CN1275156A - 改进重质原油生产的方法 - Google Patents

改进重质原油生产的方法 Download PDF

Info

Publication number
CN1275156A
CN1275156A CN98810092A CN98810092A CN1275156A CN 1275156 A CN1275156 A CN 1275156A CN 98810092 A CN98810092 A CN 98810092A CN 98810092 A CN98810092 A CN 98810092A CN 1275156 A CN1275156 A CN 1275156A
Authority
CN
China
Prior art keywords
solvent
oil
crude oil
crude
pipeline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN98810092A
Other languages
English (en)
Other versions
CN1152118C (zh
Inventor
欧内斯特·O·奥赫松尔
约翰·W·平克顿
托马斯·E·吉勒斯匹
托马斯·H·莱逖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Quaid Lent runs Limited by Share Ltd
Original Assignee
Unipure Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unipure Corp filed Critical Unipure Corp
Publication of CN1275156A publication Critical patent/CN1275156A/zh
Application granted granted Critical
Publication of CN1152118C publication Critical patent/CN1152118C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G21/00Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents
    • C10G21/003Solvent de-asphalting
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G33/00Dewatering or demulsification of hydrocarbon oils
    • C10G33/04Dewatering or demulsification of hydrocarbon oils with chemical means
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G53/00Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more refining processes
    • C10G53/02Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more refining processes plural serial stages only
    • C10G53/04Treatment of hydrocarbon oils, in the absence of hydrogen, by two or more refining processes plural serial stages only including at least one extraction step

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

本发明涉及一种改进重质原油生产的方法,该方法包括加入一种稀释剂或溶剂,即一种轻质烃,用以降低所加工原油的粘度和比重。稀释后,借助稀释剂的二次加入,原油中的乳状液破乳,之后原油分离成原油组分。这就提高了原油质量,增加用于炼油厂加工的回收油量。本发明应用中,也容许重油中高沥青含量,产生一种对环境无害的固体和水排出方法,借助设备的调节,该方法本身可以在井口得以应用。

Description

改进重质原油生产的方法
发明领域
本发明涉及从重质原油生产中提取可用原油的改进。这种改进可以应用于油田生产地区及炼油厂。
                    发明背景
在炼油分离前的原油加工中,难处理的乳状液的存在常常带来严重的问题,导致油的损失、污染问题、腐蚀、结垢或者堵塞问题,以及昂贵的环境处理费用。当从原油形成源开采原油时,这些乳状液经常伴随着产生,尤其是当原油是燃油比重度数(美国石油协会)约为20或更小的重质原油时,特别是那些燃油比重度数为7至12的原油,这些原油特别难于开采,并且开采到时,又难于精制。许多开采到的原油还含有可溶性的无机盐,如氯化钠、氯化钙、氯化镁或硫酸盐。原油中存在的这些盐会给炼油厂的原油加工造成损害,导致严重的腐蚀、裂解产量低、造成堵塞及最终设备损坏。通常通过将原油与洗液混合以使水相溶出盐,并沉降在脱盐容器中,对进入炼油厂的原油进行“脱盐”。这些容器常常串联起来,构成多级脱盐。经常在沉淀油层中,配备电格栅,促进和加速残留的水滴凝聚。最近对重质加拿大和中国原油进行的分析工作说明了精制重质原油的内在问题,Oil&Gas January,Januanry20,1997上的一篇文章报道大量存在的两种典型重质原油的组成成分,但是对回收及加工没有提出建议。尤其就重质原油来说,问题之一涉及由重金属及氧、硫及氮的不良有机化合物造成的污染。这些物质通常与乳状液的有机界面结构紧密缔结,因而恶化了乳状液难处理性,并且在炼油过程中造成腐蚀及不希望的污染。
世界上大部分地区的重质原油经常是讨厌的、难于处理的,因此,人们认为进行开采和炼制是不经济的。所以,需要适合在重质原油开采地附近使用的油乳状液破乳/分离技术,在所述重质原油开采地,开采出来的重质原油结合有大量的水分及固体。当高压蒸汽或其他介质,特别是表面活性剂溶液被注入开采源中,以增强对高密度、高粘度原油的回收时,情况更是如此。流向表面的原油-水混合物一般含有相当的、甚至是大量的难分离的油包水或水包油乳状液。一些与地下岩层中的油共存的石蜡与沥青,以及充当乳状液稳定剂的细碎无机固体如砂子或粘土,在油-水界面产生一屏蔽,阻止水滴凝聚。这些难加工的乳状液存在严重的处理问题,也意味着重大的经济浪费。尽管美国专利第4,938,876号记载了炼油操作中的一种十分成功、有用的破乳系统,但是这些低粘度、高比重的原油抵触了为有意义的油回收所进行的成功的强化比重分离。
对从原油形成处开采到的重质原油进行加工中,越来越普遍地遇到含大量沥青或树脂状物质组分的原油。这种原油因粘度大、比重高以及重金属和硫的含量大,特别难于加工。在现有技术中,优质润滑油是由精制重质油馏分生产得到的,在精制过程中,通过将全部馏分溶于低沸点溶剂如丙烷或丁烷中,然后在加压下将溶液加热到接近溶剂的临界温度点,将沥青和树脂除去,在溶剂临界温度点,溶剂溶解本领降低,油中最不希望有的馏分一即沥青和/或树脂组分沉淀下来。在炼油环境中,这是令人满意的,但是对于棘手的重质原油至今还未适用过。
此外,世界上许多地区的重质原油的特征是沥青质含量高,使得它们很难用作炼油原料。在世界大部分地区,在首当其冲处理不要的重质馏分的情况下,含沥青的重质原油的早期生产仅仅在井口除去油田油中的较轻、较易炼制的馏分。还有,其他难于开采的原油源是焦油砂,其主要发源于加拿大,其中的固体物质难于从可精制的原油中分离出来,并且可能进行分离时,由于所处理固体的连续污染会产生突出的处理问题。
因此,本发明的一个目的是提供一种处理这些重质原油,回收更多的可精制产品的方法,并提供有益于环境的无用物质的处理。
本发明的另一目的是提供一种在进入精制工序之前,预处理开采到的重质原油,除去原油中的沥青质的方法。本发明的又一目的是提供一种分离开采时污染重质原油的固体物质的方法,以便可以有益于环境的方式处理分离后的固体。
本发明的再一目的是提供一种使所开采原油中产生的难处理乳状液破乳的方法,以便回收更大量的可精制原油,并使之进入精制工序。本发明特别优选的目的是提供这样的方法以及能够在井口装在某一垫板或装置于滑动底板支撑物上的系统,以便在把不要的物质输送到炼油厂之前,将其从可精制原油中分离出来。
本发明的上述及其他有益目的可通过本文所述的发明实现。
                   发明概述
在本发明的应用中,将一种轻质烃稀释剂加入到原油混合物中,用以降低粘度及比重。原油可溶解于其中的这种稀释剂,在乳状液中导致比重低于水的油相,为了促进后续基于比重的油相与水相的分离,这是必须的,从而可能使原油更易精制。这也使乳状液不太可能重新形成。所选稀释剂具有低沸点,因而便于从开采到原油中最终回收该稀释剂,使其可以循环到分离工序供再使用。
低沸点稀释剂或溶剂可以是低级烷烃如C3~C6烃类、石脑油类、芳香馏分、芳香类如苯和甲苯,在井口现场,冷凝的天然汽油可以作为稀释剂或溶剂,或者上述物质的混合物。加入量要足以达到完成其加入目的的数量。如上所述,一个重要的目的是使油相比重大大低于水的比重,以便在加工过程中,可采用增强的比重分离技术分离两相或用于降低原油粘度,易于泵送,提高分离设备的性能。它还促进沥青、沥青质或树脂状物质从原油剩余部分中的沉降。对于一些沥青质原油,处理每体积原油,要求使用大约一至八体积的轻质烃溶剂。因为在加工过程中,甚至在将原油送至炼油厂之前,基本上所有的溶剂/稀释剂被回收,所以加入的量不重要,因为它们是可回收,并可再使用的。但是,稀释剂过量太多可能对资金支出产生不利影响,因为该部分体积必须通过该系统。在两相分离中,粘度用来判断所加入的轻质烃的量,因为目标粘度大约低于50cp,低于10cp为优选,因为10cp是有效粘度水平。最好原油和溶剂混合物的粘度约为1~5cp。据测定,对于实际应用来说,体积百分比约为5%~35%是另人满意的,优选约为10%~20%。应该提到的是,在正常情况下,稀释剂和原油彼此互为助溶剂,因而产生双重益处。具有这些特征的溶剂是本发明的一部分。最好在破乳闪蒸步骤之后再次加入稀释剂,以进一步增强油的回收以及同固体及盐的分离。换句话说,生产出更优质的原油,销售给炼油厂。
                 附图简单说明
图1是破乳与重质原油分离的工艺方案流程图
图2是破乳与提高重质原油质量的方法流程图。
图3是表示使用所述发明的优选方案,闪蒸纯化、溶剂脱沥青以及原油脱盐联合的流程图。其中,第二步加入溶剂是为了实现原油的脱沥青。
                  发明的详细说明
本方法用于从固体如砂子或焦炭或半固体如沥青中回收有用原油。它是一种灵活方法,该方法可由本领域的技术人员用于提高许多不同的重质原油的质量。
一种联合方法包括未精制重质原油的完整加工步骤,该步骤可以包括以下的许多步骤,但不必是所有的步骤。原油,尤其是重质原油在特征、组成及性质上变化很大。根据下述提高重质原油质量的处理方法的说明,处理方法的许多变化显而易见。本领域中的技术人员将会看出本发明应用的许多有益的变化。这些步骤的绝大多数是众所周知的。
首先通过合适尺寸的筛子,将机械杂质粗粒从原油中除去。筛选装置排列成双重体系,交替地,一个筛子进行操作时,另一个筛子被设置在旁边,并被洗净。这一步骤除去像岩石之类的大块固体和其他较大块的有机及无机固体。
如下所述,将筛选过的原油与一定体积的水及溶剂在搅拌着的存储槽中混合,以确保后续加工的均匀性。
将筛选过的原油与适量的足以溶解原油所含的所有无机盐的相对无盐的水混合。原油可能占1%~10%左右的体积。
如美国专利第4,938,876所述,将油-水混合物加压到足够的高压,将原油送到闪蒸系统,该专利在此引入作为参考,适合所有场合。压力可为50~250psig,或者某些情况下更高些。再者,压力依赖于所加工的原油。以某一方式对原油进行常规分析,基于该分析,普通技术工程师能够得到处理参数。
按所需将适合的破乳化学物质加入到受压油流中,其量依赖于乳状液的本性,在100~2000ppm范围内(按体积计)。如前述专利中所述,化学物质可以是表面活性剂、螯合剂或者中和剂。适合的化学物质众所周知,容易从Petrolite、BetzDearborn、Nalco或其他供应商得到。添加剂可以包括阴离子、阳离子、非离子以及聚合添加剂。聚合添加剂使用相对小的剂量,以促进特细固体污染物的聚沉。
本方法遇到的乳状液通过热闪蒸步骤破乳,但是由于下面步骤中的搅拌,有可能重新出现乳状液。当所遇到的乳状液属于水包油类型时,最好加入一种利于油包水乳状液的表面活性剂。相反,如果所遇到的乳状液属于油包水类型,应使用一种利于水包油的表面活性剂。只需要少量的这种抗乳化剂,事实上,超剂量可能有碍生产。
原油中的一些不希望的重金属(如钒、镍、锌、锰和铁)污染,在分离中将会包含在所除去的固体中,但是经常有一些会残留在分离后的油中。使用一种强力螯合剂,如乙二胺四乙酸(EDTA)或者它在水相中的部分盐时,重金属被吸引到水溶性螯合剂中。
通过将化学计量的中和剂注入到原油混合物中,可基本上除去环烷酸类的游离酸污染、导致腐蚀和产品降解的巯醇类或酚类。典型的中和剂可以是氢氧化钠、碳酸钠、硼酸钠或者氨。经中和的酸将流入水相。
本发明实际应用中,最好使筛选、化学处理(如有必要)后的原油与低粘度的溶剂混合,以降低原油的粘度和比重,使得通过增强重力沉降装置(如水力旋流器)可进一步分离组分。溶剂可以为轻质的C4~C7的烃,如丁烷、戊烷或甲苯,加入量可约为5%~50%(按体积计),以原油混合物中的油为基准,优选约为10%~35%(按体积计)。在大多数情况下,在后续加工中要回收,并循环使用这种溶剂。
使用合适的热交换器设备,将加压原油混合物加热到远远高于其较轻组分沸点的温度,例如,在大约200°F和400°F之间。加热可以是分段的,以便可以首先使用循环冷凝蒸汽的热函,接着使用一种局部加热介质在热交换器中进行补充加热。或者,可以通过在仍然保持体系处于流体相时,直接注入相对少量的蒸汽实现加热。由于在加工过程中必须将水除去,因此当水对总过程有某种益处,如在固体除去过程中促成泥浆或者将无机盐从原油中除去时,应该考虑蒸汽的加入。
现在,让热的受压原油流及其添加剂流过闪蒸控制器,在闪蒸控制器中,卸去压力,引发蒸汽的闪蒸以致最好2%~5%的原油/水/溶剂掺合物在过程中蒸发,进到闪蒸容器或蒸汽-液体分离器中。闪蒸步骤使水-油乳状液破乳成为其分离组分,如美国专利第4,938,876号所记载,该专利在此引入作为参考,适用于所有场合,轻馏分从塔顶流到冷凝器和馏出油接受罐中。冷凝蒸汽生成水层和位于水层上的烃层。两层可以再循环或从体系中除去。
绝大多数原油流和稀释剂或溶剂仍未汽化,现在乳状液被破乳,所以可以通过机械方法分离组分,如使破乳后的乳状液流过一种或串联的多个水力旋流分离器。重组分向下流到设备小直径端,而轻组分流向中心并从大直径端的轴向流出。或者,可以让闪蒸罐中原油塔底流出物流入连续离心机。水力旋流器系统可配置成两段,在第一阶段除去固体,在第二阶段除去水。第一阶段除去的固体含有一些液体杂质,可通过在连续离心机中,使用含洗涤剂的水冲洗固体,并将洗液送回到体系的始端除去这些杂质。然后,可安全地处理洗净的固体,用作水泥制造的一种添加剂、作为一种固体燃料或者用于陆地填筑。
在第二阶段水力旋流器中分离的水含有来自原油的某些可溶性盐,可以作为盐水排到常规的盐水处理设备。
任何与初始原油一起进入的溶解气体,将在闪蒸步骤被排放,并且应该使用压力控制阀从冷凝馏出油接受罐排放出去。适当的尾气处理工艺设备取决于气体含量。
通过向原油中二次注入稀释剂或溶剂,增强组分的这种物理分离以及从分离组分中回收原油。该二次加入进一步降低了油相对于水的比重,使分离更容易且更完全。再者,加入的稀释剂的量由原油流中油的含量决定,在二次稀释剂加入中,加入量约为5%~20%(按体积计),优选加入量约为7%~15%。该量包含在先前所述的最高百分比之内。
如果经过如上所述处理的原油流含有高含量的沥青、沥青质、树脂等,包括某些高沸点硫化合物以及螯合在某些沥青或树脂之中的重金属,那么它需要再注入轻质烃溶剂。为了在初始闪蒸步骤之后排除这些杂质,将原油加压至压力约为50~500psig。加入如上所述的适当烃溶剂,不过优选丙烷、丁烷、异丁烷、戊烷或己烷,以便在约为100°~200°F的温度下,基本使原油全部溶解,得到单相油-溶剂溶液。在二次加入步骤中,加入的稀释剂量为液流中原油量的2~大约8倍,优选2~5倍。最好使全部原油基本溶解所必需的最少量,用来降低操作费用以及减小设备尺寸。在温度接近溶剂临界温度时,溶剂只作为一种部分溶剂。取决于所选取的特定溶剂,临界温度可以在大约200°和500°F之间。如前所述,可以使用溶剂混合物,以便可通过简单的试验选取合适的温度。在油井附近实践本发明的实施例中,除了上述溶剂,天然汽油或液体天然气可以用作溶剂。液体上的压力必须保持在临界值以上,但基本等于临界值,以得到合适的原油选择溶解本领。
压力下,将混合物加热临界温度下约5°F~25°F的温度范围内,在该温度下沉淀需要的原油部分。沉淀部分约占10%~35%(按体积计),取决于原油的组分。剩余原油(“提取液”)的质量越高,沉淀部分(“提余液”)越多。提余液价值较低,通常流入低值液体燃料或原料中,用于转化成气体或用作沥青或建筑材料。提余液可在油田中用作燃料,以提供运行工艺操作或其他油井设备所需的热量。提取原油,甚至在溶剂回收之后,可通过管线和/或油槽船运输,对较大范围的炼油厂更有价值。
在原油与溶剂溶液在接触设备的冷却端附近进入,并且废溶剂也在冷却端进入的情况下,可在逆流流体系统中有利地实现溶解与沉淀操作。如上所述,溶剂对原油流的比,由连续操作的溶剂提取塔的流率控制。在排放端附近供热的情况下,富原油溶剂在区域结构的暖端流出。富溶剂的加热降低原油较重组分的溶解性,导致这种组分沉淀,并流回区域结构的冷却端。在富溶剂从塔顶出去,贫溶剂在塔底进入的情况下,可以在折流立式塔中方便地实现该过程,同时原油在底部第三层进入。提余液从塔底排出。
溶剂提取/沉淀工艺操作之后,将有两股液流一载有原油的溶剂流,每体积溶解原油需要大约2~8体积的溶剂,以及提取后的原油残余物,含有大约5%~50%体积的溶剂。优选通过常规的汽提或通过在临界温度附近的相分离,从所要原油提取液中除去溶剂。将回收的溶剂进行再循环。未回收的溶剂成为原油值的一部分。优选,两次溶剂注入使用同一种溶剂,不过可以使用不同溶剂,但是会在循环步骤中混合。
溶剂抽提的提余液是一种重质液体,可以对该液体进行汽提,除去几乎全部的溶剂,用于再循环。如上所述,可使提取残余物继续前进,以进行进一步加工。如果残余物中重金属含量较大,可以使用含EDTA的水或次氮三乙酸或邻苯二甲腈通过逆流提取除去重金属。
汽提以及溶剂回收步骤为工程师所周知,可依据原油的沥青质组分的分离标准进行设计与操作。
汽提回收的溶剂蒸汽当然会含有水,冷凝时水将分离。水可以再循环。回收的原油提取液是无水且纯净的。它具有较低的比重、显著降低的粘度、低钠含量、低沉淀含量、低碳残余物、大大减少的重金属含量以及较低硫含量。改质原油的价值远远大于初始原油的价值,并且适合于进行成功的精制。
通过以下带有附图的实施例将更清楚地说明上述说明,更好地例证本发明的几个方案。本发明是美国专利第4,938,876号(在此引入作为参考,适合所有场合)所记载发明的改进,并且在原油进入炼油厂加工过程之前或者甚至在进入炼油厂之前的处理方面,本发明是特别有益的。当原油从地里开采出来时,如果希望的话,原油可在井口进入该加工过程,或者可从油田收集系统的储存槽,或者对原油自身的炼制性质进行预处理时,进入该操作工艺过程。本发明方法特别适合定型化,因此将只采用涉及的特定原油和要求的结果所需要的方案进行本发明的应用。如上所讨论,改进包括在闪蒸和破乳之前,将稀释剂、溶剂加入到原油中,以降低其粘度和比重。稀释剂帮助原油在破乳的乳状液中与水相更彻底地分离。乳状液破乳之后加入二次稀释剂,进一步帮助最大量地回收原油中的可精制物质。当有必要处理原油中的沥青质时,稍后在工艺过程中的第二次添加中,需要加入大量的溶剂,以使沥青质溶解,然后在不含处理环境中的其它杂质的情况下,沉淀沥青质。
加入的烃通常选自C4~C7的烃类、甲苯或其他轻质芳香类、煤油、芳香馏分、或者甚至在井口收集的天然汽油,只要那里应用了改制工艺,或者上述物质的混合物。正常情况下,在选取烃的第一次加入时,以原油进料为基准,约10%~50%(按体积计)的稀释剂或者一次全部加入,或者分成两个注入点加入。加入该量,最好从10%~15%(按体积计),以使粘度降低到低于大约50cp,优选降到15cp,最优选降到约为1cp~5cp,使得闪蒸之后的分离步骤更容易完成。此外,溶剂起到再次减小油相比重的作用,使油相的分离更简单。
在闪蒸步骤之后加入补充稀释剂,以有利于环境的方式增进原油混合物中其他组分的回收。本方法以下三个方案的讨论,将用以向本领域的技术人员举例说明本发明的原理,并且用以启发,但不对本发明可能的应用及变更进行限制。
                   实施例第1号
根据本实施例,参见图1,能够很容易懂得本发明方法。用泵14通过管线16抽吸,使含有乳状液,也可含有无机盐的重质原油,从源A通过简单筛选装置10,以除去粗大的杂质(石子、岩石等)12。轻质烃稀释剂(如轻质石脑油)通过泵20从储存罐D中抽吸,其量为10%~20%(按体积计),以所含油为基准,并从管线18被注入管线16,进入离开泵14的原油乳状液中。泵14和泵20确保原油与稀释剂的混合流在所希望的稳定压力下,约为100~350psig。所加入的轻质烃降低混合物的粘度,使原油更容易被泵送通过系统并降低油相比重,增强乳状液破乳之后的分离。少量(每百万中大约有100至1000份)的任意添加剂,如反乳化化学物质、螯合剂及中和剂被表示为注入流22。原油混合物流过直列混合器24,该混合器用于彻底混合原油乳状液、稀释剂以及即使有也很少的添加剂。“KENICS”混合器是该类的一种典型装置。完全混合流现在流过换热器26,在此从来自闪蒸槽32及汽提塔82的冷凝蒸汽中吸收热。混合流流过补偿加热器28,在此温度增加到预定水平,该水平可以严格设定在从约275°~400°F范围内。补偿加热器28备有独立热源,如供给补偿加热器28的蒸汽或热油。现有的混合、受热以及受压的原油原料流流过闪蒸控制器30,进入闪蒸槽32,该闪蒸槽将预定量的压力放出,使想要的原料部分迅速蒸发,因而使乳状液破乳。这种使乳状液破乳的闪蒸步骤详细记载在参考专利第4,938,876号中。原料中5%到20%的水与轻质烃蒸汽被闪蒸,以蒸汽放出,通过管线34进入管线36,在交换器26供热,进入冷却器37,在此被冷凝成液体水及烃类,进入接受器38。水分离并从接受器底部通过管线40除去,同时低密度烃相通过管线42除去,并且被输送到稀释剂储存罐D中。少量不能冷凝的气体经管线44,通过压力控制阀46,从接受器38中释放。阀46控制闪蒸罐中的压力,并间接地控制其中的液体温度。正常情况下,闪蒸罐32的温度优选保持在210°和260°F之间,压力设定在大约5~50psig。或者,压力可以无条件地设定在2~10psi,当蒸汽在低压下冷凝以及冷凝液用泵抽出或通过气压排液管系统排出时,温度范围是120°~约200°F。
通过管线48从闪蒸罐32底部排出的液体和固体,在50处被掺入通过管线52注入的大约10%到大约30%的补充稀释剂(按体积计),以流体中油的含量为基准,在混合器54中混合之后,通过泵56抽入水力旋流器58中,即除砂器第1号。水中少量的固体流5%~20%(按重量计)从水力旋流器的较小端的高比重出口,作为流体60流出,而大部分流体在水力旋流器58的较大的低比重端出去,通常几个水力旋流器通过管线62以平行的“一排”的形式操作。固体淤浆管线60进入第二个水力旋流器64,除砂器第2号,利用混合器68,与洗液66混合,洗液66通常是含有一些表面活性剂的水,冲洗残余油,使之与废弃的沙子和其他固体分离。洗过的固体通过管线70从第二个水力旋流器64排出,送去处理,或者用作产生蒸汽的燃料或者转变成沥青或焦炭。来自第二个水力旋流器64的洗液通过管线72流出,再循环到泵56的入口,构成送到水力旋流器58的较小部分进料。
塔顶流出物以纯净液体的形式通过管线62从水力旋流器58流出,流进第三个水力旋流器74,该水力旋流器用于对原油脱水和脱盐,以流体76的形式排除含盐水,保留无水油,通过管线78以离开不力旋流器74的主流体形式排出水力旋流器74。使用独立热源如热油或蒸汽,在换热器中再次加热管线78中的油,通过闪蒸控制阀84输送到稀释剂汽提塔82。部分进料,低沸点稀释剂的大部分,当其进入塔中,将闪蒸为蒸汽,其余部分向下流,通过几个塔盘到达底部,在此在管线86、泵88及加热器90中循环,生成的蒸汽与液体逆流沿着塔88向上运行。塔82底部的剩余部分由管线86排出,在管线92中排放,成为希望的产品,即纯净、无水、无盐的油,该产品具有增强值,作为炼油厂原油进料。
汽提塔82的塔顶流出物流过内部冷凝器94,在塔82中产生部分回流,并通过管线36出去,并结合来自管线34的其他稀释剂蒸汽,然后,在换热器26及37中冷凝,以便通过接受器38及管线42返回储存罐D。从汽提塔82塔顶出去的蒸汽,由回流冷凝器94部分冷凝,以在塔进料的上方,产生足够的回流,确保再循环稀释剂不被原油中的高沸点物质污染。理想情况,保持体系平衡,使得稀释剂中损失的轻馏分不会进到重油产品中。
作为冲洗后处理固体的另一种方法,不使用第二排的水力旋流器64,可以使用离心器,例如高速盘式水平离心器,如由Flottweg、Veronesi或Alfa Laval提供的。其优点是排放物中,固体含量高,但是费用有些高。
                           实施例第2号
本实施例涉及提高开采到的原油流质量,该原油流中含有大量的以沥青形式存在的固体。参考图2所示的另一优选方案的下述说明,本工艺过程的操作容易理解。来自源A的受污染的原油(包括乳状液)流过一套筛子10,除去粗大的杂质如石子,岩石和其他外来瓦砾。如实施例1所述,这些杂质通过管线12排除。筛选后的原油由泵14,以150~200psig的压力抽吸,通过管线16排放。来自供应油罐D的合适的稀释剂流,在18处由泵20按计量汇入原油流中。连续计量汇入原油中的稀释剂的量约为10%~50%(按体积计),以原油中的油含量为基准,以比原油管线压力稍高的压力进行输送。刚好在稀释剂加入之前或优选刚好在稀释剂加入之后,按需要在22处把其他添加剂-例如反乳化化学物质(使用较少的量)和中和剂(如2%苛性钠溶液或石灰乳或苏打灰溶液或氨水)计量汇入管线16。也可加入有效的螯合剂如EDTA。这些添加剂的功能众所周知,并且前面已有所述,在美国专利第4,938,876中有更充分的陈述。
原油和稀释剂混合物加上各种添加剂充分混合成的混合物,经过混合器24,流过换热器26和28,在此把混合物加热至约250~350°F的温度。可利用补偿加热器28控制加热的准确温度。由加热器28提供温度,使得当闪蒸控制器30降低压力时,大约10%的所含液体闪蒸为蒸汽。例如在由200psig的管线压力到50psig的放泄压力的闪蒸中,某些轻馏分的蒸汽以及部分水蒸气将释放。这确保所含乳状液中的每一滴分散相的一部分都蒸发成较大体积,这样使得乳状夜破乳。另外可能,并且在某些情况下,最好闪蒸到较低的压力如大约5psi的绝对压力,其优点是将原油中某些不希望的组分如苯或低级硫醇类蒸发。从闪蒸槽32释放的蒸汽经过蒸汽管线34进入管线36,并经过换热器26,在此蒸汽被冷却成液体稀释剂和水,提供加热进入的油-稀释剂混合物所需的一些能量。补充的必要冷却由冷凝器37提供。冷凝的液体(以及任何残留的不能冷凝的气体)流入滗析器38,水在其底部通过管线40排出滗析器38;回收的稀释剂通过管线42滗析出,使用压力控制阀使不能冷凝的气体在顶部通过管线44释放。出于环境保护,回收或闪蒸管线44的排出气体。
闪蒸槽32中的原油混合物通过管线48、泵56流出,并输送到水力旋流器58,该水力旋流器将悬浮的高密度固体流分离成少量的水和低密度的油与稀释剂主流,由顶部经过管线62流出。固体悬浮物通过管线60从水力旋流器58排出,在第二个较小的水力旋流器64中进一步处理,在进入水力旋流器64之前,通过管线66得到少量洗涤剂洗液,流经混合器68。当洗涤剂流过64时,该洗涤剂用来冲洗固体中粘附的所有油,以便以由管线70排出的固体是一种相对纯净的悬浮水溶液。含最后一点油的洗液,通过管线72由水力旋流器顶部流出,用作再循环。
悬浮液管线70中的水以及从接受器38流出的流体40中的水,是以注射蒸汽(如果使用了)或随原油进入的水的主要排水水流。如果希望的话,可使从管线70排出的固体悬浮液流过一个高速盘式或水平离心机,该离心机排出几乎无水的固体和纯净水。或者,可使悬浮液在合适的罐中沉降。作为一种选择,当现场使用无水固体为操作工艺过程提供热量时,可燃烧该无水固体。
主要的油-稀释剂混合流通过管线62从水力旋流器58流出,并在50处与由管线52输送的较大量的补充稀释剂混合,以便在管线62中与来自水力旋流器58的顶部流出物结合。对于温度控制,必要时,可由冷却器53冷却管线52中的稀释剂。补充稀释溶剂的体积可为流体中油体积的大约2~4倍。把这种新混合物(如果需要,可以用另一个管线内混合器进行混合)输送到温度控制装置63,在此可以将混合物温度细调到稀释剂临界温度的大约5°~25°F的范围内。这取决于混合物的确定组成,但是很可能是在160°~190°F范围内。过一会儿后,原油中最难溶的重组分沉淀为固体或半固体,并在水力旋流器74中被分离,固体从76处排出,轻油溶液通过管线77排出。固体及重油输送到汽提塔100,在此逆流流向由管线102注入的气流,该气流经过汽提塔100上升到顶部出口,经过管线104排出,其中含有稀释剂蒸汽以及未冷凝的蒸汽。汽提塔100底部沉淀物由管线106流出,基本上由无水液体沥青组成,其碳含量和重金属择优地高。通过适当选择加热器63中的温度以及原料的选取,可以通过底部沉淀物管线106回收较高级的可出售沥青。
由水力旋流器74顶部,经过管线77流出的油相通过另一个加热器80,该加热器将混合物温度提高到某一点,在此点补充的不可溶固体或半固体将会沉淀。这些物质在水力旋流器中进行分离,其中的碳含量及重金属杂质也是相当的高,但是不高于经过管线101从汽提塔100流出的沥青。在许多情况下,经过管线106和108回收的原油部分可能总计约为加入的重质原油的15%~30%(按体积计)。理想情况,可以调整固体物质的总量,使得其燃烧值不超过操作重质原油生产设备(蒸汽要求等)所需燃料的燃烧值,从而在现场使加工工艺设备自续。
如果进料流77中的压力不足,那么可以在管线77中提供一个泵,以便正常操作水力旋流器110。在水力旋流器110中,沉淀的树脂物质通过管线112由底部流出,输送到汽提塔114,利用在116处进入的蒸汽作为汽提剂,除去不含稀释剂的固体底部流出物118,在管线120中回收上部稀释剂流,以便再循环到达管线36和换热器/冷凝器26和37,最后到达储存罐D中。
对于用作燃料,流体76及112中的沥青和树脂物质含有不合格的高含量重金属(如镍和钒)。在任选的一个补充步骤中,将这些流体的任何一种或两种按约2∶1的体积比与水混合,水中含有浓度为2%~5%的螯合剂如二乙胺四乙酸,即EDTA,在溶液中成为部分钠盐。混合物在80~180°F的温度范围内,进行充分搅拌达2~20分钟,然后在合适的分离装置,如另一个水力旋流器中进行分离,烃相从分离装置中出去。含有大部分重金属的水相被输送到水纯化系统,通过已知的方法除去金属。这种烃类更适合用作燃料。
从水力旋流器110流出,进入管线122中的脱沥青油/溶剂混合物,流入最后的加热器124,该加热器用作最后的溶剂或稀释剂汽提塔126的预加热器。有一个小的预闪蒸槽128,该闪蒸槽用于在某些稀释剂蒸汽通过管线131进入汽提塔126之前,将蒸汽直接释放到管线130中。现在预闪蒸的液体通过管线131进入汽提塔126,在到达底部出口管线134,以及通过冷却器138(如果需要)到达成品原油储存罐136的路径中,与来自蒸汽入口132的蒸汽逆流接触,作为用于精炼的优质重质原油。
沿汽提塔上部流出的蒸汽在盘管140中稍稍冷却,产生足够的回流,防止产品随通过管线36从汽提塔126流出的蒸汽一起损失。管线36、130、104以34中的蒸汽结合,在储存罐D中作为再循环稀释剂。
                      实施例第3号
本实施例说明本发明在原油混合流中的应用,该原油混合流含有大量的沥青质和盐。
参见图3,重质原油从源A进入系统,让其通过一个复式粗流器10,该粗流器用于除去会引起阻塞的大块固体12。原油从粗流器10进入混合罐15,在此混合大约5%~10%(按体积计,基于原油)切削溶剂,以降低原油粘度,便于加工处理。优选大约5%~10%(按体积计)的轻质石脑油足以使粘度降低到大约4cp。在13处还加入5%~10%(按体积计)的基本上不含盐的水,为从原油中除去无机盐提供溶剂。通过罐15中的混合搅拌器15a充分混合油以及这些添加物。然后混合物通过泵14抽吸,压力达到150~200psig,流经管线16。经筛选及加压的原油混合物里可通过管线22加入如美国专利第4,938,876所述的少量酸性中和剂、乳状液破乳剂以及螯合剂。它们是可选的,取决于已知原油的处理要求,这一点已为本领域的操作人员所周知,按所需只使用少量,如每百万份的油中加入50~500份。提供管路内混合器24,确保这些添加剂充分混合到油中。然后,将原油混合流加热到大约300°~350°F的温度。热量可以由换热器26和/或换热器28提供。或者,使用注射喷嘴,通过向油流中直接注入新鲜蒸汽来提供热量。现在以这样的方式通过闪蒸控制器30释放受热及加压的油流,使油流进入闪蒸槽32,达到15~75psig量级的阀后压力,以使至少大约5%的含水和石油脑的溶剂闪蒸为蒸汽,所述闪蒸控制器可以有一个可调节的文丘里喷油嘴。这会使分散相含有轻馏分的任何乳状液立即破乳。在本特定实施例中,压力被释放到50psig。通过管线34离开闪蒸槽32的顶部蒸汽经过水冷或气冷凝器200,在此蒸汽基本上全部冷凝成液态烃(包括切削溶剂)和水,并流入接受器202,烃相和水相在接受器中立即分离。任何未冷凝的蒸汽(如氮气、甲烷、硫化氢以及二氧化碳)都通过止回控制阀204释放。释放的蒸汽输送到适合的蒸汽回收、洗气或煅烧设备中。
从接受器202中分别滗析出油相和水相,进到管线206中的油相被送回闪蒸槽32,水相由管线208排出,去进行适当的水纯化处理或者被送回混合罐15。大量的初始原料保留在闪蒸槽32的底部,并以流体48的形式,依靠重力流进高压泵56中,该高压泵再次对原料加压,使压力在400~500psig的范围内,足以驱动原料流过串联的两个水力旋流器,并且为下面的抽提装置提供所要的操作压力。来自泵56的原油料在第一个水力旋流器58的切向入口端进入该水力旋流器,并在低端浓缩悬浮物的形式通过管线60排除废弃的固体,而脱砂后的(desanded)流体从上部进入管线62中,并流入第二个水力旋流器74中,进行脱水。来自水力旋流器74的残余物是少量的含盐水流,进入管线76,其中基本上含有随着原油一起进入的所有盐。原油加上少量的切削溶剂通过管线77从水力旋流器74流出,并且此时它们不含水、盐及固体物质。
通过在66处加入水和洗涤剂,在68处混合,并利用另一脱砂水力旋流器64,使管线60中的排除固体/水悬浮物和来自管线66的少量洗涤剂在混合器68中混合,并切向进入水力旋流器64中,可将通过管线60从第一个水力旋流器54(58)排除的固体中的油洗去,得到一种无危险的废料。水力旋流器64中的涡流作用洗去固体中油性物质,该固体相对比较纯净地通过管线70排出(适合于最后的分离)。来自水力旋流器64的含油洗液作为少量的顶部流71再循环成为泵56的空吸物。
通过管线77从水力旋流器74流出的主要原油流,以稳定流率进料到逆流抽提器210,在本特殊情况下,显示的是一种转盘式抽提器(RDC)。原油输送到多级抽提器210中,位于溶剂抽提器210底部第三层的顶部,而管线52中的大约3~5体积(相对于原油体积流量)的溶剂被送入底层。在加热器212中把从储存罐D进入管线52的正丁烷和戊烷的混合溶剂提升到某一温度,使得溶剂加上抽提原油的温度约低于溶剂混合物临界温度50°~100°F,低于,本例中,在大约250°和300°F之间。含有抽提原油的溶剂向上流过抽提器210,与向下流的的重组分流呈逆流。转盘用于确保上升溶剂与下降液滴之间的接触。转盘向外推动分散相,而油饼形折流板使液滴反向流向塔的中心,流到设备低格层中的盘上。这样,每个盘和油饼成对组成一个抽提级,这一点已为技术工程师所周知。靠近塔210的顶部,溶剂相侧流被抽取,并向上流过换热器214,提高溶剂温度大约20°F,并使之返回塔中。蒸汽可用作换热器214的加热介质。溶剂温度的升高使先前抽提的原油变成不可溶,并且提供沿塔下流的排除分散相的回流。可通过把温度设定到换热器214中溶剂被提升到的温度,精确控制原油沉淀物的百分数。在本实施例中,大约20%的原油作为沥青物质排除,剩下的80%溶解在从塔210出去,进入管线216中的溶剂中,现在在短时接触加热器218中将其进一步加热到大约400°F,在阀220处释放,压力达到大约100psig,进入预闪蒸槽222中,在此,大部分溶剂以蒸汽形式释放到管线224中。液体原油从管线226中排出,仍含有油溶剂,将其输送入到抽提塔228中。通过在塔底直接注入抽提蒸汽230回收原油中的溶剂。留在溶剂蒸汽中的原油在232处通过冷却进行回流(在本实施例中,使用间接的水冷凝)。蒸汽出来进入管线234中,并与管线224和242中的蒸汽结合进入管线36,流经交换器26和37进入滗析器38,在滗析器中通过管线40除去水,溶剂通过管线42返回罐D中。
通过管线236抽取在RDC210底部收集的含沥青原油,并将其输送到溶剂提取器238,该提取器被设计成在相当高的温度(大约300°F)下操作,以为沿塔向下流动的物料保持适当的低粘度。提取蒸汽在底部通过管线239注入,释放的溶剂蒸汽从塔顶通过管线242出去,在管线242中备有压力控制阀,使得卸压的蒸汽能够加入管线36中的其它回收蒸汽中。管线36中的蒸汽为换热器26提供一些热量,然后能在水冷凝器37中冷凝。冷凝液流过管线36进入接受器38,在接受器中,水层分离,通过管线40回收。水也可再循环,成为混合罐15的补充水。再收集的溶剂通过管线42进行滗析,并返回到溶剂储存罐D中。来自接受器38的任何未能冷凝物,通过止回控制器46释放到合适的排气回收设备(闪蒸、涤气器、吸收器等)。
原油的提取沥青部分从溶剂提取塔238的塔底通过管线240排出,进行合适的进一步加工。该物质可能含有大量的吸收重金属如钒、镍、铜、铁等。如果希望的话,可以通过使用一种螯合剂如EDTA的水溶液洗涤这些残余流,除去这些重金属。残余的烃类可以用作燃料、铺路或铺屋面用沥青制造的原料、或者转变成合成燃料气等。
如果需要,可以通过冷却水换热器244冷却通过管线242从塔228排出的提取原油,并通过管线242中的压力控制器释放,作为便于运输与精制的优质原油。
根据本发明的前述说明以及具体实施例,在不偏离该权力要求的范围以及宗旨的情况下,本领域的普通技术人员容易看出在上述公开中陈述,并由所附权利要求覆盖的许多变更。许多变更是可能的,并且在工程技术人员所掌握的技术内,操作条件可以依据所处理的许多变化着的重质原油沉积物的不同特性进行变化。在通过简单的实验及基于这种分析能够确定每种原油特征及组成的情况下,可以确定和设计具体的参数以及加工设备。所有的一切,可在不偏离所附权力要求的范围的情况下完成。

Claims (22)

1.一种提高开采到的包含受污染的乳状液的重质、高粘度的原油质量的方法,该方法包括以下步骤:
除去原油中的粗大固体;
将沸点约为10°F~180°F的足量轻质烃稀释剂加入原油中,把原油混合物的粘度降至50cp以下;
将稀释后的原油混合物加热到适于闪蒸混合物,使原油中的乳状液破乳为各个组分的条件;
闪蒸受热、稀释后的原油,达到选定的低压,以使乳状液破乳,并且使至少大约5%的原油混合物蒸发;以及
从乳状液的分离部分中回收原油。
2.如权利要求1所述的方法,该方法包括以下步骤:在破乳闪蒸步骤之后,注入补充稀释剂流,以增强从重质原油其他组分中回收油。
3.如权利要求1所述的方法,其中烃稀释剂的量约为原油流中油体积的10%~35%。
4.如权利要求1所述的方法,其中稀释剂为C3~C7的链烷烃或环烷烃、C6~C8的芳香烃、油田气冷凝物、轻质芳香馏分或它们的混合物。
5.如权利要求4所述的方法,其中稀释剂是一种以上沸点约为10°F~180°F的轻质烃的混合物。
6.如权利要求1提高含沥青质及树脂的重质、高粘度原油质量的方法,该方法包括以下步骤:
闪蒸原油,使乳状液破乳;
破乳之后,在中等温度下,加入补充溶剂,以分离的油含量为基准,使用200%~800%的体积百分比,从C4~C7的链烷烃或环烷烃类选取溶剂,以得到连续单相的油-溶剂混合物;
温和加热混合物至溶剂临界温度下大约5°F~25°F的范围内,使原油中的大部分沥青或沥青质沉淀,使沥青固体或半固体物质从轻质溶剂-油溶液中沉降下来;
分离油中的溶剂,用于再循环;以及
回收提取的原油产品。
7.如权利要求6所述的方法,该方法包括分离沥青物质中的溶剂用于再循环的步骤。
8.如权利要求7所述的方法,该方法包括在连续逆流接触设备中沉淀沥青物质步骤,靠近沥青除去端注入溶剂,在相反一端除去溶剂-油溶液。
9.如权利要求8所述的方法,其中通过合适的传热装置,保持温度梯度,使溶剂-油出料端的温度较高。
10.如权利要求8所述的方法,该方法使用一种转盘式抽提器。
11.如权利要求6所述的方法,其中溶剂是正丁烷或异丁烷。
12.如权利要求6所述的方法,其中溶剂是一种戊烷。
13.如权利要求6所述的方法,其中溶剂是一种庚烷。
14.如权利要求6所述的方法,其中溶剂是一种C3~C5烃类的混合物。
15.如权利要求6所述的方法,其中溶剂是一种C5~C7的混合物(包括C6)。
16.如权利要求6所述的方法,该方法包括以下步骤:采用逐步减压以及供热以蒸发溶剂,分若干阶段从油中回收溶剂。
17.如权利要求6所述的方法,该方法包括以下步骤:从油中气提溶剂,冷凝蒸汽以及从回收溶剂中滗析冷凝水。
18.如权利要求8所述的方法,该方法包括从分离的沥青物质中回收溶剂的步骤。
19.如权利要求18所述的方法,该方法包括以下步骤:当还含有一些溶剂时,用含有一种螯合剂的水逆流冲洗处理分离的沥青物质,除去沥青中的重金属。
20.如权利要求19所述的方法,其中螯合剂为乙二胺四乙酸(EDTA)或其部分盐中的一种。
21.如权利要求19所述的方法,其中螯合剂为次氮基三乙酸(nitrilotrisacetic acid)。
22.如权利要求19所述的方法,其中螯合剂为一种乙醇酸。
CNB988100924A 1997-10-15 1998-10-08 改进重质原油生产的方法 Expired - Fee Related CN1152118C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/950,482 US5948242A (en) 1997-10-15 1997-10-15 Process for upgrading heavy crude oil production
US08/950,482 1997-10-15

Publications (2)

Publication Number Publication Date
CN1275156A true CN1275156A (zh) 2000-11-29
CN1152118C CN1152118C (zh) 2004-06-02

Family

ID=25490491

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB988100924A Expired - Fee Related CN1152118C (zh) 1997-10-15 1998-10-08 改进重质原油生产的方法

Country Status (6)

Country Link
US (1) US5948242A (zh)
CN (1) CN1152118C (zh)
AU (1) AU739689B2 (zh)
CA (1) CA2306133C (zh)
EA (1) EA001665B1 (zh)
WO (1) WO1999019425A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101724436A (zh) * 2008-10-10 2010-06-09 中国石油化工股份有限公司 一种降低超重原油粘度和凝点的热裂化方法
CN1903983B (zh) * 2005-05-20 2012-07-18 价值创造公司 含沥青的重油及沥青的纯化
CN102667058A (zh) * 2009-12-21 2012-09-12 恩索尔乌重油股份公司 用于重油储层的多步溶剂开采工艺
CN109054915A (zh) * 2018-07-10 2018-12-21 中石化石油工程技术服务有限公司 一种节流预脱水、共沸剂再生的天然气脱水系统及方法

Families Citing this family (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6536523B1 (en) 1997-01-14 2003-03-25 Aqua Pure Ventures Inc. Water treatment process for thermal heavy oil recovery
US5882506A (en) * 1997-11-19 1999-03-16 Ohsol; Ernest O. Process for recovering high quality oil from refinery waste emulsions
CA2379895C (en) * 1999-07-26 2008-05-06 Shell Internationale Research Maatschappij B.V. Breaking of oil/water emulsion
FR2800090B1 (fr) * 1999-10-22 2003-03-21 Elf Exploration Prod Procede de desacidification des petroles bruts et dispositif pour sa mise en oeuvre
DE19954141A1 (de) 1999-11-11 2001-06-13 Phenolchemie Gmbh & Co Kg Verfahren zur Verringerung des Salzgehaltes in Hochsieder aufweisenden Fraktionen, die bei der Herstellung von Phenol aus Cumol anfallen, durch Extraktion
NO311103B1 (no) * 2000-02-08 2001-10-08 Jon Grepstad Fremgangsmåte for å lette separasjonen av en råoljeströms oljefase og vannfase
US7186673B2 (en) * 2000-04-25 2007-03-06 Exxonmobil Upstream Research Company Stability enhanced water-in-oil emulsion and method for using same
US6566410B1 (en) 2000-06-21 2003-05-20 North Carolina State University Methods of demulsifying emulsions using carbon dioxide
US6372123B1 (en) 2000-06-26 2002-04-16 Colt Engineering Corporation Method of removing water and contaminants from crude oil containing same
US7097761B2 (en) * 2000-06-27 2006-08-29 Colt Engineering Corporation Method of removing water and contaminants from crude oil containing same
US7622035B2 (en) * 2000-09-14 2009-11-24 North Carolina State University Methods of deresinating crude oils using carbon dioxide
US20040232051A1 (en) * 2001-03-09 2004-11-25 Ramesh Varadaraj Low viscosity hydrocarbon oils by sonic treatment
US7081196B2 (en) * 2001-05-10 2006-07-25 Mark Cullen Treatment of crude oil fractions, fossil fuels, and products thereof with sonic energy
US7871512B2 (en) * 2001-05-10 2011-01-18 Petrosonics, Llc Treatment of crude oil fractions, fossil fuels, and products thereof
AU2002360596A1 (en) * 2001-12-17 2003-07-24 Exxonmobil Upstream Research Company Solids-stabilized oil-in-water emulsion and a method for preparing same
US7338924B2 (en) 2002-05-02 2008-03-04 Exxonmobil Upstream Research Company Oil-in-water-in-oil emulsion
FR2842885B1 (fr) * 2002-07-24 2004-09-10 Inst Francais Du Petrole Procede de transport des petroles bruts lourds sous forme de dispersion
US8425765B2 (en) 2002-08-30 2013-04-23 Baker Hughes Incorporated Method of injecting solid organic acids into crude oil
US7497943B2 (en) * 2002-08-30 2009-03-03 Baker Hughes Incorporated Additives to enhance metal and amine removal in refinery desalting processes
US20040200759A1 (en) * 2003-04-11 2004-10-14 Mark Cullen Sulfone removal process
US7192516B2 (en) * 2003-04-17 2007-03-20 Trans Ionics Corporation Desulfurization of petroleum streams using metallic sodium
US20040222131A1 (en) * 2003-05-05 2004-11-11 Mark Cullen Process for generating and removing sulfoxides from fossil fuel
US6919753B2 (en) * 2003-08-25 2005-07-19 Texas Instruments Incorporated Temperature independent CMOS reference voltage circuit for low-voltage applications
US7220887B2 (en) 2004-05-21 2007-05-22 Exxonmobil Chemical Patents Inc. Process and apparatus for cracking hydrocarbon feedstock containing resid
US7235705B2 (en) * 2004-05-21 2007-06-26 Exxonmobil Chemical Patents Inc. Process for reducing vapor condensation in flash/separation apparatus overhead during steam cracking of hydrocarbon feedstocks
US8518243B2 (en) * 2004-10-01 2013-08-27 Saudi Arabian Oil Company Method for utilizing hydrocarbon waste materials as fuel and feedstock
FR2887893B1 (fr) * 2005-06-30 2011-08-05 Exochems Sas Procede de traitement de residus de produits petroliers lourds notamment de fonds de cuves de stockage et installation associe
US8715489B2 (en) 2005-09-08 2014-05-06 Saudi Arabian Oil Company Process for oxidative conversion of organosulfur compounds in liquid hydrocarbon mixtures
US7744749B2 (en) * 2005-09-08 2010-06-29 Saudi Arabian Oil Company Diesel oil desulfurization by oxidation and extraction
US8100178B2 (en) 2005-12-22 2012-01-24 Exxonmobil Upstream Research Company Method of oil recovery using a foamy oil-external emulsion
US8735178B2 (en) * 2006-03-27 2014-05-27 University Of Kentucky Research Foundation Withanolides, probes and binding targets and methods of use thereof
CA2549358C (en) * 2006-05-17 2010-02-02 Nor Technologies Inc. Heavy oil upgrading process
US20080251418A1 (en) * 2007-04-06 2008-10-16 Manuel Anthony Francisco Upgrading of petroleum resid, bitumen, shale oil, and other heavy oils by the separation of asphaltenes and/or resins therefrom by electrophilic aromatic substitution
US8734639B2 (en) * 2007-04-06 2014-05-27 Exxonmobil Research And Engineering Company Upgrading of petroleum resid, bitumen or heavy oils by the separation of asphaltenes and/or resins therefrom using ionic liquids
FR2915554B1 (fr) * 2007-04-25 2009-06-05 Total France Sa Procede d'alimentation en combustible d'une unite de production d'un brut lourd,procede de production de brut lourd et unite de production de brut lourd correspondants.
EP2190789A2 (en) * 2007-07-23 2010-06-02 Verutek Technologies, Inc. Enhanced biodegradation of non-aqueous phase liquids using surfactant enhanced in-situ chemical oxidation
EP2209533B1 (en) * 2007-09-26 2012-11-07 Verutek Technologies, Inc. Method for decreasing the amount of a contaminant at a side in a subsurface
WO2009042228A1 (en) * 2007-09-26 2009-04-02 Verutek Technologies, Inc. System for soil and water remediation
US7981277B2 (en) * 2007-12-27 2011-07-19 Kellogg Brown & Root Llc Integrated solvent deasphalting and dewatering
US9200213B2 (en) 2008-03-24 2015-12-01 Baker Hughes Incorporated Method for reducing acids in crude or refined hydrocarbons
CN102202815A (zh) 2008-05-16 2011-09-28 维鲁泰克技术股份有限公司 使用植物提取物的纳米金属的绿色合成及其用途
CN101665719B (zh) * 2008-09-04 2013-03-06 中国石油化工股份有限公司 一种由c5~c7烷烃组成的溶剂油及其制备方法
FR2947281B1 (fr) 2009-06-26 2012-11-16 Total Sa Procede de traitement d'hydrocarbures
US9790438B2 (en) * 2009-09-21 2017-10-17 Ecolab Usa Inc. Method for removing metals and amines from crude oil
US20110110723A1 (en) * 2009-09-29 2011-05-12 Verutek Technologies, Inc. Green synthesis of nanometals using fruit extracts and use thereof
US8926825B2 (en) * 2010-03-19 2015-01-06 Mark Cullen Process for removing sulfur from hydrocarbon streams using hydrotreatment, fractionation and oxidation
CN103154202A (zh) 2010-07-27 2013-06-12 菲利浦66公司 炼油厂脱盐设备改进
WO2012015575A1 (en) 2010-07-29 2012-02-02 Conocophillips Company Metal impurity and high molecular weight components removal of biomass derived biocrude
US9028655B2 (en) 2010-08-24 2015-05-12 1Nsite Technologies Ltd. Contaminant control system in an evaporative water treating system
US9095784B2 (en) 2010-08-24 2015-08-04 1Nsite Technologies Ltd. Vapour recovery unit for steam assisted gravity drainage (SAGD) system
US8945398B2 (en) * 2010-08-24 2015-02-03 1nSite Technologies, Ltd. Water recovery system SAGD system utilizing a flash drum
US10435307B2 (en) 2010-08-24 2019-10-08 Private Equity Oak Lp Evaporator for SAGD process
CN102477308B (zh) * 2010-11-23 2014-11-26 中国石油化工股份有限公司 含硫含酸原油炼制过程中的塔顶防乳化装置和方法
KR20140034145A (ko) * 2011-02-11 2014-03-19 릴라이언스 인더스트리즈 리미티드 중질 방향족 탄화수소의 방향족성을 개선하기 위한 공정
US9448221B2 (en) * 2011-05-18 2016-09-20 Saudi Arabian Oil Company Method, solvent formulation and apparatus for the measurement of the salt content in petroleum fluids
US20150144526A1 (en) * 2012-05-22 2015-05-28 Sasol Technology (Pty) Ltd Fischer-tropsch derived heavy hydrocarbon diluent
US9550936B2 (en) * 2012-08-08 2017-01-24 Baker Hughes Incorporated Mobilization of heavy oil
US8815083B2 (en) * 2012-11-29 2014-08-26 Merichem Company Treating sulfur containing hydrocarbons recovered from hydrocarbonaceous deposits
CA2851803A1 (en) * 2013-05-13 2014-11-13 Kelly M. Bell Process and system for treating oil sands produced gases and liquids
US9677006B2 (en) * 2013-06-24 2017-06-13 Fluor Technologies Corporation Multiple preflash and exchanger (MPEX) network system for crude and vacuum units
CN104449808B (zh) * 2013-09-13 2016-12-07 中国石油化工股份有限公司 一种降低乙烯装置急冷油黏度的系统及方法
US10119080B2 (en) 2013-09-25 2018-11-06 Exxonmobil Research And Engineering Company Desalter emulsion separation by direct contact vaporization
CA2879257C (en) 2014-01-21 2022-11-15 Kemex Ltd. Evaporator sump and process for separating contaminants resulting in high quality steam
WO2015184464A1 (en) * 2014-05-30 2015-12-03 Fluor Technologies Corporation Configurations and methods of dewatering crude oil
US9790451B2 (en) * 2014-10-03 2017-10-17 Bruce Martinsen System and method for extracting oil from plant materials
KR101718965B1 (ko) 2015-10-19 2017-03-23 한국에너지기술연구원 액상 탄화수소 유분을 이용한 중질유의 처리 방법 및 중질유 처리 장치
RU2611416C1 (ru) * 2015-11-24 2017-02-22 федеральное государственное автономное образовательное учреждение высшего образования "Московский физико-технический институт (государственный университет)" Способ деметаллизации тяжелого нефтяного сырья
SE539859C2 (en) * 2016-05-10 2017-12-19 Recondoil Sweden Ab Method and system for purification of slop oil and industrial emulsions comprising two processes run in parallel
RU2651857C1 (ru) * 2017-04-06 2018-04-24 Акционерное общество "Новомет-Пермь" Способ добычи высоковязких эмульсий вода-нефть и установка для его осуществления (варианты)
US10215006B1 (en) * 2017-11-21 2019-02-26 Phillips 66 Company Processing of oil by steam addition
US10202832B1 (en) * 2017-11-21 2019-02-12 Phillips 66 Company Processing of oil by steam addition
US10260326B1 (en) * 2017-11-21 2019-04-16 Phillips 66 Company Processing of oil by steam addition
SE543443C2 (en) 2019-02-08 2021-02-16 Skf Recondoil Ab Purification of oil 11
SE542985C2 (en) 2019-02-08 2020-09-22 Skf Recondoil Ab A method and system for circular use of industrial oil
US11268032B2 (en) 2019-07-23 2022-03-08 Trc Operating Company, Inc. Process and system for the above ground extraction of crude oil from oil bearing materials
US12043799B2 (en) 2019-07-23 2024-07-23 Trc Operating Company, Inc. Process for extracting crude oil from diatomaceous earth
WO2021044196A1 (es) * 2019-09-05 2021-03-11 Galan Sarmiento Antonio Proceso para la segregación gravitacional con agua de asfaltenos a los crudos, y equipos para su implementación

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE634641A (zh) *
US3159571A (en) * 1960-11-28 1964-12-01 Shell Oil Co Residual oil refining process
FR2532946A1 (fr) * 1982-09-14 1984-03-16 Raffinage Cie Francaise Procede de traitement d'un petrole brut prealablement a sa distillation a pression atmospherique
GB8318313D0 (en) * 1983-07-06 1983-08-10 British Petroleum Co Plc Transporting and treating viscous crude oils
CA1239371A (en) * 1983-11-04 1988-07-19 Georgi Angelov De-asphalting heavy crude oil and heavy crude oil/water emulsions
US4514283A (en) * 1984-01-26 1985-04-30 Shell Oil Company Process for separating and converting heavy oil asphaltenes in a field location
US4875998A (en) * 1986-11-07 1989-10-24 Solv-Ex Corporation Hot water bitumen extraction process
US4904345A (en) * 1986-12-03 1990-02-27 Mccants Malcolm Method and apparatus for cleaning petroleum emulsion
US4812225A (en) * 1987-02-10 1989-03-14 Gulf Canada Resources Limited Method and apparatus for treatment of oil contaminated sludge
US4938876A (en) * 1989-03-02 1990-07-03 Ohsol Ernest O Method for separating oil and water emulsions
US5178750A (en) * 1991-06-20 1993-01-12 Texaco Inc. Lubricating oil process
DE4208182C2 (de) * 1992-03-12 1995-03-30 Preussag Noell Wassertech Verfahren zur Auftrennung eines Gemisches aus Wasser, Feststoffen oder Schlämmen, schwerflüchtigen Kohlenwasserstoffen und anderen Begleitstoffen

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1903983B (zh) * 2005-05-20 2012-07-18 价值创造公司 含沥青的重油及沥青的纯化
CN101724436A (zh) * 2008-10-10 2010-06-09 中国石油化工股份有限公司 一种降低超重原油粘度和凝点的热裂化方法
CN101724436B (zh) * 2008-10-10 2013-01-09 中国石油化工股份有限公司 一种降低超重原油粘度和凝点的热裂化方法
CN102667058A (zh) * 2009-12-21 2012-09-12 恩索尔乌重油股份公司 用于重油储层的多步溶剂开采工艺
CN102667058B (zh) * 2009-12-21 2015-10-07 恩索尔乌重油股份公司 用于重油储层的多步溶剂开采工艺
CN109054915A (zh) * 2018-07-10 2018-12-21 中石化石油工程技术服务有限公司 一种节流预脱水、共沸剂再生的天然气脱水系统及方法

Also Published As

Publication number Publication date
AU739689B2 (en) 2001-10-18
WO1999019425A1 (en) 1999-04-22
CA2306133A1 (en) 1999-04-22
EA200000319A1 (ru) 2000-12-25
AU2702099A (en) 1999-05-03
EA001665B1 (ru) 2001-06-25
US5948242A (en) 1999-09-07
CA2306133C (en) 2006-05-16
CN1152118C (zh) 2004-06-02

Similar Documents

Publication Publication Date Title
CN1152118C (zh) 改进重质原油生产的方法
US7867382B2 (en) Processing unconventional and opportunity crude oils using one or more mesopore structured materials
CA2310694C (en) Process for recovering high quality oil from refinery waste emulsions
CA2670479C (en) Optimizing heavy oil recovery processes using electrostatic desalters
US8257580B2 (en) Dry, stackable tailings and methods for producing the same
US8257579B2 (en) Method for the well-head treatment of heavy and extra-heavy crudes in order to improve the transport conditions thereof
JP2008533240A (ja) 廃油から潤滑油基油を生成するための方法
US7097761B2 (en) Method of removing water and contaminants from crude oil containing same
CN1903983A (zh) 含沥青的重油及沥青的纯化
US10336951B2 (en) Desalter emulsion separation by hydrocarbon heating medium direct vaporization
CA2901786C (en) Paraffinic froth treatment
CA2435344C (en) Method of removing water and contaminants from crude oil containing same
CA3022131C (en) Method and apparatus to produce sales oil in a surface facility for a solvent based eor process
US20220267683A1 (en) Liquid-liquid extraction of hydrocarbons in bulk storage tanks
CA2928473A1 (en) Paraffinic froth treatment
CA3209132A1 (en) Liquid-liquid extraction of hydrocarbons in bulk storage tanks
MXPA00003692A (en) Process for upgrading heavy crude oil production
WO2022178463A1 (en) Liquid-liquid extraction of hydrocarbons in bulk storage tanks
WO2021044196A1 (es) Proceso para la segregación gravitacional con agua de asfaltenos a los crudos, y equipos para su implementación
CA2962879A1 (en) Oil sand tailings separation

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20081128

Address after: American New York

Patentee after: Quaid Lent runs Limited by Share Ltd

Address before: texas

Patentee before: Unipure Corp.

ASS Succession or assignment of patent right

Owner name: GUIDLANT OPERATION CO., LTD.

Free format text: FORMER OWNER: UNIPURE CO., LTD.

Effective date: 20081128

C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20040602

Termination date: 20101008