器在工作期间也执行绕振荡轴的扭转振荡的情况,替换整个测量设备变为不可避免的。
发明内容
从现有技术情况的上述缺点出发,本发明的目的是:将所述类型的传感器改进为,在保留通过测量管的碾压而制造传感器所赢得的优点的同时,可以即使在由热引起膨胀的情况中也能在很大程度上排除支座和测量管的相对扭转。
为了达到这个目的,本发明提供了一种振动型传感器,其用于在流动的流体中产生依赖于质量流量的科里奥利力和/或依赖于粘度的摩擦力,该传感器包括:
-至少一个测量管,用于引导流体,该测量管具有一入口端和一出口端,并且周期性振动,其中该测量管
--利用导入入口端的第一管段和导入出口端的第二管段与一管道相连,用于使得流体能够流经该测量管,并且
--在操作期间,执行围绕振荡轴的机械振荡,该振荡轴虚拟连接上述两管段,和
-用于振荡地支撑测量管的支座,该支座被利用第一过渡件固定至第一管段并被利用第二过渡件固定至第二管段,
--其中两个过渡件中至少有一个具有带有第一止动棱的止块(3),该第一止动棱部分接触相关管段并至少逐段在振荡轴的方向上延伸。
在本发明的传感器的第一优选发展中,止块具有第二止动棱,该第二止动棱部分接触相关管段并至少逐段在振荡轴的方向上延伸。
在本发明的传感器的第二优选发展中,止块被形成为凹槽,其至少部分由相关管段的材料填充。
附图说明
现在根据附图详细解释本发明及其具有优点的发展,在附图中:
图1是透视示意及部分剖面图,显示了对于本发明的具有至少一个测量管的质量流量传感器的一个实施例的例子的基本部分;
图2是透视示意及部分剖面图,显示了凹槽的实施例的例子,该凹槽用作图1的测量管的防扭曲支撑的止块;
图3以正视图显示了图2的凹槽;和
图4示意性显示了用于制造图1的质量流量传感器的方法步骤。
具体实施方式
本发明重要的是振动型传感器,例如科里奥利质量流量传感器,的部分,如图1所示。为了清楚,没有显示对于全部功能所需的类似的剩余部分;对于省略的部分,参考在现有技术中提到的文档。
直的第一管段11引入这里仅部分显示的在工作中振动的测量管1的入口端,该第一管段11由第一过渡件21的孔21A接收;而引入测量管1的出口端的直的第二管段12插入第二过渡件22的孔22A。过渡件21、22与至少一个横向布置的基板23一起形成支座2,该支座2夹住至少一个测量管1,使得管仍然能够振荡。这个支座2可以构造为例如盒形或圆柱形的;特别是它可以构造为包围测量管1的支撑管。
在操作中,测量管1例如通过法兰或螺旋连接而插入运送待测流动流体(例如,液体或气体)的管道路线中,使得待测流体也流经测量管1。
为了产生表征流体的反作用力,例如与质量流速相关的科里奥利力,或者与粘度相关的摩擦力,在工作中令测量管1至少周期性振动,同时两管段11、12至少成比例地执行绕振荡轴S的扭曲振荡,该振荡轴S虚拟连接两管段11、12。为了记录测量管1的振动并且为了产生对应于振动的振动信号,可以以本领域技术人员所熟知的方式(未显示)将振荡传感器放置在测量管1附近。
为了防止支座相对于管段11、12以及相对于测量管1,特别是对于经受较大温度波动的传感器,的扭曲,过渡件21、22中的至少一个
(这里以过渡件21为例)具有止块3;当然,另一过渡件22也可以具有这种止块,特别是除止块3之外的另一止块。
如图2所示,止块3包括至少一个止动棱31,其接触一部分相关管段11并至少逐段地在振荡轴S的方向上延伸。止动棱31上形成相关孔21A。正如这里在图2中所指出的,止动棱31可以基本完全穿过孔21A;然而,它也可以例如仅在孔21A的较短部分上延伸。
在本发明的一个优选实施例中,止块3包括第二止动棱32,其具有优点地这样形成并放置在孔21A中,使得止块3为凹槽的形式且至少部分由相关管段11的壁材料填充;如图3所示。
然而,止动棱32也可以例如这样形成和放置,使得止块3为凸耳的形式且至少部分被管段11的壁材料所围绕。
对于这种传感器中使用的例如钛、不锈钢或锆的测量管,其测量管壁厚为0.5mm~2mm,槽深为例如约0.2mm,已经发现槽宽为0.5mm~2mm是足够的。
止块3优选地被利用拉刀切割出预制孔21A。当然,也可以使用本领域技术人员所熟知的其它金属加工处理,例如铣削或冲压。
参考图4,为了产生在测量管1和支座3之间的机械连接,管段11被插入过渡件21,并且管段12插入过渡件22。在将管段11安置在过渡件21中之后,轧辊工具6至少部分放置在管段11的腔体内,如图4示意性地示出的。轧辊工具6在插入方向上的前端具有外罩61,同时辊62分布在外罩61的圆柱形表面上并设置在相应的开口中。
轧辊工具6旋转期间辊62移动所循的中心圆的半径可以利用活塞63调节,该活塞63可以在插入方向上移动。通过将该半径相比轧辊工具6初始插入管段11腔体内时的半径而增加,令工具逐段压向孔21A的内壁。
现在管段11这样压向相关孔21A的内壁而无需引入热量。这导致管段11的材料轻微流动,并且于是导致在这些位置,特别时在止块区域中,管段11和过渡件21之间非常牢固的机械连接。利用轧辊工具6产生的压紧力以及止块的形状和尺寸应当相互匹配,使得令足够量的管段11的材料流入止块3的区域;关于这一点,也参见图3。
由于管段11的这种塑性变形,在其壁中存在部分轻微的减小,使得一方面在管段11的长度方向上产生机械应力(下面的讨论中称为“轴向应力”),因为管段11轻微伸长,所以发生这种应力。另一方面,在孔21A内发生径向方向上的机械应力(下面的讨论中称为“径向应力”)。可以这样归纳径向应力:在挤压期间,管段11确实被塑性形变,但是过渡件21由于厚度远大于管段11的壁厚所以基本上仅被弹性形变,并且因而在挤压之后,过渡件21将径向力直接施加至管段11的内腔。
现在,与具有被焊接或软焊到支座的测量管的传感器的情况(其中应力腐蚀裂纹总有可能存在)相比,径向应力是在实际中可以避免有害的应力腐蚀裂纹的原理上的原因。轴向应力类似地用于这种避免,但是程度要小得多。在具有至少两个测量管的传感器的情况中,压力对于测量管的动态优化平衡也是特别有益的;关于这一点,也参考美国专利5610342。
本发明的一个显著优点在于,保留了在美国专利5610342中已说明的关于制造传感器的方法的优点,即将测量管1有保护地固定至支座2而无需焊接或软焊连接且因此无需热应力,同时以非常简单的方式实现强度的改进,特别是测量管1和支座2之间的机械连接的耐用性的进步。
Claims (4)
1.振动型传感器,用于在流动的流体中产生依赖于质量流量的科里奥利力和/或依赖于粘度的摩擦力,该传感器包括:
-至少一个测量管(1),用于引导流体,该测量管具有一入口端和一出口端,并且周期性振动,其中该测量管(1)
--利用导入入口端的第一管段(11)和导入出口端的第二管段(12)与一管道相连,用于使得流体能够流经该测量管,并且
--在操作期间,执行围绕振荡轴(S)的机械振荡,该振荡轴(S)虚拟连接上述两管段(11,12),和
-支座(2),用于振荡地支撑测量管(1),该支座(2)被利用第一过渡件(21)固定至第一管段(11)并被利用第二过渡件(22)固定至第二管段(12),
--其中两个过渡件(21,22)中至少有一个具有带有第一止动棱(31)的止块(3),该第一止动棱(31)部分接触相关管段(11,12),并至少逐段在振荡轴(S)的方向上延伸。
2.根据权利要求1的传感器,其中止块(3)具有第二止动棱(32),其部分接触相关管段(11,12),并至少逐段在振荡轴的方向上延伸。
3.根据权利要求2的传感器,其中止块(3)被形成为凹槽,其至少部分由相关管段(11,12)的材料填充。
4.根据前述任一权利要求所述的传感器,其中管段(11,12)在操作期间至少成比例地执行绕振荡轴(S)的扭转振荡。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10159809.2A DE10159809B4 (de) | 2001-12-05 | 2001-12-05 | Messaufnehmer vom Vibrationstyp |
DE10159809.2 | 2001-12-05 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1602412A CN1602412A (zh) | 2005-03-30 |
CN1280615C true CN1280615C (zh) | 2006-10-18 |
Family
ID=7708171
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB028244974A Expired - Lifetime CN1280615C (zh) | 2001-12-05 | 2002-11-30 | 具有直管的科里奥利流量计 |
Country Status (10)
Country | Link |
---|---|
US (1) | US7121151B2 (zh) |
EP (1) | EP1451534B1 (zh) |
JP (1) | JP2005529310A (zh) |
CN (1) | CN1280615C (zh) |
AU (1) | AU2002365691A1 (zh) |
CA (1) | CA2469194C (zh) |
DE (1) | DE10159809B4 (zh) |
DK (1) | DK1451534T3 (zh) |
RU (1) | RU2279040C2 (zh) |
WO (1) | WO2003048693A1 (zh) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7610795B2 (en) * | 2003-09-25 | 2009-11-03 | Endress + Hauser Flowtec Ag | Method for adjusting a mechanical natural frequency |
US20080223797A1 (en) * | 2006-09-20 | 2008-09-18 | Omnipure Filter Company, Inc. | Filters with improved media utilization and methods of making and using same |
US8167141B2 (en) | 2004-06-30 | 2012-05-01 | Brita Lp | Gravity flow filter |
US7299699B2 (en) | 2004-10-05 | 2007-11-27 | Endress + Hauser Flowtec Ag | Composite system, method for its manufacture, and measurement pickup using such a composite system |
DE102004048765A1 (de) * | 2004-10-05 | 2006-04-06 | Endress + Hauser Flowtec Ag | Verbund-System, Verfahren zu dessen Herstellung sowie Messaufnehmer mit einem solchen Verbund-System |
DK1914526T3 (en) | 2005-02-25 | 2017-10-23 | Endress & Hauser Flowtec Ag | VIBRATION TYPE MEASUREMENT SENSOR |
US7631561B2 (en) | 2006-03-22 | 2009-12-15 | Endress + Hauser Flowtec Ag | Measuring transducer of vibration-type |
US7555962B2 (en) | 2006-03-22 | 2009-07-07 | Endress + Hauser Flowtec Ag | Measuring transducer of vibration-type |
DE102006013601A1 (de) | 2006-03-22 | 2007-09-27 | Endress + Hauser Flowtec Ag | Meßaufnehmer vom Vibrationstyp |
US7546777B2 (en) | 2006-03-22 | 2009-06-16 | Endress + Hauser Flowtec Ag | Measuring transducer of vibration-type |
DE102006036702A1 (de) * | 2006-08-05 | 2008-02-07 | Abb Patent Gmbh | Verfahren zur Herstellung einer stoffschlüssigen Verbindung, sowie Durchflussmessgerät |
US20110073551A1 (en) * | 2006-09-20 | 2011-03-31 | Omnipure Filter Company, Inc. | Filter modules for improved media utilization and use in generally cylindrical housing |
USD615150S1 (en) | 2007-09-20 | 2010-05-04 | Omnipure Filter Co., Inc. | Filter block for liquid filtration |
DE102013114742A1 (de) | 2013-12-20 | 2015-06-25 | Endress + Hauser Flowtec Ag | Verfahren zum Fixieren eines Metallrohres an einem Metallkörper |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US553533A (en) | 1896-01-28 | Educational | ||
US4090382A (en) | 1977-01-31 | 1978-05-23 | Thomas C. Wilson, Inc. | Expanding and beading apparatus for tubes and the like |
US4127028A (en) | 1977-06-07 | 1978-11-28 | Halliburton Company | Coriolis mass flow rate metering means |
US4524610A (en) | 1983-09-02 | 1985-06-25 | National Metal And Refining Company, Ltd. | In-line vibratory viscometer-densitometer |
US4823614A (en) | 1986-04-28 | 1989-04-25 | Dahlin Erik B | Coriolis-type mass flowmeter |
DE3632851A1 (de) | 1986-09-26 | 1988-04-07 | Flowtec Ag | Nach dem coriolisprinzip arbeitendes massendurchflussmessgeraet |
DE3632800A1 (de) | 1986-09-26 | 1988-04-07 | Flowtec Ag | Nach dem coriolisprinzip arbeitendes massendurchflussmessgeraet |
DE3724675A1 (de) | 1987-07-25 | 1989-02-02 | Heraeus Elektroden | Waermeuebertrager |
EP0469448A1 (de) | 1990-07-28 | 1992-02-05 | KROHNE MESSTECHNIK MASSAMETRON GmbH & Co. KG | Massendurchflussmessgerät |
JP2758798B2 (ja) * | 1992-11-19 | 1998-05-28 | 株式会社オーバル | コリオリ流量計 |
US5691485A (en) * | 1994-06-06 | 1997-11-25 | Oval Corporation | Coaxial double tube type Coriolis flowmeter |
ES2204933T3 (es) | 1994-09-19 | 2004-05-01 | Endress + Hauser Flowtec Ag | Procedimiento para fijar los tubos de medicion de un sensor de caudal de masa. |
JP2840578B2 (ja) * | 1995-12-26 | 1998-12-24 | 株式会社オーバル | コリオリ流量計 |
DE59700185D1 (de) | 1996-12-11 | 1999-07-08 | Flowtec Ag | Coriolis-Massendurchfluss-/-Dichte-Aufnehmer mit einem einzigen geraden Messrohr |
US6168069B1 (en) * | 1997-07-18 | 2001-01-02 | Endress +Hauser Flowtec Ag | Method of brazing titanium to stainless steel |
US6314820B1 (en) | 1999-02-10 | 2001-11-13 | Micro Motion, Inc. | Lateral mode stabilizer for Coriolis flowmeter |
DE10003784B4 (de) * | 1999-12-27 | 2004-12-09 | Krohne Ag | Coriolis-Massendurchflußmeßgerät |
ES2267769T3 (es) * | 2000-05-16 | 2007-03-16 | Independent Stave Co. | Procedimiento para la eliminacion de sabores anormales de bebidas. |
EP1260798A1 (de) | 2001-05-23 | 2002-11-27 | Endress + Hauser Flowtec AG | Messwandler vom Vibrationstyp |
-
2001
- 2001-12-05 DE DE10159809.2A patent/DE10159809B4/de not_active Expired - Lifetime
-
2002
- 2002-11-30 EP EP02804207.5A patent/EP1451534B1/de not_active Expired - Lifetime
- 2002-11-30 JP JP2003549842A patent/JP2005529310A/ja active Pending
- 2002-11-30 CN CNB028244974A patent/CN1280615C/zh not_active Expired - Lifetime
- 2002-11-30 RU RU2004119959/28A patent/RU2279040C2/ru not_active IP Right Cessation
- 2002-11-30 CA CA2469194A patent/CA2469194C/en not_active Expired - Fee Related
- 2002-11-30 AU AU2002365691A patent/AU2002365691A1/en not_active Abandoned
- 2002-11-30 US US10/496,795 patent/US7121151B2/en not_active Expired - Lifetime
- 2002-11-30 DK DK02804207.5T patent/DK1451534T3/en active
- 2002-11-30 WO PCT/EP2002/013539 patent/WO2003048693A1/de active Application Filing
Also Published As
Publication number | Publication date |
---|---|
RU2279040C2 (ru) | 2006-06-27 |
WO2003048693A1 (de) | 2003-06-12 |
EP1451534A1 (de) | 2004-09-01 |
DK1451534T3 (en) | 2015-12-14 |
JP2005529310A (ja) | 2005-09-29 |
CA2469194C (en) | 2010-04-27 |
AU2002365691A1 (en) | 2003-06-17 |
DE10159809A1 (de) | 2003-06-18 |
DE10159809B4 (de) | 2020-07-16 |
RU2004119959A (ru) | 2005-04-10 |
EP1451534B1 (de) | 2015-09-16 |
US7121151B2 (en) | 2006-10-17 |
CA2469194A1 (en) | 2003-06-12 |
CN1602412A (zh) | 2005-03-30 |
US20050172731A1 (en) | 2005-08-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1280615C (zh) | 具有直管的科里奥利流量计 | |
CN1050190C (zh) | 质量流量传感器测量导管的固定方法 | |
US7546777B2 (en) | Measuring transducer of vibration-type | |
US7631561B2 (en) | Measuring transducer of vibration-type | |
CN1023658C (zh) | 摆梁式涡流传感器 | |
CN105264339B (zh) | 超声波流量计 | |
CN1095070C (zh) | 涡流流量计检测器和涡流流量计 | |
JP4565150B2 (ja) | コリオリ流量計 | |
US8746399B2 (en) | Acoustic waveguide assemblies | |
CN1157591C (zh) | 科里奥利质量流量计 | |
CN1371469A (zh) | 具有带保护外层的套管的科里奥利流量计 | |
JP2000234947A (ja) | 質量流量測定器 | |
US7509879B2 (en) | Vibration-type measurement pickup and its measuring tube | |
DE69942787D1 (de) | Coriolis-massendurchflussmesser und verfahren zu seiner herstellung | |
CN209470739U (zh) | 支撑组件和包括该支撑组件的科里奥利质量流量计 | |
CN1145473A (zh) | 科里奥利氏流量计 | |
RU2008123857A (ru) | Измерительный преобразователь вибрационного типа и применение измерительного преобразователя в измерительном приборе | |
US6401555B1 (en) | Tube packing extension assembly for use in high temperature gas flow sensing elements and the like | |
CN109425395B (zh) | 科里奥利质量流量计及其传感器组件 | |
US20080246230A1 (en) | Seal for Measuring Device | |
CN211824590U (zh) | 质量流量计的附接件及用于质量流量计的安装结构 | |
US20190063976A1 (en) | Coriolis Mass Flowmeter and Sensor Assembly Thereof | |
CN218411014U (zh) | 一种管道法兰的同心度测量工具 | |
JP2007263773A (ja) | 管厚測定装置及び方法 | |
RU25338U1 (ru) | Сливная трубка |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CX01 | Expiry of patent term |
Granted publication date: 20061018 |
|
CX01 | Expiry of patent term |