CN1277671A - 多模式双相冷却组件 - Google Patents

多模式双相冷却组件 Download PDF

Info

Publication number
CN1277671A
CN1277671A CN98810597A CN98810597A CN1277671A CN 1277671 A CN1277671 A CN 1277671A CN 98810597 A CN98810597 A CN 98810597A CN 98810597 A CN98810597 A CN 98810597A CN 1277671 A CN1277671 A CN 1277671A
Authority
CN
China
Prior art keywords
cooling
fluid
cooling module
housing portion
housing section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN98810597A
Other languages
English (en)
Other versions
CN1179186C (zh
Inventor
迈克尔·雷·爱德华兹
加龙·科克·莫里斯
库尔特·阿瑟·埃斯蒂斯
马丁·佩斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Motorola Solutions Inc
Original Assignee
Motorola Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Motorola Inc filed Critical Motorola Inc
Publication of CN1277671A publication Critical patent/CN1277671A/zh
Application granted granted Critical
Publication of CN1179186C publication Critical patent/CN1179186C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S165/00Heat exchange
    • Y10S165/908Fluid jets

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

一种多模式、双相冷却组件(10)包括第一壳体部(20),第二壳体部(30),和第三壳体部(40)。冷却液(22)被存放在第一壳体部(20)中,而一个或多个电子元件(24)则被安装在所要液池冷却的第一壳体部(20)的外表面上。第二壳体部(30)在其一个内表面上固定有一个或多个喷雾喷嘴(32),而在其一个外表面上与喷雾喷嘴(32)相对应的位置上则安装有一个或多个电子元件(34)。第三壳体部(40)在其内表面上具有一个或多个冷凝器(42),而在外表面上则具有一个或多个散热器(44)。在冷凝器(42)的内表面邻近处提供一个或多个电扇(46),压电风扇或喷雾喷嘴(48)。冷却组件(10)由导热材料制成。

Description

多模式双相冷却组件
本发明的一般涉及一种用于电子元件的冷却组件,具体涉及一种适用于高功率和低功率电子元件配置的多模式、双相冷却组件。
近年来,随着集成电路(IC)元件的电子封装技术的不断进步,电子元件的集成密度越来越高,从而使得电子设备中所产生的热量也相应地越来越多。其结果是,先进电子设备对散热能力的要求相应地变得越来越高。
通常方法是利用气冷系统来冷却电子设备。而现在,为了减小电子器件的装配尺寸,不得不将许多高热通量部件彼此靠得很近,超出了当前气冷技术的能力。
另外,还常采用的一种方法是利用单相液体冷却系统来冷却电子元件。但是液体冷却需要外置的冷凝旋管和/或显著的管路设备。因此,液体冷却系统相对地尺寸要大,重量要沉,且成本也要高。
用于冷却航空电子设备的现有技术系统中,有多种方法均采用了热管。热管是一种用于中继内部蒸发和冷凝循环的密封热动力学系统。其包括一个外壳,内衬于该外壳内壁的管芯材质,以及用于浸湿该管芯的工作流体。该热管的一端被称为蒸发器,其用于吸收热能。在蒸发器中所形成的蒸汽被传送到该热管的另一端,其被称为冷凝器,并由其来释放热能。而随后液体通过该热管内部的一种管芯结构被回送到蒸发器中,由此便完成了整个过程。此种热管性能的好坏很大程度上取决于工作温度,管芯干燥程度,以及内部产生不可冷凝气体的情况。因此,热管技术仅限于对于低功率电子元件的冷却。
喷雾冷却技术可以被用来冷却高散热电子元件。通常,喷雾冷却的排热级较其它技术要大一些。在喷雾冷却系统中,来自储液器中的液体被泵压到喷雾组件中。随后再将其喷雾到所要冷却的区域。器件所散发的热量将使该液体蒸发,由此吸收或排去了部分的热量。利用泵使剩余的液体和蒸汽流过冷凝器。随后,该泵将冷却后的液体送回到储液器中,以进行循环再用。然而,在喷雾冷却系统工作的过程中,可能会从上述液体或构造材料中释放出一些不可冷凝气体。由于这些不可冷凝气体将占据工作蒸汽的位置,并阻碍蒸汽与冷凝器表面相接触,所以冷凝器的性能将会下降。因此,不可冷凝气体的产生,将会严重损害热管和喷雾冷却组件的排热效率。
在本发明的一种实施例中,提供了一种用于电子元件的多模式、双相冷却组件,其包括3个部分:第一壳体部,第二壳体部,和第三壳体部。
冷却液被保存在第一壳体部或储液器部的内腔中。在该第一壳体部的外表面上安装有一个或多个电子元件。这些电子元件可以是低-到-中等功率的电子元件。
第二壳体部或蒸发器部具有一个或多个固定于内表面上的喷雾喷嘴。而一个或多个高功率电子元件则被安装在其一个外表面上与这些喷雾喷嘴相对的位置上。
第三壳体部或冷凝器部在其内表面上至少具有一个冷凝器,而在外表面上则至少具有一个散热器。
根据本发明的另一种实施例,上述冷却组件包含有电扇,压电风扇,或喷雾喷嘴,以用于避免不可冷凝气体聚集在冷凝器的内表面上,同时用于加大不可冷凝气体和冷却液蒸汽的紊流程度,以促使其相互混合。
图1所示为根据本发明一种实施例的多模式、双相冷却组件的剖面图;
图2所示为根据本发明的另一种实施例的多模式、双相冷却组件的剖面图;
图3所示为根据本发明再一种实施例的多模式、双相冷却组件的剖面图。
参照图1,在本发明的一种实施例中,根据本发明的一种用于冷却电子元件的多模式、双相冷却组件10包括:第一壳体部20,第二壳体部30和第三壳体部40。
第一壳体部20起到了存放冷却液22的液体容器的作用。冷却液22可以选用水、酒精、全氟介质液体,或其它类型的相变液体。在下部20的外表面上安装有一个或多个低功率电子元件24。并通过冷却液22的液池沸腾来冷却电子元件24。尽管出于例示的目的,图1中只显示了一个电子元件24,但实际上电子元件的数目决不仅局限于一个。
第二壳体部30在其内表面上固定有一个或多个喷雾喷嘴32。而在冷却组件10一个外表面上与喷雾喷嘴32相对应的位置上,则安装有一个或多个高功率电子元件34。第一壳体部20中的冷却液22可流通到喷雾喷嘴32处。通过泵26将冷却液22提供给喷雾喷嘴32。一旦与第二壳体部30的受热部分相接触,一部分冷却液22将变为蒸汽36。而其余部分的冷却液22则将仍保持液态,并流回到第一壳体部20。冷却蒸汽36通过第二壳体部30上升到第三壳体部40中。尽管出于例示的目的,图1中只显示一个喷雾喷嘴32和一个高功率电子元件34,但实际上喷雾喷嘴32与高功率电子元件34的数目并不仅局限于一个。
第三壳体部40内表面上包含有一个或多个冷凝表面42,同时在外表面上具有一个或多个散热器44。在冷凝表面42上,冷却蒸汽36将被冷凝。通过冷凝器42与散热器44之间的热交换,可以在冷却组件10的外部除去热量。散热器44可以是散热片,或诸如此类。
在本实施例中,冷却组件10具有一种铜焊和/或金属焊组装结构,允许在其外表面上安装多个电子元件。用于加工冷却组件10的金属材料由铜、不锈钢、铝或诸如此类的材料组成。由于冷却组件10的材料是金属,所以本发明可以被用作电子元件24和34的地参考电平。
参照图2,其所示为根据本发明另一种实施例的用于冷却电子元件的多模式、双相冷却组件10。在此实施例中,第一壳体部20和第二壳体部30的结构与上文中所述实施例的结构相同。然而,第三壳体部40则包含有一个靠近冷凝器42内表面的导流器。尽管图2所示该实施例的导流器是一部电扇46,但实际上导流器并不仅限于电扇,比如说也可以是压电风扇,喷雾喷嘴或任何其它可操作来在某特定介质或组合介质中引起流动的装置。如图3所示,其是利用喷雾喷嘴48来引起流动的。该喷雾喷嘴48可以与第二壳体部30中所用的喷雾喷嘴32相同。同时,导流器的位置并不仅局限于图2和图3中所示的位置。实际上,导流器可以处于冷却组件10的第三壳体部40内部的任何位置,只要其能够引起不可冷凝气体和冷却液蒸汽产生紊流即可。
当通过液池沸腾方式冷却电子元件24或对电子元件34进行喷雾冷却时,将会产生冷却液蒸汽,同时也可能会释放出不可冷凝气体。这些冷却液蒸汽和不可冷凝气体上升到冷却组件10的第三壳体部40中,并趋向于聚集在冷凝器42的内表面上。气体的上述聚集情况将影响冷凝器42的排热效率。另外,由于同时存在不可冷凝气体和冷却液蒸汽,冷却组件10内部的压力将会增大,由此将会使冷却液22的蒸发温度(沸点)升高,从而使得根据本发明的该种双相冷却组件10的相变冷却效率下降。
在第二实施例中,诸如压电风扇,电扇,或喷雾喷嘴等类型导流器的功能是,增加不可冷凝气体和冷却液蒸汽的紊流程度,以使其相互混合,并使得先前所存留的冷却液22从冷却组件10的第三壳体部40的内表面上移走。因此,该实施例的冷却组件10的热交换效率可以得到提高。
其应被理解的是,导流器46或48的数目,以及每个导流器46或48的方向均不受限制,只要其能够引起有效的紊流,使不可冷凝气体和冷却液蒸汽能够有效地混合即可。
尽管如图1,2,3中所示,泵26均被安装在多模式、双相冷却组件10的外部,但实际上也可以将其安装在内部。
另外,不必非得是冷凝表面42,也可以将散热片或不规则表面用作第三壳体部40中的冷凝器。
尽管上文中结合其多种实施例对本发明进行示意性地说明,但在不背离本发明的精神和范围的情况下可以对其进行多种形式的变型。

Claims (6)

1.一种双相冷却组件,包括:
形成了内腔的外壳,该内腔具有第一部分和第二部分,第一部分存放有第一流体,该种第一流体具有第一状态和第二状态,第二部分存放有第二流体和处于第二状态的第一流体;以及
位于第二部分中的导流器,该导流器将第二流体和处于第二状态的第一流体混合在一起,以使第一流体从第二状态变为第一状态,并流回到第一部分中。
2.如权利要求1所述的双相冷却组件,其特征在于第一部分包括储液器,同时第二部分包括蒸发器。
3.如权利要求2所述的双相冷却组件,其特征在于另外包括:
靠近蒸发器的冷凝器,第一流体经过该冷凝器从蒸发器输送回储液器中。
4.如权利要求1所述的双相冷却组件,其特征在于第一流体由全氟化碳流体组成。
5.如权利要求4所述的双相冷却组件,其特征在于第二流体由空气组成。
6.如权利要求5所述的双相冷却组件,其特征在于上述第一和第二状态分别是液态和气态。
CNB988105977A 1997-10-29 1998-07-31 多模式双相冷却组件 Expired - Fee Related CN1179186C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/960,395 1997-10-29
US08/960,395 US5924482A (en) 1997-10-29 1997-10-29 Multi-mode, two-phase cooling module

Publications (2)

Publication Number Publication Date
CN1277671A true CN1277671A (zh) 2000-12-20
CN1179186C CN1179186C (zh) 2004-12-08

Family

ID=25503108

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB988105977A Expired - Fee Related CN1179186C (zh) 1997-10-29 1998-07-31 多模式双相冷却组件

Country Status (6)

Country Link
US (1) US5924482A (zh)
EP (1) EP1049905A4 (zh)
JP (1) JP2001521138A (zh)
KR (1) KR100367043B1 (zh)
CN (1) CN1179186C (zh)
WO (1) WO1999022192A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103982959A (zh) * 2013-09-29 2014-08-13 郭舜成 热量传递装置、温度冷却装置和温度聚集装置
CN107282463A (zh) * 2016-04-13 2017-10-24 伟立精密机械有限公司 可程控的自动降温系统
CN112696961A (zh) * 2019-10-23 2021-04-23 北京航空航天大学 一种三级相变换热器

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6672370B2 (en) * 2000-03-14 2004-01-06 Intel Corporation Apparatus and method for passive phase change thermal management
US6377458B1 (en) * 2000-07-31 2002-04-23 Hewlett-Packard Company Integrated EMI containment and spray cooling module utilizing a magnetically coupled pump
US20020134534A1 (en) 2001-03-20 2002-09-26 Motorola, Inc. Press formed two-phase cooling module and method for making same
US6498725B2 (en) 2001-05-01 2002-12-24 Mainstream Engineering Corporation Method and two-phase spray cooling apparatus
US6646879B2 (en) * 2001-05-16 2003-11-11 Cray Inc. Spray evaporative cooling system and method
US6981543B2 (en) * 2001-09-20 2006-01-03 Intel Corporation Modular capillary pumped loop cooling system
US6604571B1 (en) 2002-04-11 2003-08-12 General Dynamics Land Systems, Inc. Evaporative cooling of electrical components
US7836706B2 (en) 2002-09-27 2010-11-23 Parker Intangibles Llc Thermal management system for evaporative spray cooling
US7159414B2 (en) * 2002-09-27 2007-01-09 Isothermal Systems Research Inc. Hotspot coldplate spray cooling system
US6889515B2 (en) * 2002-11-12 2005-05-10 Isothermal Systems Research, Inc. Spray cooling system
US6976528B1 (en) 2003-02-18 2005-12-20 Isothermal Systems Research, Inc. Spray cooling system for extreme environments
US6827135B1 (en) * 2003-06-12 2004-12-07 Gary W. Kramer High flux heat removal system using jet impingement of water at subatmospheric pressure
US20050183844A1 (en) * 2004-02-24 2005-08-25 Isothermal Systems Research Hotspot spray cooling
US6952346B2 (en) * 2004-02-24 2005-10-04 Isothermal Systems Research, Inc Etched open microchannel spray cooling
JP4512815B2 (ja) * 2004-07-30 2010-07-28 エスペック株式会社 バーンイン装置
JP4426396B2 (ja) * 2004-07-30 2010-03-03 エスペック株式会社 冷却装置
US20060090882A1 (en) * 2004-10-28 2006-05-04 Ioan Sauciuc Thin film evaporation heat dissipation device that prevents bubble formation
US6973801B1 (en) 2004-12-09 2005-12-13 International Business Machines Corporation Cooling system and method employing a closed loop coolant path and micro-scaled cooling structure within an electronics subsystem of an electronics rack
US7184269B2 (en) * 2004-12-09 2007-02-27 International Business Machines Company Cooling apparatus and method for an electronics module employing an integrated heat exchange assembly
US7274566B2 (en) * 2004-12-09 2007-09-25 International Business Machines Corporation Cooling apparatus for an electronics subsystem employing a coolant flow drive apparatus between coolant flow paths
JP3999235B2 (ja) 2005-03-15 2007-10-31 株式会社ジェイエフティ 金型冷却装置
US7298618B2 (en) * 2005-10-25 2007-11-20 International Business Machines Corporation Cooling apparatuses and methods employing discrete cold plates compliantly coupled between a common manifold and electronics components of an assembly to be cooled
US20070144199A1 (en) * 2005-12-28 2007-06-28 Scott Brian A Method and apparatus of using an atomizer in a two-phase liquid vapor enclosure
JP4554557B2 (ja) 2006-06-13 2010-09-29 トヨタ自動車株式会社 冷却器
WO2008127644A1 (en) * 2007-04-13 2008-10-23 Xcelaero Corporation Evaporative cooling system for electronic components
US20090071630A1 (en) * 2007-09-17 2009-03-19 Raytheon Company Cooling System for High Power Vacuum Tubes
US10051762B2 (en) * 2011-02-11 2018-08-14 Tai-Her Yang Temperature equalization apparatus jetting fluid for thermal conduction used in electrical equipment
EP2704835A4 (en) * 2011-05-06 2014-12-24 Bio Rad Laboratories THERMOCYCLE COMPRISING A STEAM CHAMBER FOR RAPID TEMPERATURE CHANGES
US9848509B2 (en) 2011-06-27 2017-12-19 Ebullient, Inc. Heat sink module
US9901013B2 (en) 2011-06-27 2018-02-20 Ebullient, Inc. Method of cooling series-connected heat sink modules
US9832913B2 (en) 2011-06-27 2017-11-28 Ebullient, Inc. Method of operating a cooling apparatus to provide stable two-phase flow
US9901008B2 (en) 2014-10-27 2018-02-20 Ebullient, Inc. Redundant heat sink module
US9854714B2 (en) 2011-06-27 2017-12-26 Ebullient, Inc. Method of absorbing sensible and latent heat with series-connected heat sinks
US9854715B2 (en) 2011-06-27 2017-12-26 Ebullient, Inc. Flexible two-phase cooling system
US10006720B2 (en) * 2011-08-01 2018-06-26 Teledyne Scientific & Imaging, Llc System for using active and passive cooling for high power thermal management
US9746248B2 (en) * 2011-10-18 2017-08-29 Thermal Corp. Heat pipe having a wick with a hybrid profile
US9261308B2 (en) 2012-11-08 2016-02-16 International Business Machines Corporation Pump-enhanced, sub-cooling of immersion-cooling fluid
TW201442608A (zh) * 2013-04-19 2014-11-01 Microthermal Technology Corp 相變化散熱裝置及其相變化散熱系統
US9357675B2 (en) 2013-10-21 2016-05-31 International Business Machines Corporation Pump-enhanced, immersion-cooling of electronic component(s)
US20160120059A1 (en) 2014-10-27 2016-04-28 Ebullient, Llc Two-phase cooling system
US10184699B2 (en) 2014-10-27 2019-01-22 Ebullient, Inc. Fluid distribution unit for two-phase cooling system
US9852963B2 (en) 2014-10-27 2017-12-26 Ebullient, Inc. Microprocessor assembly adapted for fluid cooling
US9560790B2 (en) * 2015-05-13 2017-01-31 Toyota Motor Engineering & Manufacturing North America, Inc. Power electronics cooling system with two-phase cooler
CN204968334U (zh) * 2015-10-12 2016-01-13 讯凯国际股份有限公司 散热系统
US10356950B2 (en) 2017-12-18 2019-07-16 Ge Aviation Systems, Llc Avionics heat exchanger
US11578928B2 (en) * 2019-02-13 2023-02-14 Bae Systems Information And Electronic Systems Integration Inc. Evaporative cooling for transducer array
JP7029009B1 (ja) * 2021-03-09 2022-03-02 古河電気工業株式会社 ヒートシンク

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU73122A1 (ru) * 1947-10-23 1947-11-30 Т.Т. Соловьев Зимовал канального типа дл зимовки рыбы
US2875263A (en) * 1953-08-28 1959-02-24 Westinghouse Electric Corp Transformer control apparatus
US3581811A (en) * 1969-08-04 1971-06-01 Julie Research Lab Inc Constant temperature bath for high power precision resistor
US3950947A (en) * 1969-12-24 1976-04-20 U.S. Philips Corporation Hot-gas machine comprising a heat transfer device
SU464768A1 (ru) * 1973-05-23 1975-03-25 Ленинградский Институт Точной Механики И Оптики Установка дл испарительного охлаждени тепловыдел ющего источника
US4186559A (en) * 1976-06-07 1980-02-05 Decker Bert J Heat pipe-turbine
SU646160A2 (ru) * 1977-10-07 1979-02-05 Предприятие П/Я 4444 Устройство дл охлаждени тепловыдел ющей аппаратуры
US4352392A (en) * 1980-12-24 1982-10-05 Thermacore, Inc. Mechanically assisted evaporator surface
US4336837A (en) * 1981-02-11 1982-06-29 The United States Of America As Represented By The United States Department Of Energy Entirely passive heat pipe apparatus capable of operating against gravity
US4498118A (en) * 1983-04-05 1985-02-05 Bicc-Vero Electronics Limited Circuit board installation
EP0298372B1 (en) * 1987-07-10 1993-01-13 Hitachi, Ltd. Semiconductor cooling apparatus
US4967829A (en) * 1987-12-09 1990-11-06 Walter F. Albers Heat and mass transfer rates by liquid spray impingement
JPH05136305A (ja) * 1991-11-08 1993-06-01 Hitachi Ltd 発熱体の冷却装置
US5406807A (en) * 1992-06-17 1995-04-18 Hitachi, Ltd. Apparatus for cooling semiconductor device and computer having the same
US5316075A (en) * 1992-12-22 1994-05-31 Hughes Aircraft Company Liquid jet cold plate for impingement cooling
US5325913A (en) * 1993-06-25 1994-07-05 The United States Of America As Represented By The Secretary Of The Navy Module cooling system
JP3525498B2 (ja) * 1994-07-13 2004-05-10 株式会社デンソー 沸騰冷却装置
WO1996031750A1 (en) * 1995-04-05 1996-10-10 The University Of Nottingham Heat pipe with improved energy transfer
US5566751A (en) * 1995-05-22 1996-10-22 Thermacore, Inc. Vented vapor source

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103982959A (zh) * 2013-09-29 2014-08-13 郭舜成 热量传递装置、温度冷却装置和温度聚集装置
CN103982959B (zh) * 2013-09-29 2017-08-11 郭舜成 热量传递装置、温度冷却装置和温度聚集装置
CN107282463A (zh) * 2016-04-13 2017-10-24 伟立精密机械有限公司 可程控的自动降温系统
CN112696961A (zh) * 2019-10-23 2021-04-23 北京航空航天大学 一种三级相变换热器

Also Published As

Publication number Publication date
KR100367043B1 (ko) 2003-01-09
EP1049905A4 (en) 2002-01-09
CN1179186C (zh) 2004-12-08
WO1999022192A1 (en) 1999-05-06
EP1049905A1 (en) 2000-11-08
KR20010031540A (ko) 2001-04-16
JP2001521138A (ja) 2001-11-06
US5924482A (en) 1999-07-20

Similar Documents

Publication Publication Date Title
CN1179186C (zh) 多模式双相冷却组件
TWI422318B (zh) 數據機房
EP2170030B1 (en) Electronic apparatus
EP3474647B1 (en) Cooling system of working medium contact type for high-power device, and working method thereof
EP1383170B1 (en) Thermosiphon for electronics cooling with nonuniform airflow
JP2020136335A (ja) 冷却装置、冷却システム及び冷却方法
US7077189B1 (en) Liquid cooled thermosiphon with flexible coolant tubes
US7936560B2 (en) Cooling device and electronic equipment including cooling device
US6260613B1 (en) Transient cooling augmentation for electronic components
US20070144707A1 (en) Cooling assembly with successively contracting and expanding coolant flow
US20060162903A1 (en) Liquid cooled thermosiphon with flexible partition
US20060283579A1 (en) Integrated liquid cooled heat sink for electronic components
WO2011122207A1 (ja) 電子機器排気の冷却装置及び冷却システム
CN102573385A (zh) 发热装置喷淋式蒸发冷却循环系统
JP2001349651A (ja) 相変化冷却剤を用いた汲出し液体冷却装置
CN102834688A (zh) 相变冷却器和设有该相变冷却器的电子设备
EA012095B1 (ru) Плоская охлаждающая система на основе термосифона для компьютеров и других электронных устройств
WO2007115270A2 (en) Cooling apparatus with surface enhancement boiling heat transfer
US10874034B1 (en) Pump driven liquid cooling module with tower fins
JP2002505033A (ja) 発熱部品を冷却するための放熱システム及び方法
CN108733181A (zh) 用于机箱的水冷板机构
JP4744280B2 (ja) 冷却機構を備えた電子機器
CN103593026A (zh) 双相变化循环式水冷模块及其使用方法
CN201039655Y (zh) 散热器结构
JPH0267792A (ja) 浸漬冷却モジュール

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee