WO2021044196A1 - Proceso para la segregación gravitacional con agua de asfaltenos a los crudos, y equipos para su implementación - Google Patents

Proceso para la segregación gravitacional con agua de asfaltenos a los crudos, y equipos para su implementación Download PDF

Info

Publication number
WO2021044196A1
WO2021044196A1 PCT/IB2019/057494 IB2019057494W WO2021044196A1 WO 2021044196 A1 WO2021044196 A1 WO 2021044196A1 IB 2019057494 W IB2019057494 W IB 2019057494W WO 2021044196 A1 WO2021044196 A1 WO 2021044196A1
Authority
WO
WIPO (PCT)
Prior art keywords
tower
segregation
stream
water
crude
Prior art date
Application number
PCT/IB2019/057494
Other languages
English (en)
French (fr)
Inventor
Antonio GALAN SARMIENTO
Original Assignee
Galan Sarmiento Antonio
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Galan Sarmiento Antonio filed Critical Galan Sarmiento Antonio
Priority to PCT/IB2019/057494 priority Critical patent/WO2021044196A1/es
Publication of WO2021044196A1 publication Critical patent/WO2021044196A1/es
Priority to CONC2022/0004353A priority patent/CO2022004353A2/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/02Separation of non-miscible liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/02Separation of non-miscible liquids
    • B01D17/04Breaking emulsions
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G31/00Refining of hydrocarbon oils, in the absence of hydrogen, by methods not otherwise provided for
    • C10G31/08Refining of hydrocarbon oils, in the absence of hydrogen, by methods not otherwise provided for by treating with water

Definitions

  • the invention relates to a process for the in situ removal of asphaltenes present in crude oils, particularly heavy and extra-heavy crude oils, by means of gravitational segregation of asphaltenes with water.
  • the invention also relates to the equipment for starting up the process of the invention.
  • Asphaltenes have been defined as the fraction of the crude that is insoluble in aliphatic solvents such as heptane and soluble in aromatic solvents such as toluene.
  • aliphatic solvents such as heptane and soluble in aromatic solvents such as toluene.
  • composition has not been adequately defined on a molecular basis; the understanding is that its main characteristic is its aromaticity. They can be represented by compounds of between five and ten fused aromatic rings that carry heteroatoms such as nitrogen, oxygen, sulfur. Their rings have the ability to self-associate and form supra-molecular aggregates, which in turn can trap lower molecular weight compounds soluble in aliphatic solvents.
  • asphaltenes According to cyclotron ion resonance mass spectrometry (FTICR MS), asphaltenes have a wide compositional variability with a high number of carbon atoms and pollaromatic rings with sulfur and metal contents, such as nickel and vanadium, which poison and deactivate the catalysts used in catalytic breakdown processes. Additionally, its high viscosity is responsible for the increase in the operational difficulty of its handling and the higher cost of transportation by pipeline of heavy and extra-heavy crude.
  • FTICR MS cyclotron ion resonance mass spectrometry
  • asphaltenes Once the asphaltenes have been removed in the field, they can be managed in three alternatives: first as a raw material in chemical processes that allow obtaining more light fuels, as a fuel for electrical cogeneration or in the production of asphalt emulsions; all of them constitute an important supply in the production fields, as they are normally areas not interconnected to the supply of electricity and are depopulated regions with poor roads.
  • Existing process examples first as a raw material in chemical processes that allow obtaining more light fuels, as a fuel for electrical cogeneration or in the production of asphalt emulsions; all of them constitute an important supply in the production fields, as they are normally areas not interconnected to the supply of electricity and are depopulated regions with poor roads.
  • US Patent 4,125,459 relates to a treatment of hydrocarbons of bituminous material with solvents and describes a process to deasphalt hydrocarbons from bituminous material by means of deasphalting combined with propane and pentane, which can also be obtained by deasphalting alone with propane or with pentane.
  • the bituminous material is first deasphalted with pentane to produce a light fraction that contains the oil and the resins and then to that light fraction and a recycle, composed of a part of the fraction of resins obtained from the second deasphalting, a process of deasphalted with propane.
  • the process can also deasphalt first with propane and then with pentane and recycles a part of the light fraction obtained to the process of deasphalting with propane. According to the authors, the oil thus obtained is of higher quality and higher yield.
  • US Patent 4,191,639 describes a process for deasphalting with a mixture of at least two of the following compounds: hydrogen sulfide, carbon dioxide and light hydrocarbons, which can be propane, butane, pentane or their mixtures. Each of the components must be present in at least 10% of what is called a solvent.
  • the process is carried out at below-critical temperature and at above-critical solvent pressure.
  • the hydrocarbon / solvent ratio can range from 1/1 to 1/20.
  • Deasphalted oil is characterized by its lower content of metals and sulfur and can be used as a filler in fluid catalytic breaking processes or hydro-breaking processes.
  • US Patent 4,324,651 describes a process for deasphalting a mineral oil containing asphalts, at temperatures above 80 ° C (preferably 175-225 ° C) and at high pressure (500-1200 Psig (3447.38 to 8273 , 71 KPag)), using methanol as solvent for deasphalting.
  • the process produces two phases, one rich in asphalt and the other rich in methanol.
  • By cooling the phase rich in methanol to a temperature below 80 ° C and with a settling time two phases are produced, one rich in oil and the other rich in methanol.
  • US Patent 4,514,287 relates to a process for solvent deasphalting of hydrocarbons with asphalt content, the process is developed by mixing a solvent, plus a metal compound of aluminum or titanium sulfate, and alcohols. The process is used for reduced crude from atmospheric distillation and is applied to a residue from Arab light crude and with asphaltene content of less than 5%.
  • US Patent 4,634,520 describes a laboratory-level pothole process for simultaneously dehydrating and de-asphalting heavy crude emulsions, using petrol-ether as solvent. Once they mix the crude oil with the solvent, they wait a time for the phases to decant, later they remove the light phase that contains the crude oil. deasphalting and most of the solvent. Asphaltenes are washed two more times with solvent and subsequently introduced into a hot water bath to produce agglomerates of asphaltenes, a period of time is waited for phase separation to occur and then the settled phase is taken (asphaltenes and water) and it is taken to a hot bath so that the asphalts form agglomerates. Then the agglomerated asphalts are removed from the hot water.
  • US Patent 4,915,819 describes a treatment for dewatering, deasphalting and dewaxing in potholes that is carried out on a crude oil in the form of an emulsion.
  • the process reduces the viscosity of heavy crudes by removing asphaltenes and heavy metals, such as nickel and vanadium in the case of heavy crudes and waxes in the case of light crudes.
  • Describes a method to remove asphaltenes and / or waxes from crude oil wherein the method comprises the steps of contacting the crude with an organic solvent to dissolve the crude and precipitate asphaltenes and / or waxes, separate the asphaltenes and / or waxes from the crude oil and solvent, and separate the solvent from the deasphalted crude.
  • the solvent is recovered for later uses. Asphalt recovery is done by putting them in contact with water.
  • This conversion presents high removals of sulfur, nitrogen and metals and produces a hydrocarbon of lower molecular weight, with a higher conversion to naphtha and less coke formation. According to the application in question, it is stated that this supercritical process can replace the prime and vacuum distillation processes, solvent deasphalting, coking, hydro-cracking, hydro-treating and catalytic cracking, or it can be used in parallel with these. processes.
  • Colombian Patent Application No. 97-48663 entitled “Deasphalting process of heavy hydrocarbons with high asphalt content at low pressure and temperature conditions” describes a continuous in-line extraction process, at low pressure and temperature, of high performance. and minimum maintenance, to deasphalte, demetallize and partially desulfurize asphaltene hydrocarbon mixtures, such as heavy crude asphalt and heavy residues from primary distillation or vacuum, either in their original state or in the form of inverse emulsions, hydrocarbon in water.
  • the process mentioned in the application 97-48663 is carried out in a single stage, where initially the heading is carried out for the separation of the heavier fractions of the hydrocarbon, then the hydrocarbon in dehydrated or inverse emulsion form is mixed with solvent and passes to a vessel to make the separation of the asphaltenes from the improved crude oil and the solvent in a single stage. The solvent is recovered and recirculated to the process. Finally, the solvent entrained in the asphaltic part is separated.
  • the process of the present invention constitutes an opportunity to make the production and commercialization of heavy and extra-heavy crude oils viable and competitive; Furthermore, by making the removal of asphalt in production fields viable, many of the problems generated by asphalt in the industry's value chain will be eliminated, as well as reducing energy consumption, as well as the environmental impacts derived from eventual oil spills on bodies of water, contribute to reducing the effects of climate change and offer added value in the area of influence of the producing field, which allows improving opportunities for neighboring populations and offering alternatives that contribute to their socioeconomic development, which guarantees greater justice and equity with the producing areas.
  • the proposed process offers to remove asphaltenes from crude oil (of all kinds of crude) based on the following four physical characteristics: a) the immiscible character of water with hydrocarbons, b) the immiscible character of asphaltene in light paraffinic hydrocarbons , c) the difference in specific gravities between water and hydrocarbons and d) the polar character that the presence of heteroatoms contribute to some sub-fractions of asphaltenes and hence their condition as natural surfactant of water.
  • the phenomenon of volumetric expansion that occurs with water, when it goes from the solid state to the liquid state, when its specific gravity goes from 1.0 to 0.92 allows to have a range of specific gravity between 0, 92 to 1, 0, in the range from 0 ° C to 32 ° C, in liquid phase, and make the indissoluble nature of hydrocarbons in water the gravitational segregation agent that allows asphaltene in crude oil to flocculate.
  • the objective that allows to flocculate and separate asphaltenes from crude oil is achieved, with the proposed process, by intentionally and pertinently using the following factors that affect its stability in crude oil and favor its separation, namely: a) Promote variations in the hydrocarbon composition of the processed crude oil, through the recirculation of light paraffinic hydrocarbon streams, obtained from the crude oil downstream within the process; This seeks to create the segregation of two groups of hydrocarbons: on the one hand, asphaltene, immiscible in heptane and with a specific gravity greater than 1.0, which will precipitate, and on the other, the miscible in light paraffinic hydrocarbons, to the Which are further reduced their specific gravity in order to make it easier for them to float on the water.
  • the previous phases are optionally included an additional phase with which it is sought to cover the operational needs required by medium and light crude oils, with significant paraffin wax content. .
  • This additional phase necessary to complement the process in the case of intermediate and light crude oils, consists of a secondary phase of gravitational segregation, in which each of the light hydrocarbon and asphaltic waste streams are processed, obtained in gravitational segregation.
  • This optional phase is carried out in their corresponding gravitational segregation towers, after the primary gravitational segregation and before the product rectification phase.
  • a change is sought in the composition of the crude oil, which is achieved by mixing it with streams of light hydrocarbons, paraffinics of 5 and 6 carbon atoms, obtained from the crude itself, downstream in the process, with which it is possible to significantly reduce the specific gravity of hydrocarbons other than asphaltene, which facilitates their gravity segregation.
  • (b) water is added, which will act as a secreting agent for hydrocarbons;
  • the crude enters the process without the mixture of the paraffinic hydrocarbons C5 and C6, which can be added gradually and increasingly in a crude mixing valve (VMC) , until achieving the optimal ratio in relation to crude oil, once they are produced in the upper section of the primary gravitational tower.
  • VMC crude mixing valve
  • the crude oil emulsion obtained in the previous phase is the primary load to the Gravitational Segregation Phase, from which the separation of hydrocarbons is carried out in their miscible and immiscible fractions in light paraffinic hydrocarbons and in which water acts as the agent of segregation of the two streams; the first will be the precursor of improved crude oil and the second of the asphalt.
  • the added water is the fundamental variable in this Phase, its volumetric proportions and the temperature conditions determine the production of the emulsion and its temperature, therefore, they vary from crude to crude and will be determined based on the content of the different chemical structures existing in crude oil, according to SARA analyzes (Saturated, Aromatic, Resins and Asphalt); the content of paraffinic waxes, especially in the fractions with distillation ranges higher than 350 ° C, the heteroatom contents, the PONA (Paraffins, Olefins, Naphine and Aromatic) and PIANO (n-Paraffins, Isoparaffins, Aromatics, Naphine and Olefin) analyzes; the characterization factor UOPK, as well as the contents of S, N, O, heavy metals, among others.
  • SARA analyzes saturated, Aromatic, Resins and Asphalt
  • the content of paraffinic waxes especially in the fractions with distillation ranges higher than 350 ° C, the heteroatom contents, the PONA (Paraffins, Olefin
  • the temperature and pressure conditions, as well as the mechanical factors such as agitation and mixing manage to produce a temporary emulsion of crude oil in the water (O / W), the emulsion of light hydrocarbons quickly breaks down in the tower. of primary gravitational segregation and is separated from the possible remaining emulsions of the asphaltenic residues, preserved by the temperature and the polar character of the asphaltenes, mediating the excesses of the water.
  • a temperature profile is established between the bottom and the top, as follows: the bottom, as a variable dependent on the water flows and the recirculation of the currents coming from the rectifier towers, will be at a temperature between 10 ° C - 50 ° C and at the top, as an independent variable, a temperature between 60 ° C - 110 ° C must be controlled, the boiling range of the light hydrocarbons present in the crude oil that will be used as a solvent for the precursor fraction of improved crude; Under these conditions it is sought to generate a different thermodynamic condition, capable of stimulating and facilitating gravitational segregation between asphaltenic residues and miscible hydrocarbons in light paraffinic solvents.
  • the rectification towers are a fundamental part of the effectiveness to achieve gravitational segregation, since the currents that remove the eventual drags are recirculated to the primary gravitational segregation tower, and contribute to establish the thermal profile required in the latter.
  • the process may comprise at least one light rectification tower and at least one heavy rectification tower, according to the process needs, since rectification can be replicated, requiring more than one light rectification tower and more than one heavy rectification tower.
  • the loading temperature to the primary gravitational segregation tower must be greater than 45-50 ° C, reaching the temperature conditions of the load for the operation of the primary gravity segregation tower; therefore, for the object of the present invention, the optional phase is necessary so as to remove remaining paraffinic waxes in the precursor stream of asphaltenes.
  • the primary gravitational segregation tower can work with a temperature located in the upper values of the range considered for the bottom of the tower, which, with the addition of paraffinic solvents, seeks to keep paraffin waxes liquid.
  • This optional phase completes the asphaltene flocculation process.
  • a Pilot Plant which includes the optional phase, allows to carry out an operational investigation of the behavior of complex crude oils and to find the optimum temperature profile in the gravitational segregation towers, as well as the behavior and the optimum solvent to load ratio of processed crude oil.
  • the operational investigation runs must be carried out before the detailed design of the process, in such a way as to guarantee the necessity or not of the optional phase.
  • attention is focused on the impact produced by the modification in the composition of the crude oil by means of a light, paraffinic hydrocarbon, and the gravitational segregation effect offered by the water. , once the emulsion produced in the first phase of destabilization of the asphaltene breaks.
  • the streams leaving the primary gravitational segregation tower are each subjected to a new emulsion process with water and a new gravitational segregation; for the case called secondary.
  • a new emulsion process with water and a new gravitational segregation; for the case called secondary.
  • Each of the precursor streams; that of improved crude oil and that of asphaltene; requires its respective segregating tower.
  • the emulsions with water in this second opportunity, will be with water temperatures above 50 ° C, preferably between 50 ° C and 90 ° C, for the load current of the asphaltenic waste tower, and below 10 ° C , without reaching freezing point, with optional additions of hail water, for light hydrocarbon streams.
  • the process includes a pair of circuits for the process water, which operate at different temperatures; one does so with temperatures above 90 ° C, without reaching the boiling point of water, and the other with temperatures for water below 5 ° C, without reaching the freezing point, with the optional addition of slush-type water. From these circuits, the currents that are used in each of the points indicated in the process diagram are taken, which may have a different temperature than the previous ones, always intermediate to them, which are obtained by means of a pertinent mixture of water taken of each circuit.
  • the waters are withdrawn from the lower sections (sections A) of the gravity segregation towers and returned to the storage tanks, each one has a return filtration system, by means of which the suspended asphaltenes are removed.
  • the filter body with the removed asphalt will be converted into asphalt sands, which have a commercial value as an added for the construction of roads.
  • asphaltene is a complex molecular solution, which registers dynamic fluctuations in the concentration of fractions of different molecular structures of hydrocarbons and polyaromatic compounds.
  • researchers have managed to obtain asphaltene fractions, some soluble and others insoluble in compounds such as paranitrophenol.
  • different asphalt samples have been obtained from the same crude oil, taken from asphalt deposits found in the well, on the surface, in storage tanks, at different points. of the pipeline, which have thrown varied chemical structures, with the presence of asphalt of the so-called archipelago type and continental type.
  • Asphaltenes thus obtained can be considered as a "Virgin Asphaltene", to the extent that it preserves the aliphatic chains, product of the thermal processing of traditional processes, which increases its economic potential, since allows, in addition to being used in electrical cogeneration or as a raw material for the production of asphalt emulsions, to become a new raw material of high petrochemical value through new processes that scale, at an industrial level, the production of various fractions derived from the asphalt us, some already identified in the laboratory.
  • this process can be carried out from the production field itself, in the case of intermediate and light crude oils, the process can be carried out in crude oil collection centers, prior to shipment to the shipping ports, or in the refineries. , prior to primary distillation.
  • FIqisra 1 Shows a representation of an exemplary process of the present invention, applicable for a Pilot Plant oriented to operational research and for an Industrial Plant that will process crude oil that requires the optional secondary segregation phase.
  • the Figure 1 presents the optional phase of secondary segregation, after the Primary Gravitational Segregation and prior to the rectification phase, represented in the basic process of the invention shown in Figure 2.
  • Said optional phase is applied to the crude oil precursor streams. improved and asphalt, effluents from the primary gravitational segregation phase; for each one of them there is a corresponding gravity segregation tower.
  • FIG 2. Shows a representation of an exemplary basic process of the present invention, which comprises the three (3) basic phases of the process: a fundamental phase of Primary Gravitational Segregation, which is carried out in the TSG-A Primary Gravitational Segregation Tower , and which is complemented by two phases, namely: the phase corresponding to the destabilization of the Asphaltenes in crude oil and the Rectification of the Products phase. The first one is carried out prior to Primary Gravitational Segregation, and it takes place between the VMC valves, VMI-1; the second, for product rectification, is carried out, after the Primary Gravitational Segregation phase, in the rectification towers.
  • Figure 3. Illustrates the exemplary representation of the TSG-A Primary and TSG-B and TSG-C Secondary Gravitational Segregation Towers in accordance with the present invention.
  • FIG. 4 Shows an exemplary representation of the Light and Heavy Rectification towers, TRL and TRP, in accordance with the present invention.
  • FIG 1 describes the Pilot Plant process, which includes, in addition to the basic phases, represented in Figure 2, the Optional Phase.
  • the above allows to have the complete scheme, which allows to carry out operational research runs for any type of crude oil.
  • the start-up of the process starts from the crude storage tank (Tk-C), from where the quantities of raw material to be processed are taken (stream (1)); said stream of raw material is passed through a crude mixing valve (VMC) and then through the high intensity mixing valve VMI-1, in which process water (stream (14)) is added, in the quantities and specifications required according to the characterization of the crude.
  • the temperature T1 of the process water in the high intensity mixing valve VMI-1 may vary between 0 ° C and 90 ° C, without reaching the point of freezing, or boiling, and the temperature of the crude will be higher than 25 ° C, preferably between 25 ° C and 50 ° C, until the mixture is emulsified.
  • the crude oil in water emulsion is fed to the TSG-A primary gravity segregation tower, where the light hydrocarbon fractions present in the crude are removed in the gaseous phase as a top stream, upon reaching their boiling temperature Said light hydrocarbons from the same crude oil (stream (5)) condense, and as part of the asphaltene destabilization phase, they are recirculated through the crude mixing valve (VMC).
  • VMC crude mixing valve
  • the proportions of crude oil, light hydrocarbons and water in the mixture, as well as the temperature, will be determined by the characterization of the crude that is processed, which is emulsified when subjected to strong mechanical or contact energy in the VMM valve, until achieve a sufficient and homogeneous atomization of hydrocarbons and water.
  • the ratio of light hydrocarbons to load should seek a reduction in the specific gravity of the precursor stream of the improved crude, so that it is less than 0.8, in order to ensure an easier and faster segregation of asphaltenes.
  • the objective of this phase is to thermodynamically disturb the crude, reduce its viscosity, vary its temperature and facilitate the contact and aggregation of the asphaltenes with the water.
  • the VMI valves correspond to high intensity static mixers, placed in line, in such a way that they form emulsions for the process.
  • the emulsion thus formed is sent to the TSG-A Gravitational Segregation Tower, in which the following operational conditions are controlled.
  • a temperature between 10 ° C and 50 ° C must be controlled and at the top of the tower between 60 ° C and the boiling temperature of the light hydrocarbons present in the crude oil, particularly between 60 ° C. and 110 ° C, preferably between 60 ° C and 80 ° C.
  • This current plays a fundamental role in achieving a change in the composition of the processed crude oil, by enriching it with light saturated hydrocarbons, in which asphaltenes are insoluble; therefore, this paraffinic solvent obtained from the same crude oil, reduces the specific gravity of the precursor hydrocarbons of the improved crude oil;
  • the stream (5) will grow to the extent that it is recirculated and more crude is processed, there will come a time when the greatest effectiveness is achieved to flocculate asphalt; From which the operation stabilizes and the surpluses can be sent either to the asphaltenic waste stream (stream (3)) that enters the TSG-C tower, or they are sent to the TRP heavy rectification tower, to enrich the production of improved crude oil.
  • the second stream (stream (4)), of light hydrocarbons, accumulates in the concave collecting plate (29), located in the collecting boot (31) of the first intermediate section (section C) of the TSG-A tower; from where it is withdrawn by the top lateral current, from the TSG-A tower, (current (4)) as a load of the heavy duty rectification tower TRP; and, when the optional gravitational segregation phase is required, it is mixed with process water (stream (15)) at a temperature, T2, lower than 10 ° C, without reaching the freezing point, in the VMI-mixing valve.
  • TSG-B Gravitational Segregation tower This tower has an injection of water at a temperature, T3, below 10 ° C, without reaching the freezing point, with optional addition of slush ice, (stream (20)), at a point higher than the feed intake of light hydrocarbons to this TSG-B tower, which contributes to the flocculation of heavy residue carry-overs remaining in this stream.
  • the bottom temperature is controlled in a range between 0 ° C and 30 ° C.
  • the TSG-A tower top side stream (stream (4)), is sent directly as a load from the TRP heavy duty rectification tower, as illustrated in Figure 2.
  • the heavy residues that are extracted from the bottom of the TSG-A gravity segregation tower (stream (3)), corresponding to asphaltene flocs, with eventual resins and other hydrocarbons, are mixed with process water (stream (18) ), when passing through VMI-5, at a temperature T5, higher than 60 ° C, preferably between 60 ° C and 90 ° C, with a mixing intensity such that it forms an emulsion, and enters the TSG Gravitational Segregation tower -C.
  • the paraffinic solvent of the streams (5 and 6) produced in the TSG-A and TSG-B towers is added to stream (3), in a volumetric proportion of solvent with respect to the asphaltenic waste stream, determined by the characteristics of processed crude, in such a way as to ensure optimal flocculation of asphaltenes.
  • a temperature equal to or greater than 75 ° C is controlled, preferably between 75 ° C and 80 ° C.
  • current (3) can be joined by currents (7 and 9), coming from the bottoms of the TSG-B gravitational segregation tower and the TRP heavy rectification tower, respectively, before entering the the TSG-C tower.
  • This last tower also has an optional injection of water (stream (21)) at a temperature, T3, below 10 ° C, without reaching the freezing point, with optional addition of slush ice, at a point higher than the entry of the feeding of heavy waste from the TSG-A tower; all of the above with the purpose of achieving a new gravitational segregation of the light hydrocarbons existing in this stream.
  • the bottoms of the TSG-C gravity segregation tower (stream (11)) are mixed with process water (stream (19)) at a temperature, T4, between 70 ° C and 90 ° C, in the mixing valve, VMI-6, in an asphaltene-water relationship according to the needs generated by the characteristics of the processed crude oil and with a mixing intensity such that it allows the emulsion of the asphaltene and the breakdown of the molecular aggregates of the asphaltene with other trapped hydrocarbons is achieved; the stream (11) thus treated enters the Light Rectification Tower TRL, in which hydrocarbons lighter than water will overwash, which are accumulated in the internal collector at the top of the tower and removed with eventual water drags at the top, to be recirculated to the TSG-A tower (stream (13)).
  • the light rectification tower operation In the light rectification tower operation, it is controlled, according to the characteristics of the crude oil treated, at a temperature equal to or greater than 80 ° C at the top, without water evaporation, and between 20 ° C at 60 ° C in the background, the latter a dependent variable, the resulting value of which depends on other process variables.
  • the asphaltenes free of light hydrocarbons, are removed through the bottom of the light rectification tower TRL (stream (12)); They can be used as fuel for electric power cogeneration, as raw material for asphalt emulsions or as a filler for other processes that allow their conversion to products of greater commercial utility.
  • the TSG-A tower bottom stream (stream (3)), is sent directly as load from the TRL light rectification tower, as is illustrated in Figure 2.
  • the improved crude (stream (8)) will come out with a water content within the desired specifications, ⁇ 0.05%; with an increase in its API gravity and a reduction in its viscosity, as well as the sulfur, nickel and vanadium contents.
  • the Improved Crude obtained from a heavy or extra-heavy crude oil through this process, is within the specifications required to be transported by pipelines to refineries or export ports, without the need to correct its viscosity with diluents such as naphtha.
  • water is the fundamental agent for the gravitational segregation of hydrocarbons, the process has two closed water circuits, one at temperatures below 5 ° C, without reaching the freezing point, and the other at temperatures above 90 ° C, without reaching the boiling point of water, with mixing facilities to produce intermediate temperature values, according to the needs of the process and the process water stream being served.
  • the closed circuits have six (6) injections of water to the different gravitational segregation and rectification towers (currents 14, 15, 16, 17, 18, 19, 20 and 21) and three (3) withdrawals of water (streams 22, 23 and 24) in each of the three gravity segregation towers; however, the number of water injection and withdrawal points may vary as determined by operating conditions, and will correspond to a design aspect that is within the reach of the average technician.
  • the water circuits require filters, FA-1 and FA-2, installed before the returns to the water supply tanks, which must be subjected to inspection, maintenance and cleaning with the frequency established according to operational needs.
  • Gravitational segregation towers contain internal arrangements, as shown in Figures 1, 2, 3, and 4, which allow flocculation of asphaltene waste and asphaltene itself; These internal arrangements seek to avoid turbulence and allow the segregation and recovery of products with greater efficiency. Additionally, the described process is also object of the present invention the designs of the heavy and light gravitational segregation and rectification towers, as described below with reference to Figures 3 and 4, respectively.
  • Figure 3 represents the design of the Gravitational Segregation Towers.
  • Primary TSG-A and Secondary TSG-B and TSG-C with their internal arrangements developed by the inventor, for their implementation in the claimed gravitational segregation process.
  • the internal designs are intended to modify the kinetic conditions of the fluids, in order to stimulate and facilitate the segregation operation; as well as evaporating light paraffinic hydrocarbons, which will be used to modify the composition of the crude oil and destabilize asphaltenes.
  • the gravity segregation tower has four sections (sections A, B, C and D), which serve the following purposes: Section D. corresponding to the upper section of the tower; necessary for handling the gases of those hydrocarbons with boiling points below 80 ° C, which exit through the nozzle (25), and correspond to paraffinic hydrocarbons C6 and less, which evaporate in the first intermediate section (Section C) of the tower, by the action of a heating coil (26), with an inlet nozzle for the hot fluid (27) and an outlet (28), which is arranged within this section C. Said first intermediate section (section C) is located adjacent to and below the top section.
  • the fluids that rise in the sections C of the segregation towers, which do not evaporate, are collected by a concave collecting plate (29), funnel type, located in the lower part of an internal duct (30) that together form a collector boot (31), by which the current generating the improved crude oil is extracted, through the nozzle (32);
  • a concave collecting plate (29) located in the lower part of an internal duct (30) that together form a collector boot (31), by which the current generating the improved crude oil is extracted, through the nozzle (32);
  • the second intermediate section (Section B), feeding the tower, located adjacent to and below the first intermediate section, in whose central part is the charge feed nozzle (33); as well as the recirculating inlet nozzles of the rectifying towers TRP, nozzle (34), and TRL, nozzle (35), this arrangement helps to break the emulsions and promotes the molecular breakdown of asphaltenes in order to remove the hydrocarbons that They will enrich the stream of upgraded crude.
  • the fourth section (Section A), corresponding to the lower section of the tower, it has an internal arrangement in a conical shape (36), with an angle of inclination higher than the angle of repose of the asphalt (70 °), always and when the condition of the internal conical arrangement (36) does not block the passage through the nozzle (37). Additionally, said internal conical arrangement (36) has a smooth surface in order to minimize the adherence of asphaltenes to the wall of the segregator.
  • Section A has two nozzles, namely: the nozzle (37) for the removal of excess water, with which the process water circuits are closed, and the nozzle (38) through which the bottom currents are extracted, related to asphaltene.
  • the rectification towers have an external section (39) and an internal arrangement consisting of a collecting boot (40) built with four fundamental components: i) a perforated basket (41) supported against the internal walls of the external section (39); ii) a cylindrical tube (42) with an internal diameter equal to or less than 1/3 of the diameter of the tower, provided that it allows the upward flow of hydrocarbons lighter than water towards the perforated basket, and the necessary suction head of the product removal valve (not shown) is sufficient for product removal; iii) a collecting concave plate (43) with a lower perforation connected to iv) a nozzle (44) for the removal of the light stream.
  • the TRP it will be the improved crude oil and in the case of the TRL, the recirculation of light to the gravity segregation tower.
  • the external section (39) of the rectification tower has three nozzles; a feed nozzle (45), a process water supply nozzle (46) and a bottom stream withdrawal nozzle (47).
  • the asphaltenes produced are sent to a process to produce asphalt emulsions or to a drying process and subsequent feeding to a fluidized bed boiler for the generation of steam and the subsequent electrical cogeneration process.
  • the energy requirements for the production of steam and electricity from the dehydration and deasphalting processes are obtained from asphaltene.
  • the present process is carried out at the wellhead, it is self-sufficient in that the crude itself supplies the currents required for its processing and does not use chemicals or demulsifying additives.
  • the current that ascends does so at speeds greater than 0.6 cm / s, which allows, together with the difference in densities between the phases , that the asphalt flocculate and fall to the bottom of the segregator.
  • the present invention can eliminate the traditional dehydration process, since the water contained in the crude coming from the field is combined with that of the crude process water and by removing the improved crude oil from the asphalt, without the heavier, viscous and polar, it will easily meet the specifications for viscosity and water content below 0.05%.
  • Table 7 shows the operating conditions corresponding to a run with intermediate type crude, that is, with API gravities that vary between 20 and 30 ° API. In these ranges of specific gravity, it is common to find a balance in the present proportions of the molecular structures of paraffinic and aromatic hydrocarbons, with a low content of paraffinic waxes and a sufficient content of light hydrocarbons, characteristics that allow an operation without major complications.
  • the TSG-A tower in this example was operated at an exemplary temperature of 80 ° C at the top;
  • the top temperature for the operation of the TSG-A may vary within the range proposed by the inventor, since it is subject to the content of C5 hydrocarbons in the crude; if there is a significant content of C5, the top temperature should be controlled close to the value of 60 ° C.
  • Heavy Crude Processing Case Table 8 shows the operational conditions corresponding to a run with heavy crude oil, that is, with API gravities that vary between 10 and 20 ° API. This type of crude is characterized by containing low amounts of gases, notable amounts of resins and a presence of asphaltenes that significantly affects the viscosity of the crude.
  • the optional Secondary Gravitational segregation phase is not required.
  • the fact of working with a top temperature of 80 ° C in the TSG-A stands out, in order to seek to obtain paraffinic C5 and C6 hydrocarbons in the gas stream.
  • Table 9 shows the operating conditions corresponding to a run with extra-heavy crude, that is, with API gravities below 10 ° API, which are characterized by their low content of light hydrocarbons, which is why the conditions from a stabilized operation will take longer.
  • the optional Secondary Gravitational segregation phase is not required.
  • Processing results Table 10 shows the results of the processing of the four types of crude oil, in which the increase in API gravity of the improved crude oils over the processed loads is highlighted, with a water content with values lower than 0 .05%, lower content of sulfur and metals, as well as a significant viscosity, which allows it to be transported by pipeline without the need to use diluents such as naphtha or similar.
  • the operational investigation with the pilot plant is imperative, since there is a possibility of maneuvering that allows obtaining an improved crude with higher API gravity and lower viscosity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

Proceso para retirar asfaltenos a los crudos y los equipos para su implementación. El proceso emplea agua como agente de segregación gravitacional y rectificación de productos. El proceso contempla tres fases y una opcional; sus productos resultantes son un crudo mejorado y asfaltenos. La primera fase busca modificar el crudo, desestabilizar los asfaltenos mediante una perturbación termodinámica y formar una emulsión crudo modificado/agua, la cual se somete, en una segunda fase, a una primera segregación gravitacional, de la cual surgen las corrientes promotoras de crudo mejorado y asfaltenos; se termina el proceso con una tercera fase, en la cual, a cada una de las corrientes promotoras de productos se someten a una rectificación, previa emulsión con agua. Se contempla una fase opcional con segunda segregación gravitacional, a cada una de las corrientes de crudo mejorado y asfaltenos, entre la segunda y tercera fase, cuando las características del crudo lo requieran.

Description

PROCESO PARA LA SEGREGACIÓN GRAVITACION AL CON AGUA DE ASFALTENOS A LOS CRUDOS, Y EQUIPOS PARA SU IMPLEMENTACIÓN
Campo técnico de la invención
La invención se relaciona con un proceso para la remoción in situ de asfáltenos presentes en crudos, particularmente crudos pesados y extrapesados, mediante segregación gravitacional de los asfáltenos con agua. La invención también se relaciona con los equipos para la puesta en marcha del proceso de la invención.
Antecedentes de la invención
La siempre creciente demanda de energía, tanto en la producción Industrial, como en los consumos domésticos, registrada especialmente desde la revolución industrial, ha incorporado a la canasta mundial las más variadas fuentes de energía; desde los combustibles de origen vegetal, como la leña, el alcohol y el biodiesel, pasando por los combustibles de origen fósil como el carbón, el petróleo, el gas natural y las arenas bituminosas; así como la energía eléctrica de origen hidráulico, térmico y nuclear; y toda fuente alternativa que se descubra, como la eólica y la solar. De todas ellas, desde finales del siglo XIX, el mundo demanda en forma constante y creciente del petróleo y su participación en la canasta de energía lo tiene como el factor económico, geopolítico y estratégico más importante de la economía mundial.
Durante toda la historia de la Industria petrolera, la etapa de refinación en la cadena de valor se orientó hacia maximizar la producción de combustibles blancos; es decir, maximizar los márgenes económicos al reducir la producción del combustóleo (fuel oil en inglés), por considerar a este último como el derivado de menor valor comercial; dada su difícil combustión. A esta estrategia se la denominó “reducir el fondo del barril”.
Los retos para la refinación crecieron en la medida en que se redujo la disponibilidad de crudos livianos y medianos en las cargas de refinerías; fenómeno que se empezó a registrar desde mediados de los años 70's, cuando se empezó a contemplar los crudos pesados y extrapesados para atender las necesidades de carga a las refinerías y las demandas de combustibles.
Con la mayor producción de estas materias primas, se registraron nuevos retos, tanto en los campos de producción, como en su logística y transporte, así como en la mayor contaminación por el incremento de sólidos en los gases de combustión, todo lo cual crecía en dificultades y costos. En la medida en que a las cargas de las refinerías se les incrementó la participación de crudos pesados y extrapesados, la industria se obligó a modificar los esquemas de refinación, los cuales crecieron en complejidad y costo, a fin de contrarrestar la tendencia relativa de disminución en la producción de combustibles blancos y el incremento de combustóleo.
Para el caso de la refinación, la tendencia del incremento en la producción de combustóleo es consecuencia directa de la mayor presencia y rendimiento de las fracciones pesadas, en especial el asfalteno, un verdadero dolor de cabeza en la industria; pues aumentó su presencia desde las profundidades del pozo hasta las refinerías, pasando por las facilidades de producción, oleoductos, buques cisterna, tanques de almacenamiento y demás equipos y procesos.
En la actualidad, del total de las reservas mundiales de petróleo, el 30% de estas corresponde a crudo convencional y el 70% a no convencional, de este último el 25% son crudos pesados y 45% crudos extrapesados. Venezuela es el país de la región con las mayores reservas de crudo pesado con el 87,2%, le siguen México con el 7,4%, Ecuador con el 2,7%, Brasil con el 1 ,1%, Colombia en el quinto lugar con el 0,6%, Argentina con el 0,5% y Perú con el 0,4%.
Ahora bien, el transporte de estos crudos desde los campos de producción hasta las refinerías obliga a recorrer grandes distancias, para lograrlo, la mejor opción es mediante oleoductos, sin embargo, el transporte por oleoducto exige cumplir con ciertos requerimientos del fluido que ha de ser transportado, a saber: una viscosidad menor a los 300 cSt (3 cm/s), una gravedad API mayor a 18° y un contenido de agua inferior a 0,5%.
Para llevar los crudos pesados y extrapesados a las especificaciones de bombeo, con las variables de viscosidad y gravedad API antes señaladas, se requiere la aplicación de algún proceso de mejoramiento del crudo que reduzca el impacto por su alto contenido de asfáltenos; por lo pronto, la industria utiliza la dilución con nafta virgen y se piensa en procesos como el desasfaltado, en los campos de producción.
Si bien, la dilución con naftas vírgenes viabiliza su transporte, esta operación resulta compleja y aún costosa, por los niveles de inversión y los sobrecostos derivados por la recuperación de las naftas y su transporte de regreso al campo de producción.
Por otra parte, las actuales tecnologías disponibles para lograr el desasfaltado exige costosas inversiones y altos costos de operación, que tan sólo se justifican, en la medida en que las producciones logren las economías de escala que las amorticen. Los asfáltenos el dolor de cabeza
Los asfáltenos se han definido como la fracción del crudo insoluble en disolventes alifáticos como el heptano y soluble en disolventes aromáticos como el tolueno. Sin embargo, a pesar de los numerosos estudios, su composición no se ha definido adecuadamente sobre una base molecular; la comprensión es que su principal característica es su aromaticidad. Pueden estar representados por compuestos de entre cinco y diez anillos aromáticos fusionados que llevan heteroátomos como nitrógeno, oxígeno, azufre. Sus anillos tienen la capacidad de auto asociarse y formar agregados supra moleculares, que a su vez pueden atrapar compuestos de menor peso molecular solubles en solventes alifáticos.
Según la espectrometría de masas de resonancia de iones ciclotrón (FTICR MS) los asfáltenos tienen una amplia variabilidad compositiva con alto número de átomos de carbonos y anillos pollaromáticos con contenidos de azufre y metales, como el níquel y el vanadio, los cuales envenenan y desactivan los catalizadores que se utilizan en los procesos de ruptura catalítica. Adicionalmente, su alta viscosidad es la responsable del incremento en la dificultad operacional de su manejo y en el mayor costo del transporte por oleoducto de los crudos pesados y extrapesados.
Al retirar los asfáltenos del crudo, se reduce su viscosidad, así como su contenido de metales y azufre; lo que, además de mejorar la calidad del crudo y su precio, elimina muchos problemas en la cadena de valor de la Industria, pues facilita el transporte por oleoducto, reducen los problemas de corrosión, permite reducir la temperatura del proceso en la de destilación atmosférica, incluso podría eliminar la necesidad de la destilación al vacío. Por lo tanto, reduce la complejidad de los esquemas de refinación y por consiguiente los costos de Inversión y operación.
Si bien se han desarrollado en el arte diferentes tecnologías para el desasfaltado de los crudos, su implementación hasta ahora en los campos de producción es compleja, costosa e intensiva en inversiones para su procesamiento, lo que impide su viabilidad por la economía de escala que se manejan.
Retirados los asfáltenos en el campo, pueden ser manejados en tres alternativas: primero como materia prima en procesos químicos que permitan obtener más combustibles livianos, como combustible para cogeneración eléctrica o en la producción de emulsiones asfálticas; todas ellas se constituyen en una oferta importante en los campos de producción, por ser normalmente zonas no interconectadas a la oferta de energía eléctrica y ser regiones despobladas con pobre vialidad. Ejemplos de proceso existentes
Por ejemplo, la Patente US 4.125.459, se relaciona con un tratamiento de hidrocarburos de material bituminoso con solventes y describe un proceso para desasfaltar hidrocarburos provenientes de material bituminoso mediante el desasfaltado combinado con propano y pentano, que también puede ser obtenido al desasfaltar solo con propano o con pentano. El material bituminoso es primero desasfaltado con pentano para producir una fracción liviana que contiene el aceite y las resinas y luego a esa fracción liviana y a un reciclo, compuesto de una parte de la fracción de resinas obtenidas del segundo desasfaltado, se le aplica un proceso de desasfaltado con propano. El proceso también puede primero desasfaltar con propano y luego con pentano y recicla una parte de la fracción liviana obtenida al proceso de desasfaltado con propano. Según los autores el aceite así obtenido es de mayor calidad y mayor rendimiento.
La Patente US 4.191.639, describe un proceso para desasfaltar con una mezcla de al menos dos de los siguientes compuestos: sulfuro de hidrogeno, dióxido de carbono e hidrocarburos livianos, que pueden ser propano, butano, pentano o sus mezclas. Cada uno de los componentes debe estar presente en al menos 10% de lo que se llama solvente. El proceso se realiza a temperatura por debajo de la crítica y a presión por encima de la crítica del solvente. La relación hidrocarburo/solvente puede ir desde 1/1 hasta 1/20. El aceite desasfaltado se caracteriza porque tiene menor contenido de metales y azufre y puede ser utilizado como carga a los procesos de rompimiento catalítico fluido o procesos de hidro-rompimiento.
La Patente US 4.324.651 , describe un proceso para desasfaltar un aceite mineral que contiene asfaltos, a temperatura por encima de los 80°C (preferiblemente 175 - 225°C) y a elevada presión (500 - 1200 Psig (3447,38 a 8273,71 KPag)), utilizando metanol como solvente para desasfaltar. El proceso produce dos fases, una rica en asfalto y otra rica en metanol. Mediante el enfriamiento de la fase rica en metanol a una temperatura por debajo de los 80°C y con un tiempo de asentamiento se producen dos fases una rica en aceite y otra rica en metanol.
La Patente US 4.514.287, relaciona un proceso para el desasfaltado con solvente de hidrocarburos con contenido de asfáltenos, el proceso se desarrolla mezclando un solvente, más un compuesto metálico de sulfato de aluminio o titanio, y alcoholes. El proceso utiliza para crudos reducidos de destilación atmosférica y se aplica para un residuo proveniente de un crudo liviano árabe y con contenidos de asfáltenos menores al 5%.
La Patente US 4.634.520, describe un proceso en baches a nivel de laboratorio para deshidratar y des asfaltar simultáneamente emulsiones de crudos pesados, empleando como solvente el petrol-éter. Una vez que mezclan el crudo con el solvente esperan un tiempo para la decantación de las fases, posteriormente retiran la fase liviana que contiene el crudo desasfaltado y la mayor parte del solvente. Los asfáltenos son lavados dos veces más con solvente y posteriormente introducidos en un baño de agua caliente, para producir aglomerados de asfáltenos, se espera un lapso para que se presente la separación de fases y luego se toma la fase asentada (asfáltenos y agua) y se lleva a un baño caliente para que los asfáltenos formen aglomerados. Luego los asfáltenos aglomerados son removidos del agua callente.
Patente US 4.915.819, describe un tratamiento para la deshidratación, desasfaltado y desparaflnado en baches que se realiza a un crudo en forma de emulsión. El proceso reduce la viscosidad de crudos pesados al remover asfáltenos y metales pesados, tales como níquel y vanadio en el caso de crudos pesados y ceras en el caso de crudos livianos. Describe un método para remover asfáltenos y/o ceras del crudo, en donde el método comprende los pasos de contactar el crudo con un solvente orgánico para disolver el crudo y precipitar asfáltenos y/o ceras, separar los asfáltenos y/o ceras del crudo y solvente, y separar el solvente del crudo desasfaltado. Se recupera el solvente para usos posteriores. La recuperación de asfáltenos se realiza poniéndolos en contacto con agua.
Solicitud de patente US 2005/0167333 o solicitud PCT WO 2005/074440, titulada "Proceso de conversión súper crítica para hidrocarburos", describe un proceso que se aplica para convertir hidrocarburos con punto de ebullición superiores a 538°C a condiciones supercríticas, mediante la utilización de un solvente en una relación solvente/hidrocarburo de 2/1 y a condiciones por encima de la temperatura crítica (371 - 593°C) y la presión crítica (715 - 2015 Psia (4929.75 - 13892.94 KPa)) del solvente en presencia de un lecho sólido fluidizado y caliente. El hidrocarburo Ingresa a la zona de reacción a una temperatura más baja que la que tiene el lecho sólido fluidizado. La suspensión sólidos hidrocarburo tiene una temperatura de equilibrio correspondiente a la temperatura de reacción. Esta conversión presenta altas remociones de azufre, nitrógeno y metales y produce un hidrocarburo de menor peso molecular, con mayor conversión para nafta y menor formación de coque. Según la solicitud en mención, se platean que este proceso supercrítico puede remplazar los procesos de destilación primaria y de vacío, el desasfaltado con solvente, la coquización, el hidro-rompimiento, el hldrotratamiento y el rompimiento catalítico, o puede usarse en paralelo con estos procesos.
Solicitud de Patente Colombiana No. 97-48663, titulada "Proceso de desasfaltado de hidrocarburos pesados con alto contenido de asfáltenos a condiciones bajas de presión y temperatura", describe un proceso continuo de extracción en línea, a baja presión y temperatura, de alto rendimiento y de mínimo mantenimiento, para desasfaltar, desmetalizar y desulfurar parcialmente mezclas de hidrocarburos asfáltenos, tales como crudos pesados asfáltenos y residuos pesados provenientes de destilación primaria o al vacío, bien sea en su estado original o en forma de emulsiones inversas, hidrocarburo en agua. El proceso mencionado en la solicitud 97-48663 se realiza en una sola etapa, donde inicialmente se realiza el descabezado para la separación de las fracciones más pesadas del hidrocarburo, luego el hidrocarburo en forma deshidratada o de emulsión inversa se mezcla con solvente y pasa a un recipiente para hacer la separación de los asfáltenos del crudo mejorado y el solvente en una sola etapa. El solvente se recupera y se recircula al proceso. Finalmente, se separa el solvente arrastrado en la parte asfalténica.
Los procesos de las publicaciones mencionadas son esencialmente procesos en los cuales se retiran los asfáltenos a los residuos asfálticos y emplean solventes orgánicos, compuestos metálicos y mezclas de alcoholes; es decir, requieren procesos previos para ser aplicados, lo que exigen mayores inversiones, posibles para economías de escala con altas cargas de crudo, lo cual dificulta la economía para ser implementados en los campos de producción de crudos. Adlcionalmente, emplean condiciones de temperatura y presión elevadas.
Asimismo, se han reportado en el arte previo tecnologías para la remoción de asfáltenos que implican la formación de emulsiones aceite en agua, tal como la divulgada en el documento US8,932,450 B2. Esta publicación enseña el procesamiento de emulsiones crudo/agua, provenientes de pozo, o de emulsiones formadas por la adición de agua con el fin de tener un contenido de agua de por lo menos 5%; no obstante, para la separación del crudo de los asfáltenos se requiere la adición de un agente descontaminante, en donde el agente descontaminante comprende hidrocarburos ligeros de 7 átomos de carbono o menos. El acondicionamiento de la emulsión por la adición de un agente descontaminante se realiza a una temperatura desde 70°C a 200°C. Como resultado de la adición del agente descontaminante se forma una fase de crudo libre de asfáltenos y una fase de asfalteno/agua.
El documento US 8,147,678 B2, por su parte, divulga un proceso para remover asfáltenos y/o metales del crudo, esta separación se logra por la mezcla de agua de lavado con crudo para formar una emulsión agua/crudo y la adición de químicos al agua de lavado, crudo o emulsión agua/crudo para aumentar el tamaño de una fase intermedia formada en la interfase crudo/agua. Este proceso comprende también separar la emulsión de agua/crudo en una unidad desalinizadora para formar una primera fase acuosa que comprende agua y sales solubles en agua, una fase intermedia que comprende asfáltenos y/o metales junto con agua y una fase de hidrocarburos que comprende crudo desalinizado, desasfaltado o reducido. Este documento no menciona temperaturas de operación particulares y únicamente hace una amplia referencia a temperaturas de operación de los aparatos y métodos de la invención, las cuales pueden variar desde 0°C a más de 150°C. Estos procesos, en los que interviene la adición de agua para formar emulsiones, también requieren la adición de solventes o de acondicionadores de emulsión para provocar y mejorar la separación del crudo, las cuales deben ser llevadas y suministradas en los campos de producción para su aplicación.
Como tal no existe una tecnología de remoción de asfáltenos en el campo que sea de conveniente aplicación, sin que requiera llevar al campo solventes u otros agentes de separación y que no requiera de equipos complejos de instalación y operación, como tampoco de temperaturas y presiones elevadas.
Descripción de la Invención
El proceso que se presenta para su reconocimiento como innovación, ofrece la posibilidad de retirar los asfáltenos del crudo en forma intencional, directa, sencilla y sin antecedentes en los campos de producción. Hasta el momento, la industria petrolera no dispone de un proceso que le permita retirar los asfáltenos en el campo mismo de producción, de manera efectiva, con un bajo nivel de inversión y a costos de operación razonables, que permita su recuperación en tiempos y costos viables.
Por lo tanto, el proceso de la presente invención se constituye en una oportunidad para hacer viable y competitiva la producción y comercialización de los crudos pesados y extrapesados; además, al hacer viable el retiro de los asfáltenos en los campos de producción se estarán eliminando muchos de los problemas generados por los asfáltenos en la cadena de valor de la industria, reducir sus consumos de energía, así como los impactos ambientales derivados de los eventuales derrames de crudo sobre cuerpos de agua, contribuir a reducir los efectos del cambio climático y ofrecer un valor agregado en la zona de influencia del campo productor, lo que permite mejorar las oportunidades a las poblaciones vecinas y ofrecer alternativas que contribuyen a su desarrollo socioeconómico, lo que garantiza una mayor justicia y equidad con las zonas productoras.
El proceso que se propone ofrece retirar los asfáltenos del crudo (de toda clase de crudos) a partir de las siguientes cuatro características físicas: a) el carácter inmiscible del agua con los hidrocarburos, b) el carácter inmiscible del asfalteno en los hidrocarburos parafínicos livianos, c) la diferencia de gravedades específicas entre el agua y los hidrocarburos y d) el carácter polar que la presencia de los heteroátomos le aportan a algunas sub-fracciones de los asfáltenos y de allí su condición de surfactante natural del agua.
Adicionalmente, el fenómeno de expansión volumétrica que se registra con el agua, al momento de pasar del estado sólido al estado líquido, cuando su gravedad específica pasa de 1 ,0 a 0,92, permite disponer de un rango de gravedades específicas entre 0,92 hasta 1 ,0, en el rango de 0°C a 32°C, en fase líquida, y hacer del carácter indisoluble de los hidrocarburos en el agua el agente de segregación gravitacional que permite hacer flocular al asfalteno del crudo.
Ahora bien, la variada mezcla de hidrocarburos que contienen los crudos, especialmente en las fracciones pesadas de resinas y asfáltenos, nos permite afirmar que no existen crudos, ni asfáltenos iguales; máxime al contener, estos últimos, una presencia de heteroátomos en sus estructuras moleculares, la cual confiere a estos compuestos características polares e hidrofílicas, que favorecen la producción de emulsiones de los hidrocarburos con el agua; por lo anterior, la segregación gravitacional se constituye en una interesante oportunidad.
Para lograrlo, el proceso que se presenta para reconocimiento como patente, utiliza al agua como un apropiado agente segregador, que, al aplicar una combinación de factores desestabilizadores de los asfáltenos en el crudo, los segrega de los demás hidrocarburos y los coloca, agua de por medio, mientras los asfáltenos precipitan y los demás hidrocarburos sobrenadan.
Para lograr una más efectiva separación se promueve una fuerte perturbación a las condiciones termodinámicas del crudo, así se desestabilizan sus asfáltenos, se propicia el rompimiento de sus agregados moleculares, con el consecuente desprendimiento de las resinas y los demás hidrocarburos, momento en el cual, los asfáltenos precipitan, dada su gravedad específica mayor a 1 ,0.
El objetivo que permite flocular y separar los asfáltenos del crudo se logra, con el proceso propuesto, al utilizar de manera intencional y pertinente los siguientes factores que afectan su estabilidad en el crudo y favorecen su separación, a saber: a) Propiciar variaciones en la composición de hidrocarburos del crudo procesado, mediante la recirculación de corrientes de hidrocarburos livianos de carácter parafínico, obtenidas del crudo mismo aguas abajo dentro del proceso; se busca con ello, crear la segregación de dos grupos de hidrocarburos: por un lado el asfalteno, inmiscible en heptano y con gravedad específica mayor a 1 ,0, que precipitará, y por el otro, los miscibles en hidrocarburos parafínicos livianos, a los cuales se les reduce más su gravedad específica a fin de lograr que sobrenaden con mayor facilidad sobre el agua. b) Adicionar agua a diferentes temperaturas, en cada una de las fases del proceso, con diferentes relaciones volumétricas respecto a los hidrocarburos tratados, utilizar su carácter inmiscible con los dos grupos de mezclas moleculares de hidrocarburos, así como el carácter de surfactante natural del agua, que tiene el asfalteno, son factores que se utilizará para estimular su floculación. c) Aplicar perturbaciones termodinámicas de manera tal, que permitan formar temporales emulsiones directas e inversas, a fin de que facilitar la segregación gravitacional y una más rápida separación. d) Establecer perfiles de temperatura, tanto del agua como de los hidrocarburos, en las diferentes fases del proceso, que garanticen el rompimiento de las emulsiones temporales. e) Emplear arreglos pertinentes que produzcan cambios cinéticos, a lo largo del proceso, con los cuales se asegure el rompimiento de los agregados asfalteno-reslnas, así como una mayor facilidad para precipitar los asfáltenos y lograr la flotación de la mezcla liviana de hidrocarburos.
Para ello, el proceso se realiza en tres (3) fases fundamentales, a saber:
• Fase 1 : Desestabilización de los Asfáltenos en el crudo
• Fase 2: Segregación Gravitacional Primarla
• Fase 3: Rectificación de Productos
Las fases anteriores son suficientes para crudos intermedios, pesados y extrapesados, en los que predominen los hidrocarburos aromáticos y no se encuentren cantidades significativas de ceras parafínicas.
Sin embargo, ante las variadas composiciones posibles de crudos y fracciones pesadas, a las fases anteriores se le incluye de manera opcional una fase adicional con las cuales se busca cubrir las necesidades operacionales que requieren los crudos medianos y livianos, con contenidos significativos de ceras parafínicas.
Dicha fase adicional, necesaria para complementar el proceso en el caso de crudos Intermedios y livianos, consiste en una fase secundaria de segregación gravitacional, en la cual se procesan cada una de las corrientes de hidrocarburos livianos y de residuos asfalténicos, obtenidas en la segregación gravitacional primaria; esta fase opcional se efectúa en sus correspondientes torres de segregación gravitacional, después de la segregación gravitacional primaria y antes de la fase de rectificación de productos.
Fase 1 : Desestabilización de los Asfáltenos en el crudo
Tiene como objetivo fundamental romper los agregados moleculares que forman los asfáltenos; predominantemente con las resinas e incluso con otros hidrocarburos más livianos, de manera tal que, al quedar libres los asfáltenos, se facilite la formación de sus emulsiones con el agua y floculen espontáneamente.
Lo anterior se logra mediante la utilización de cuatro (4) de los seis (6) factores de desestabilización, mencionados anteriormente. Como primer factor, a) se busca un cambio en la composición del crudo, lo que se logra al mezclarlo con de unas corrientes de hidrocarburos livianos, parafínicos de 5 y 6 átomos de carbono, obtenidos del crudo mismo, aguas abajo en el proceso, con las cuales se logra reducir significativamente la gravedad específica de los hidrocarburos diferentes al asfalteno, lo que facilita su segregación gravltacional.
Como segundo factor, (b) se adiciona agua, la cual actuará como agente segregador de los hidrocarburos; el tercer factor, (c) contempla atomizar la mezcla (crudo, hidrocarburos livianos y agua) con los mezcladores estáticos de alta intensidad hasta lograr una emulsión y como cuarto factor, (d) se controla una temperatura de la emulsión entre los 10°C y los 50°C, según las necesidades de la carga.
Vale la pena destacar que, al inicio de la puesta en operación, el crudo ingresa al proceso sin la mezcla de los hidrocarburos parafínicos C5 y C6, los cuales se le podrán adicionar de manera gradual y creciente en una válvula mezcladora de crudo (VMC), hasta lograr la proporción óptima en relación con el crudo, una vez se produzcan en la sección superior de la torre gravitacional primaria.
Fase 2: Seareaación Gravitacional Primaria
La emulsión del crudo obtenida en la fase anterior es la carga a la Fase de Segregación Gravitacional primarla, a partir de la cual se realiza la separación de hidrocarburos en sus fracciones miscibles e inmiscibles en hidrocarburos parafínicos livianos y en la que el agua actúa como el agente de segregación de las dos corrientes; la primera será precursora del crudo mejorado y la segunda de los asfáltenos.
En esta Fase se registra, además, la producción gaseosa y su posterior condensación, de la fracción de hidrocarburos parafínicos, correspondientes a compuestos livianos cuyo punto de ebullición es inferior a los 110°C, predominan pentanos y hexanos, los cuales se recircularán a la carga, con el objeto de modificar la composición del crudo, como ya se mencionó en la Fase 1 ; se evita la fase gaseosa del n heptano, porque con dichos gases se producen benceno, en el cual se diluyen los asfáltenos. Enriquecer el crudo con hidrocarburos saturados livianos, exclusivamente, en los cuales el asfalteno es insoluble, busca disminuir la gravedad específica de la mezcla de los hidrocarburos miscibles en condensados parafínicos, a fin de lograr que dicha mezcla logre sobrenadar con mayor facilidad sobre el agua.
El agua adicionada es la variable fundamental en esta Fase, sus proporciones volumétricas y las condiciones de temperatura determinan la producción de la emulsión y su temperatura, por lo tanto, varían de crudo a crudo y estarán determinadas en función del contenido de las diferentes estructuras químicas existentes en el crudo, según los análisis SARA (Saturados, Aromáticos, Resinas y Asfáltenos); el contenido de ceras parafínicas, especialmente en las fracciones con rangos de destilación superiores a los 350°C, los contenidos de heteroátomos, los análisis PONA (Parafinas, Olefinas, Ñafíenos y Aromáticos) y PIANO (n-Parafinas, Iso- parafinas, Aromáticos, Ñafíenos y Olefinas); el factor de caracterización UOPK, así como los contenidos de S, N, O, metales pesados, entre otros. Con base en las técnicas conocidas para la caracterización de los crudos, el versado en la materia está en capacidad de realizar los análisis correspondientes de la carga a alimentar en el proceso de la presente invención; por lo tanto, dichos análisis previos a la conducción del método de la presente invención no hacen parte del alcance de la protección solicitada.
Adicional a lo anterior, las condiciones de temperatura y presión, así como los factores mecánicos como la agitación y mezcla logran producir una emulsión temporal de crudo en el agua (O/W), la emulsión de los hidrocarburos livianos se rompe rápidamente en la torre de segregación gravitacional primaria y se separa de las eventuales emulsiones remanentes de los residuos asfalténicos, preservada por la temperatura y el carácter polar de los asfáltenos, mediando los excesos del agua.
En la torre de segregación gravitacional primaria, se establece un perfil de temperatura entre el fondo y la cima, así: el fondo, como variable dependiente de los flujos de agua y la recirculación de las corrientes provenientes de las torres rectificadoras se encontrará a una temperatura entre 10°C - 50°C y en la cima, como variable independiente se debe controlar una temperatura entre 60°C - 110°C, rango de ebullición de los hidrocarburos livianos presentes en el crudo que se utilizarán como solvente de la fracción precursora del crudo mejorado; bajo estas condiciones se busca generar una condición termodinámica diferente, capaz de estimular y facilitar la segregación gravitacional entre los residuos asfalténicos y los hidrocarburos miscibles en solventes parafínicos livianos.
Fase 3: Rectificación de Productos
Ya consolidada la corriente de hidrocarburos miscibles en solventes parafínicos, esta se constituye en precursora del crudo mejorado, y la de residuos asfalténicos, como precursora del asfalteno; las dos se someten a un proceso de rectificación a fin de retirarles los eventuales arrastres de asfalteno en la primera e hidrocarburos deseables para el crudo mejorado, en la segunda.
Las torres de rectificación hacen parte fundamental de la efectividad para lograr la segregación gravitacional, toda vez que, las corrientes que retiran los eventuales arrastres se recirculan a la torre de segregación gravitacional primaria, y contribuyen a establecer el perfil térmico requerido en esta última. Para tal efecto, el proceso podrá comprender por lo menos una torre de rectificación de livianos y por lo menos una torre de rectificación de pesados, según las necesidades del proceso, ya que la rectificación podrá replicarse siendo necesaria más de una torre de rectificación de livianos y más de una torre de rectificación de pesados.
Fase Opcional de Segregación Gravitacional
Ahora bien, un alto contenido de ceras parafínicas en el crudo, en el rango de las fracciones de los destilados con punto de ebullición superiores a 350°C, requiere la inclusión de la fase opcional, con el objetivo fundamental de evitar la producción de agregados moleculares que se pudiesen formar entre las ceras parafínicas y los asfáltenos, situación que dificultaría la eficiente precipitación de estos últimos. Asimismo,
Con el objeto de profundizar en el retiro de residuos de la corriente de hidrocarburos livianos, así como de los hidrocarburos saturados, aromáticos livianos y resinas de la corriente de residuos, cuando se trata de una carga de crudos livianos y extra-livianos, con alto contenido de ceras parafínicas, que tienden a solidificarse a temperaturas inferiores a los 45-50°C, la temperatura de carga a la torre de segregación gravitacional primaria debe ser mayor a los 45- 50°C, llegando a exceder las condiciones de temperatura de la carga para la operación de la torre de segregación gravitacional primaria; por lo tanto, para el objeto de la presente Invención, se hace necesaria la fase opcional de modo que se remuevan ceras parafínicas remanentes en la corriente precursora de los asfáltenos.
Al disponer de la fase opcional para el procesamiento de este tipo de crudos, la torre de segregación gravitacional primaria puede trabajar con una temperatura ubicada en los valores superiores del rango considerado para el fondo de la torre, que, con la adición de solventes parafínicos, busca mantener líquidas las ceras parafínicas. Esta fase opcional culmina el proceso de floculación de asfáltenos.
En el caso de un bajo contenido de ceras parafínicas, la sola dilución con el solvente parafínico podría llegar a mantener en estado líquido las ceras, a temperaturas inferiores a la de solidificación y por lo tanto se podría operar con una temperatura más baja en la carga a la torre de segregación gravitacional primaria; por lo tanto, la fase opcional de segregación gravitacional secundarla no sería requerida.
Como quiera que el proceso es eminentemente físico, una Planta Piloto, que incluya la fase opcional, permite efectuar una investigación operacional del comportamiento de crudos complejos y buscar el perfil óptimo de temperatura en las torres de segregación gravitacional, así como el comportamiento y la óptima relación solvente a carga de crudo procesado. Las corridas de investigación operacional se deben realizar antes del diseño detallado de proceso, de manera tal que garanticen la necesidad o no de la fase opcional. Con base en las condiciones encontradas en la investigación operacional con la planta piloto, se concentra la atención en el impacto producido por la modificación en la composición del crudo mediante un hidrocarburo liviano, de carácter parafínico, y el efecto de segregación gravitacional que ofrece el agua, una vez se rompa la emulsión producida en la primera fase de desestabilización del asfalteno.
En esta fase opcional, las corrientes, que salen de la torre de segregación gravitacional primaria, se someten, cada una de ellas, a un nuevo proceso de emulsión con agua y a una nueva segregación gravitacional; para el caso denominada secundaria. Cada una de las corrientes precursoras; la de crudo mejorado y la de asfalteno; requiere su respectiva torre segregadora.
Las emulsiones con agua, en esta segunda oportunidad serán con temperaturas del agua superiores a los 50°C, preferiblemente entre 50°C y 90°C, para la corriente de carga de la torre de residuos asfalténicos, e inferiores a los 10°C, sin alcanzar el punto de congelamiento, con adiciones opcionales de agua granizada, para las corrientes de hidrocarburos livianos.
Otros elementos del proceso
Por otra parte, el proceso contempla un par de circuitos para el agua de proceso, los cuales operan con temperaturas diferentes; uno lo hace con temperaturas superiores a 90°C, sin alcanzar el punto de ebullición del agua, y el otro con temperaturas para el agua inferiores a los 5°C, sin alcanzar el punto de congelamiento, con adición opcional de agua tipo granizado. De estos circuitos se toman las corrientes que se utilizan en cada uno de los puntos señalados en el diagrama del proceso, las cuales pueden tener una temperatura diferente a las anteriores, siempre intermedia a ellas, las cuales se obtienen mediante una mezcla pertinente de aguas tomadas de cada circuito.
Las aguas se retiran de las secciones inferiores (secciones A) de las torres de segregación gravitacional y se retornan a los tanques de almacenamiento, cada uno tiene un sistema de filtración al retorno, mediante el cual se retiran los asfáltenos en suspensión. El cuerpo filtrante con los asfáltenos retirados se convertirán en arenas asfalten izadas, que tienen un valor comercial como agregado para la construcción de carreteras.
Ahora bien, el asfalteno es una solución molecular compleja, que registra fluctuaciones dinámicas en la concentración de fracciones de diferentes estructuras moleculares de hidrocarburos y compuestos poliaromáticos. A nivel de laboratorio, los investigadores han logrado obtener fracciones de asfalteno, unas solubles y otras insolubles en compuestos como el paranitrofenol. Además, en el campo, a lo largo de la cadena de valor, se han obtenido muestras de asfáltenos diferentes provenientes de un mismo crudo, tomadas a depósitos de asfáltenos encontrados en el pozo, en la superficie, en tanques de almacenamiento, en diferentes puntos del oleoducto, que han arrojado estructuras químicas variadas, con presencia de asfáltenos de los denominados tipo archipiélago y tipo continental.
Los Asfáltenos así obtenidos, mediante el proceso que se somete a reconocimiento, se pueden considerar como un “Asfalteno Virgen”, en la medida que conserva las cadenas alifáticas, producto del procesamiento térmico de los procesos tradicionales, lo que aumenta su potencial económico, pues permite, además de ser empleado en la cogeneración eléctrica o como materia prima para la producción de emulsiones asfalténicas, en constituirse en una nueva materia prima de alto valor petroquímico mediante nuevos procesos que escalen, a nivel industrial, la producción de variadas fracciones derivadas de los asfáltenos, algunas identificadas ya en laboratorio.
El proceso que se somete a reconocimiento permite, por lo tanto, la obtención en los campos de producción del crudo mejorado, a unas condiciones de temperatura y presión cercanas a las ambientales, con menores viscosidad y contenido de heteroátomos y metales; por lo tanto, con un mayor valor comercial.
Si bien es deseable que este proceso se efectúe desde el campo mismo de producción, en el caso de los crudos intermedios y livianos, el proceso se puede efectuar en centros de acopio de crudos, previo envío a los puertos de despacho, o en las refinerías, previo a la destilación primaria.
Al retirar la mayor cantidad los asfáltenos del crudo y con ellos los metales como el Níquel y el Vanadio, se puede reducir la temperatura de las unidades de destilación atmosférica e incluso suprimir la etapa al vacío en las plantas de destilación primaria de las refinerías; lo que representa una importante reducción de sus efectos contaminantes y del calentamiento global.
El resultado de su implementación propiciará, por lo tanto, un importante replanteamiento de la industria petrolera, en especial en la logística de producción, transporte y refinación del crudo, toda vez que se reducen e incluso se eliminan los problemas ocasionados por los asfáltenos, así como los impactos ambientales ocasionados por derrames que contaminen los cuerpos de agua.
En la actualidad, la logística de la industria petrolera encuentra un claro incentivo económico para adoptar los esquemas de refinación del crudo en ubicaciones geográficas cercanas a los centros de consumo de combustibles, lo que ha significado el transporte del crudo a sitios lejanos desde el lugar en los cuales se encontró el petróleo. Al introducir en la industria el proceso que se somete a reconocimiento, surge un incentivo económico importante para efectuar esta operación de mejoramiento de crudos en los campos de producción, lo que genera un importante agregado económico en las zonas de influencia, que contribuirá a un desarrollo económico y social, circunstancia que hace justicia con las poblaciones residentes, afectadas por la explotación petrolera.
La teoría moderna de las soluciones moleculares da cuenta que, en estas, se registran fluctuaciones dinámicas de concentración (FDC); fenómeno que explica lo encontrado en el laboratorio y en la industria con la mezclas de hidrocarburos en los crudos, justamente una mezcla compleja de vahadas estructuras moleculares; por lo anterior, al momento de separarse por propiedades como la gravedad o la volatilidad, con frecuencia, co-precipitan o arrastran en la evaporación, moléculas de otros componentes. En el caso de las fracciones pesadas del crudo, cuando se separan los asfáltenos co-precipitan resinas, aromáticos, e incluso parafinas saturadas de menor gravedad específica.
Lo anterior sugiere que, al acometer el diseño de una planta para la recuperación de asfáltenos se hace necesario efectuar, para cada crudo, una investigación operacional, a nivel piloto, previa al diseño final de cualquier planta industrial de proceso, con la cual se pueda simular con mayor definición la necesidad de la fase opcional de segregación gravitacional secundaria, el real comportamiento de los residuos del crudo, los cuales podrían variar significativamente, según el contenido de ceras, así como la estabilidad de las emulsiones asfálticas que se reporten de crudo a crudo.
Lo anterior es determinante para lograr el mejor diseño conceptual y detallado para su procesamiento, en especial si requiere la fase de segregación gravitacional secundaria, antes de escalar la capacidad de la planta al nivel requerido por las necesidades industriales de producción del campo.
Por lo tanto, el diseño del proceso, que se describe a continuación, permite la obtención de información confiable, básica para determinar las dimensiones y las variables de operación, toda vez que procesa volúmenes suficientes al nivel de planta piloto del proceso que se reivindica y tiene la capacidad para determinar la necesidad o no de la fase opcional de segregación gravitacional, requeridas por el crudo que se desea procesar; lo que hace de esta planta piloto, parte de las reivindicaciones de la presente solicitud de patente.
BREVE DESCRIPCIÓN DE LAS FIGURAS
FIqisra 1. Muestra una representación de un proceso ejemplar de la presente invención, aplicable para una Planta Piloto orientada a la investigación operacional y para una Planta Industrial que procesará un crudo que requiera la fase opcional de segregación secundaria. La Figura 1 presenta la Fase opcional de segregación secundaria, posterior a la Segregación Gravitacional Primaria y previa a la fase rectificación, representadas en el proceso básico de la invención que se muestra en la Figura 2. Dicha fase opcional se aplica a las corrientes precursoras del crudo mejorado y de los asfáltenos, efluentes de la fase de segregación gravitacional primaria; para cada una de ellas se dispone de la correspondiente torre de segregación gravitacional.
Figura 2. Muestra una representación de un proceso básico ejemplar de la presente invención, que comprende las tres (3) fases básicas del proceso: una fase fundamental de Segregación Gravitacional Primaria, la cual se realiza en la Torre de Segregación Gravitacional Primaria TSG-A, y que se complementa con dos fases, a saber: la correspondiente a la fase de Desestabilización de los Asfáltenos del crudo y la fase de Rectificación de los Productos. La primera de ellas se realiza previa a la Segregación Gravitacional Primaria, y se desarrolla entre las válvulas VMC, VMI-1 ; la segunda, de rectificación de productos se efectúa, después de la fase de Segregación Gravitacional Primaria, en las torres de rectificación. Figura 3. Ilustra la representación ejemplar de las Torres de Segregación Gravitacional Primaria TSG-A y Secundarias TSG-B y TSG-C de conformidad con la presente invención.
Figura 4. Muestra una representación ejemplar de las torres de Rectificación de Livianos y Pesados, TRL y TRP, de conformidad con la presente invención. DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
Se describe la invención con referencia a las figuras adjuntas, para lo cual en la Tabla 1 se relacionan los Equipos y Accesorios principales, con sus respectivas nomenclatura y aplicación, así como las diferentes corrientes del proceso, según se presentan en las Figuras 1 y 2.
Figure imgf000018_0001
Figure imgf000019_0001
En la Figura 1 se describe el proceso de la Planta Piloto, el cual incluye, además de las fases básicas, representadas en la Figura 2, la Fase Opcional. Lo anterior permite disponer del esquema completo, que permite efectuar corridas de investigación operacional para cualquier tipo de crudos.
La siguiente descripción, basada en el proceso representado en la figura 2, tiene inmerso el proceso básico de la invención, en el que no intervendrán las corrientes de alimentación y recirculación hacia y provenientes de las torres de segregación secundaria TSG-B y TSG-C; por lo tanto, el versado en la materia comprenderá la operación del proceso representado en la Figura 1 , cuando las características del crudo no hagan necesaria una fase adicional de segregación gravitacional secundaria.
La puesta en marcha del proceso se inicia a partir del tanque de almacenamiento de crudo (Tk- C), de donde se toman las cantidades de materia prima que se procesarán (corriente (1)); dicha corriente de materia prima se hace pasar por la una válvula mezcladora de crudo (VMC) y seguidamente por la válvula mezcladora de alta intensidad VMI-1 , en la cual se adiciona agua de proceso (corriente (14)), en las cantidades y especificaciones requeridas según la caracterización del crudo. La temperatura T1 del agua de proceso en la válvula mezcladora de alta intensidad VMI-1 podrá oscilar entre 0°C y 90°C, sin que alcance el punto de congelamiento, ni de ebullición, y la temperatura del crudo será superior a los 25°C, preferiblemente estará entre 25°C y 50°C, hasta lograr la emulsión de la mezcla.
Como parte de la puesta en marcha del proceso, la emulsión de crudo en agua se alimenta a la torre se segregación gravltacional primara TSG-A, en donde las fracciones de hidrocarburos livianos presentes en el crudo se retiran en fase gaseosa como corriente de cima, al alcanzar su temperatura de ebullición Dichos hidrocarburos livianos provenientes del mismo crudo, (corriente (5)) se condensan, y como parte de la fase de desestabilización de asfáltenos, se recirculan al paso en la válvula mezcladora de crudo (VMC). De esta manera se completan los factores que dan inicio a la fase de desestabilización de los asflatenos presentes en el crudo, mediante el cambio de composición del crudo, la adición de agua, agitación de la mezcla en el mezclador estático de alta intensidad y control de temperatura de la emulsión.
Las proporciones de crudo, hidrocarburos livianos y agua en la mezcla, así como la temperatura, estarán determinadas por la caracterización del crudo que se procesa, la cual se emulsiona al ser sometida a una fuerte energía mecánica o de contacto en la válvula VMM , hasta lograr una suficiente y homogénea atomización de los hidrocarburos y el agua. En particular, la relación de hidrocarburos livianos a carga debe buscar una reducción en la gravedad específica de la corriente precursora del crudo mejorado, de modo que sea inferior a 0,8, a fin de asegurar una más fácil y rápida segregación de los asfáltenos.
El objetivo de esta fase es perturbar termodinámicamente al crudo, disminuir su viscosidad, variar su temperatura y facilitar el contacto y agregación de los asfáltenos con el agua. Para fines de esta descripción, las válvulas VMI corresponden a mezcladores estáticos de alta intensidad, colocados en línea, de manera tal que formen emulsiones para el proceso.
La emulsión así formada se envía a la Torre de Segregación Gravitacional TSG-A, en la cual se controlan las siguientes condiciones operacionales. En el fondo de la torre se debe controlar una temperatura entre 10°C y 50°C y en la parte superior de la torre entre 60°C y la temperatura de ebullición de los hidrocarburos livianos presentes en el crudo, particularmente entre 60°C y 110°C, de preferencia entre 60°C y 80°C. Bajo estas condiciones, se producen tres corrientes de hidrocarburos: los residuos más pesados que el agua que precipitarán, estimulados por el agua, y se separarán de los demás hidrocarburos, más livianos que el agua, que contiene el crudo; estos corresponden a dos corrientes: una de ellas de hidrocarburos con puntos de ebullición inferior a los 110°C, preferiblemente inferior a 80°C; la otra corriente corresponde a hidrocarburos con punto de ebullición mayores que se mantienen en estado líquido, y que contiene saturados, aromáticos y algunas resinas.
La primera, de hidrocarburos en fase gaseosa, con predominio de hidrocarburos parafínicos, sale por la cima (corriente (5)) y pasa a un condensador para ser recirculada a la carga en la válvula VMC; esta corriente cumple un papel fundamental para lograr un cambio en la composición del crudo procesado, al enriquecerlo con hidrocarburos saturados livianos, en los cuales los asfáltenos son insolubles; por tanto, este solvente parafínico obtenido del mismo crudo, reduce la gravedad específica de los hidrocarburos precursores del crudo mejorado; la corriente (5) crecerá en la medida en que es recirculada y se procese más crudo, llegará un momento en el cual se logra la mayor efectividad para flocular asfáltenos; a partir del cual la operación se estabiliza y los excedentes se podrán enviar, bien a la corriente de residuos asfalténicos (corriente (3)) que ingresa a la torre TSG-C, o bien se envían a la torre de rectificación de pesados TRP, para enriquecer la producción del crudo mejorado.
La segunda corriente (corriente (4)), de hidrocarburos livianos, se acumula en el plato colector cóncavo (29), ubicado en la bota colectora (31) de la primera sección intermedia (sección C) de la torre TSG-A; de donde se retira por la corriente lateral de cima, de la torre TSG-A, (corriente (4)) como carga de la torre de rectificación de pesados TRP; y, cuando se requiera la fase opcional de segregación gravitacional, se mezcla con agua de proceso (corriente (15)) a una temperatura, T2, inferior a los 10°C, sin alcanzar el punto de congelamiento, en la válvula mezcladora VMI-2, con una intensidad de mezcla tal que forme una emulsión y se ingresa a la torre de Segregación Gravitacional TSG-B; esta torre dispone de una inyección de agua a temperatura, T3, inferior a los 10°C, sin alcanzar el punto de congelamiento, con adición opcional de hielo granizado, (corriente (20)), en un punto superior al ingreso de la alimentación de los hidrocarburos livianos a esta torre TSG-B, lo que contribuye a la floculación de los arrastres de residuos pesados remanentes en esta corriente. En la operación de la torre de segregación gravitacional TSG-B se controla la temperatura de fondo en un rango de entre 0°C y 30°C.
Por la cima de la torre de segregación gravitacional secundaria TSG-B se retiran los gases de hidrocarburos livianos, los cuales se condensarán y se constituyen en la corriente (6). Del plato colector cóncavo (29), bota colectora (31), ubicado en la sección C de la torre TSG-B, se retira una corriente (6A) de hidrocarburos livianos que tiene dos destinos posibles, a saber: como recirculación a la válvula mezcladora con la carga de condensados (corriente (5)), VMC, o como alimentación a la Torre de Rectificación de Pesados TRP, (corriente (6)). De esta última torre TRP, en la bota colectora (40) se obtiene Crudo Mejorado (corriente (8)), tal y como se ilustra en la Figura 1. En la operación de la Torre de rectificación de pesados TRP se controla una temperatura de 20°C a 30°C en la cima y de 0°C a 10°C en el fondo.
Del fondo de la torre TSG-B se retira una corriente (7) de residuos asfalténicos con arrastres de hidrocarburos livianos, la cual se mezcla con agua de proceso, (corriente (16)), a una temperatura T3, inferior a 10°C, sin alcanzar el punto de congelamiento, con adición opcional de hielo granizado, en la válvula mezcladora VMI-3, con una intensidad de mezcla tal, que forme una emulsión. Así emulsionados se recirculan a la Torre de Segregación Gravitacional primaria, TSG-A, por un punto superior a la corriente de carga y a las corrientes (10A y 13) provenientes de la cima de las torres TSG-C y TRL.
Cuando se procesa un crudo que no requiere de la fase opcional de segregación gravitacional secundaria, la corriente lateral de cima de la torre TSG-A, (corriente (4)), se envía directamente como carga de la torre de rectificación de pesados TRP, como se ilustra en la Figura 2.
Los hidrocarburos que se acumulan en el plato colector cóncavo (43), de la bota colectora (40), ubicada en la parte superior de la TRP, corresponden al Crudo Mejorado (corriente (8)) y los fondos de la torre TRP, arrastres de residuos asfalténicos, se recirculan (corriente (9)) a la torre TSG-A, previa mezcla y emulsión con agua de proceso (corriente (17)) a una temperatura, T3, inferior a 10°C, sin alcanzar el punto de congelamiento, con adición opcional de hielo granizado, al paso en la válvula mezcladora VMI-4, en un punto por encima del punto de alimentación del crudo a la torre TSG-A.
Los residuos pesados que se extraen por el fondo de la torre de segregación gravitacional TSG-A (corriente (3)), que corresponden a flóculos de asfalteno, con eventuales resinas y otros hidrocarburos, se mezclan con agua de proceso (corriente (18)), al paso en VMI-5, a una temperatura T5, superior a 60°C, preferiblemente entre 60°C y 90°C, con una intensidad de mezcla tal que forme una emulsión, e ingresa a la torre de Segregación Gravitacional TSG-C. A la corriente (3) se le adiciona el solvente parafínico de las corrientes (5 y 6) producido en las torres TSG-A y TSG-B, en una proporción volumétrica de solvente respecto de la corriente de residuos asfalténicos, determinada por las características del crudo procesado, de manera tal que asegure la óptima floculación de los asfáltenos. Para fines de la operación, en la cima de la torre de segregación gravitacional TSG-C se controla una temperatura igual o superior a 75°C, preferiblemente entre 75°C y 80°C.
Igualmente, a la corriente (3) se le puede unir las corrientes (7 y 9), provenientes de los fondos de la torre de segregación gravitacional TSG-B y de la torre de rectificación de pesados TRP, respectivamente, antes de su ingreso a la torre TSG-C. Esta última torre también dispone de una inyección opcional de agua (corriente (21)) a temperatura, T3, inferior a los 10°C, sin alcanzar el punto de congelamiento, con adición opcional de hielo granizado, en un punto superior al ingreso de la alimentación de los residuos pesados provenientes de la torre TSG-A; todo lo anterior con el propósito de lograr una nueva segregación gravitacional de los hidrocarburos livianos existentes en esta corriente.
Como consecuencia de la segregación gravitacional ocurrida en la torre TSG-C, en el plato colector cóncavo (29), de la bota colectora (31) en la sección C de esta torre, se retiran los hidrocarburos livianos (corriente (10A)) que se recirculan a la torre TSG-A y por el fondo se retiran los asfáltenos, con agua y eventuales arrastres de hidrocarburos livianos (corriente (11))·
Los fondos de la torre de segregación gravltacional TSG-C (corriente (11)) se mezclan con agua de proceso (corriente (19)) a una temperatura, T4, entre 70°C y 90°C, en la válvula de mezcla, VMI-6, en una relación asfalteno-agua según las necesidades generadas por las características del crudo procesado y con una intensidad de mezcla tal, que permita la emulsión del asfalteno y se logre el rompimiento de los agregados moleculares del asfalteno con otros hidrocarburos atrapados; la corriente (11 ) así tratada ingresa a la Torre de Rectificación de Livianos TRL, en la cual sobrenadarán los hidrocarburos más livianos que el agua, los cuales son acumulados en el colector interno en la cima de la torre y retirados con eventuales arrastres de agua por la cima, para ser recirculados a la torre de TSG-A (corriente (13)). En la operación de la torre de rectificación de livianos se controla, de acuerdo con las características del crudo tratado, a una temperatura igual o superior a 80°C en la cima, sin que se presente evaporación de agua, y entre 20°C a 60°C en el fondo, esta última una variable dependiente, cuyo valor resultante depende de otras variables del proceso.
Los asfáltenos, libres de hidrocarburos livianos, se retiran por el fondo de la torre de rectificación de livianos TRL (corriente (12)); se pueden destinar como combustible para cogeneración de energía eléctrica, como materia prima para las emulsiones asfálticas o como carga a otros procesos que permitan su conversión a productos de mayor utilidad comercial.
Cuando se procesa un crudo que no requiere de la fase opcional de segregación gravltacional secundaria, la corriente de fondos de la torre TSG-A, (corriente (3)), se envía directamente como carga de la torre de rectificación de livianos TRL, como se ¡lustra en la Figura 2.
El crudo mejorado (corriente (8)) saldrá con un contenido de agua dentro de las especificaciones deseadas, < 0,05%; con incremento en su gravedad API y una reducción de su viscosidad, así como de los contenidos de azufre, níquel y vanadio.
Tanto el retorno de la corriente (9) proveniente de la torre rectificadora de pesados, TRP, como el de la corriente (13) de la torre rectificadora de livianos, TRL, contribuyen a establecer el perfil térmico de la torre de segregación gravltacional TSG-A, lo que ayuda a la segregación gravltacional, por lo tanto, el agua de proceso que se le adiciona a cada una de estas corrientes debe ser tal que cumpla con este propósito.
Así las cosas, el Crudo Mejorado, obtenido de un crudo pesado o extrapesado mediante este proceso, se encuentra dentro de las especificaciones requeridas para ser transportado por oleoductos a las refinerías o a los puertos de exportación, sin necesidad de corregirle su viscosidad con diluyentes como la nafta. Por ser el agua el agente fundamental para la segregación gravitacional de los hidrocarburos, el proceso cuenta con dos circuitos cerrados de agua, uno a temperaturas inferiores a 5°C, sin alcanzar el punto de congelamiento, y el otro a temperaturas superiores a 90°C, sin alcanzar el punto de ebullición del agua, con las facilidades de mezcla para producir valores intermedios de temperatura, según las necesidades del proceso y la corriente de agua de proceso que se esté atendiendo.
En una realización ejemplar de la presente invención, los circuitos cerrados cuentan con seis (6) inyecciones de agua a las diferentes torres de segregación gravitacional y de rectificación (las corrientes 14, 15, 16, 17, 18, 19, 20 y 21) y tres (3) retiros de agua (las corrientes 22, 23 y 24) en cada una de las tres torres de segregación gravitacional; no obstante, el número de puntos de inyección y retiro de agua podrá variar según lo determinen las condiciones de operación, y corresponderá a un aspecto de diseño que está al alcance del técnico medio.
Lo anterior, ofrece la posibilidad de circular el agua con un mayor caudal relativo al de las corrientes de hidrocarburos y residuos, oportunidad que favorece la intensidad de la segregación gravitacional del crudo en sus componentes de Crudo mejorado y Asfáltenos, permitiendo al mismo tiempo establecer la gradualidad del retiro de asfáltenos a la mayor conveniencia para las necesidades económicas del mercado y/o destinación de los asfáltenos.
Los circuitos de agua requieren unos filtros, FA-1 y FA-2, instalados antes de los retornos a los tanques de abastecimiento de agua, los cuales deben ser sometidos a inspección, mantenimiento y limpieza con la frecuencia establecida según las necesidades operacionales.
Al garantizar el retiro óptimo de asfáltenos al crudo y lograr un crudo mejorado, con menor viscosidad, se reduce también la cantidad de heteroátomos como el azufre, el níquel y el vanadio, contaminantes de catalizadores y promotores de corrosión.
El proceso en su conjunto se desarrolla a condiciones moderadas de presión y temperatura en un rango de presión de 30-60psig (414 - 444 KPa) y de temperatura de 0 a 110°C (273 - 383°K)). Lo que estimula y facilita los fenómenos físicos y evita las transformaciones químicas, no convenientes en esta etapa de los agregados económicos de la industria petrolera.
Las torres de segregación gravitacional contienen arreglos internos, como se presentan en las figuras 1 , 2, 3 y 4, que permiten la floculación de los residuos asfalténicos y el asfalteno mismo; estos arreglos internos buscan evitar la turbulencia y permiten la segregación y recuperación de los productos con mayor eficiencia. Adicionalmente, al proceso descrito también son objeto de la presente invención los diseños de las torres de segregación gravitacional y de rectificación de pesados y livianos, según se describe a continuación con referencia a las figuras 3 y 4, respectivamente.
La Figura 3, representa el diseño de las Torres de Segregación Gravitacional. Primaria TSG-A y Secundarias TSG-B y TSG-C, con sus arreglos internos desarrollados por el inventor, para su implementación en el proceso de segregación gravitacional que se reclama. Los diseños internos tienen como propósito modificar las condiciones cinéticas de los fluidos, a fin de estimular y facilitar la operación de segregación; así como evaporar los hidrocarburos livianos de carácter parafínico, que serán utilizados para modificar la composición del crudo y desestabilizar los asfáltenos.
En los diseños propuestos por el inventor, la torre de segregación gravitacional tiene cuatro secciones (las secciones A, B, C y D), las cuales cumplen los siguientes propósitos: Sección D. la correspondiente a la sección superior de la torre; necesaria para el manejo de los gases de aquellos hidrocarburos con puntos de ebullición inferiores a 80°C, los cuales salen por la boquilla (25), y corresponden a hidrocarburos parafínicos C6 y menos, los cuales se evaporan en la primera sección intermedia (Sección C) de la torre, por acción de un serpentín de calentamiento (26), con boquilla de ingreso del fluido caliente (27) y de salida (28), el cual está dispuesto dentro de esta sección C. Dicha primera sección intermedia (sección C) está ubicada de manera adyacente a la sección superior y por debajo de esta.
Los fluidos que ascienden en las secciones C de las torres de segregación, que no se evaporan, son colectados por un plato recolector cóncavo (29), tipo embudo, ubicado en la parte inferior de un ducto interior (30) que en conjunto forman una bota colectora (31), por el cual se extrae la corriente generadora del crudo mejorado, mediante la boquilla (32); estas facilidades dentro de las torres segregadoras hacen que las corrientes de ascenso y descenso presenten flujos laminares y facilita el manejo de una corriente lateral superior, con muy bajo contenido de arrastres de asfáltenos.
A continuación de la primera sección intermedia (sección C) se encuentra la segunda sección intermedia (Sección B), de alimentación a la torre, ubicada de manera adyacente a la primera sección intermedia y por debajo de esta, en cuya parte central se encuentra la boquilla (33) de alimentación de carga; así como las boquillas de ingreso de las recirculaciones de las torres rectificadoras TRP, boquilla (34), y TRL, boquilla (35), este arreglo ayuda a romper las emulsiones y propicia la desagregación molecular de los asfáltenos a fin de retirarle los hidrocarburos que enriquecerán la corriente del crudo mejorado. Respecto a la cuarta sección (Sección A), correspondiente a la sección inferior de la torre, ésta tiene un arreglo interno en forma cónica (36), con un ángulo de inclinación superior al ángulo de reposo de los asfáltenos (70°), siempre y cuando la condición del arreglo interno en forma cónica (36) no bloquee el paso a través de la boquilla (37). Adicionalmente, dicho arreglo interno en forma cónica (36) tiene una superficie lisa a fin de minimizar la adherencia de los asfáltenos a la pared del segregador.
La Sección A tiene dos boquillas, a saber: la boquilla (37) para el retiro de los excedentes de agua, con la que se cierran circuitos de agua de proceso, y la boquilla (38) por donde se extraen las corrientes de fondo, relacionados con el asfalteno.
Estas cuatro secciones con sus arreglos internos, en la torre de segregación gravitacional, no se encuentra reportado en ninguna de las patentes revisadas en el estado del arte, al igual que las torres de rectificación.
Ahora, con referencia a la Figura 4, se describe una representación ejemplar de las torres de Rectificación de Livianos y Pesados, TRL y TRP. En esta figura se presentan las torres que se utilizan en la fase de rectificación de productos, que tiene como función retirar los arrastres de hidrocarburos no deseados en los productos. En el caso de la rectificación de pesados, se busca retirar de la corriente de crudo mejorado los residuos pesados de carácter asfáltico que hubiese arrastrado y, en el caso de la rectificación de livianos, se busca retirar de la corriente de asfáltenos, los hidrocarburos livianos, que son de interés para la corriente de crudo mejorado.
Como se muestra en la figura 4, las torres de rectificación poseen una sección externa (39) y un arreglo interno consistente en una bota colectora (40) construida con cuatro componentes fundamentales: i) una canasta perforada (41) soportada contra las paredes internas de la sección externa (39); ii) un tubo cilindrico (42) con un diámetro interno igual o inferior a 1/3 del diámetro de la torre, siempre que permita el flujo ascendente de hidrocarburos más livianos que el agua hacia la canasta perforada, y la cabeza de succión necesaria de la válvula (no mostrada) de remoción de producto sea suficiente para el retiro el mismo; iii) un plato cóncavo recolector (43) con una perforación inferior conectada a iv) una boquilla (44) para el retiro de la corriente liviana. En el caso de la TRP será la de crudo mejorado y en el caso de la TRL la de recirculación de livianos a la torre de segregación gravitacional.
La sección externa (39) de la torre de rectificación cuenta con tres boquillas; una boquilla de alimentación (45), una boquilla de suministro de agua de proceso (46) y una boquilla de retiro de la corriente de fondo (47). Una vez aplicado el proceso como se describe en la presente invención, el crudo mejorado se envía a los tanques de carga para continuar su proceso de refinación o para los tanques de despacho a refinerías; los asfáltenos se envían a su disposición final, bien como combustible para la cogeneración eléctrica de energía; o como materia prima en nuevos procesos que mejoren su aprovechamiento o en la producción de emulsiones asfalténicas.
Los asfáltenos producidos son enviados, a un proceso para producir emulsiones asfálticas o a uno de secado y posterior alimentación a una caldera de lecho fluidizado para la generación de vapor y el consiguiente proceso de cogeneración eléctrica. Los requerimientos de energía para la producción de vapor y electricidad de los procesos de deshidratación y desasfaltado son obtenidos del asfalteno.
El presente proceso se realiza en boca de pozo, es autosuficiente en cuanto a que el crudo mismo suministra las corrientes requeridas para su procesamiento y no utiliza químicos, ni aditivos desmulsificantes.
En el estado del arte revisado, se encuentra que estas condiciones de operación son diferentes a las aquí propuestas. La adición de agua para desasfaltenizar se realiza gradualmente y para su homogenización se utilizan mezcladores estáticos. Lo cual permite obtener tamaños de partícula de los asfáltenos mayores que facilitan su floculación, lo que representan menores tiempos para la sedimentación.
Debido a la inmiscibilidad del agua y el aceite, así como de los asfáltenos en los hidrocarburos alifáticos livianos, la corriente que asciende lo hace a velocidades superiores a los 0.6 cm/s, lo cual permite, junto con la diferencia de densidades entre las fases, que los asfáltenos floculen y se precipiten al fondo del segregador.
La presente invención puede eliminar el tradicional proceso de deshidratación, pues el agua que contiene el crudo que llega del campo se combina con la del agua de proceso del crudo y al retirar de los asfáltenos el crudo mejorado, sin los compuestos más pesados, viscosos y polares, cumplirá con facilidad las especificaciones de viscosidad y contenido de agua inferior a 0,05%.
EJEMPLOS DE SEGREGACIÓN GRAVITACIONAL
Con el fin de ilustrar la aplicación de la invención, en la Tabla No. 5, se presentan las características de cuatro diferentes cargas de crudos seleccionadas, correspondientes al tipo liviano (30-40 °API), intermedio (20-30 °API), pesado (10-20 °API) y extrapesado (< 10 °API). Estas cargas ejemplifican la realización del proceso reclamado empleando crudos de diferentes caracterizaciones: liviano, intermedio, pesado y extrapesado, los cuales se escogieron para ilustrar las condiciones de procesamiento requeridas en cada etapa del proceso.
Figure imgf000028_0001
(**) Pa.s @ 3Q°C
Cada una de las cargas de crudo citados se sometieron al proceso descrito y reclamado en la presente invención. A continuación, se presenta por separado cada una de las cargas consideradas y los temas a destacar, tanto de la operación, como de los resultados alcanzados.
Para cada una de ellas se presentan las condiciones operacionales de las variables más importantes del proceso que se deben controlar, las cuales se determinan según las propiedades físicas y químicas de sus estructuras moleculares más significativas.
Igualmente se presentan los rendimientos de crudo mejorado y asfalteno de cada una de las cargas, así como las especificaciones de interés del primero y su impacto en la logística de la industria, para su manejo de cada caso. Caso de procesamiento Crudo Liviano
Iniciamos el análisis operacional con el caso de un Crudo liviano, que contienen unas estructuras moleculares dentro de las cuales predominan los hidrocarburos parafínicos y entre ellos las ceras en las fracciones pesadas. Por tal motivo, su procesamiento ofrece un reto particular, en la medida en que dichas ceras pueden producir indeseables agregados moleculares con los asfáltenos y dificultar su segregación. Con base en los comportamientos observados en la simulación, en la Tabla 6 se presentan las condiciones operacionales, bajo las cuales, un crudo liviano con un destacado contenido de ceras parafínicas en la carga puede ser procesado:
Figure imgf000029_0001
(*) Variable dependiente, valor resultante durante la operación Este tipo de crudos contienen una importante fracción de hidrocarburos livianos, C5 y C6, razón por la cual se trabaja con una condición más baja de temperatura en la cima de la torre de segregación gravitacional primaria, a fin de obtener de manera selectiva el corte del solvente livianos que se utilizan para la extracción, los hidrocarburos C5, pentanos, iso- pentanos y ciclopentanos, cuyos puntos de ebullición son inferiores a los 65°C. Este corte de hidrocarburos permite obtener a su vez, una mayor extracción de asfáltenos, al reducir de manera significativa, y con menos volumen, la gravedad específica de la corriente precursora del crudo mejorado; además, este corte es altamente segregador del asfalteno, toda vez que son insolubles entre sí. Caso de procesamiento de Crudo Intermedio
En la Tabla 7 se presentan las condiciones operacionales correspondiente a una corrida con crudo tipo Intermedio, es decir, con gravedades API que varían entre 20 y 30 °API. En estos rangos de gravedad específica es frecuente encontrar un equilibrio en las proporciones presentes de las estructuras moleculares de hidrocarburos parafínicos y aromáticos, con bajo contenido de ceras parafínicas y un suficiente contenido de hidrocarburos livianos, características que permiten una operación sin mayores complicaciones.
Figure imgf000030_0001
(*) Variable dependiente, valor resultante durante la operación
Este ejemplo muestra que en el procesamiento de crudos intermedios no se requiere la fase opcional de segregación Gravitacional Secundaria. La torre TSG-A en este ejemplo se operó a una temperatura ejemplar de 80°C en la cima; no obstante, vale la pena destacar, que la temperatura de cima para la operación de la TSG-A puede variar dentro del rango propuesto por el inventor, ya que está sujeta al contenido de hidrocarburos C5 en el crudo; de contarse con un importante contenido de C5, la temperatura de cima se debe controlar cercana al valor de 60°C.
Caso de procesamiento de Crudo Pesado En la Tabla 8 se presentan las condiciones operacionales correspondientes a una corrida con crudo tipo pesado, es decir, con gravedades API que varían entre 10 y 20 °API. Este tipo de crudos se caracteriza por contener bajas cantidades de gases, notables cantidades de resinas y una presencia de asfáltenos que afecta sensiblemente la viscosidad del crudo.
Figure imgf000030_0002
Figure imgf000031_0001
Para el procesamiento de crudos pesados no se requiere la fase opcional de segregación Gravitacional Secundaria. Se destaca el hecho de trabajar con una temperatura de cima de 80°C en la TSG-A, a fin de buscar obtener en la corriente de gases los hidrocarburos C5 y C6 de carácter parafínico.
Caso de procesamiento de Crudo Extrapesado
En la Tabla 9 se presentan las condiciones operacionales correspondiente a una corrida con crudo tipo extrapesado, es decir, con gravedades API inferiores a los 10 °API, los cuales se caracterizan por su bajo contenido de hidrocarburos livianos, razón por la cual, las condiciones de una operación estabilizada tomarán más tiempo. Para el procesamiento de crudos extrapesados no se requiere la fase opcional de segregación Gravitacional Secundaria.
Figure imgf000031_0002
(*) Variable dependiente, valor resultante durante la operación Al igual que en los crudos pesados, se trabajó con una temperatura de cima de 80°C en la TSG-A, a fin de buscar obtener en la corriente de gases los hidrocarburos C5 y C6 de carácter parafínico.
Resultados del procesamiento En la Tabla 10 se presentan los resultados del procesamiento de los cuatro tipos de crudo, en los cuales se destaca el incremento en la gravedad API de los crudos mejorados sobre las cargas procesadas, con un contenido de agua con valores inferiores a 0,05%, menor contenido de azufre y metales, así como una significativa en la viscosidad, que le permite ser transportable por oleoducto sin necesidad de utilizar diluyentes como naftas o similares.
Figure imgf000032_0001
Para el caso del crudo extrapesado la investigación operacional con la planta piloto resulta Imperativa, dado que existe una posibilidad de maniobra que permita obtener un crudo mejorado de mayor gravedad API y menor viscosidad.
En el análisis de los datos de las simulaciones, nos permite visualizar con mayor claridad el efecto combinado de las mezclas del crudo con el solvente parafínico y con el agua; el primero como reductor de las gravedades específicas de los hidrocarburos y el segundo por la capacidad segregadora de hidrocarburos.
Aunque la invención se ha descrito en detalle con respecto a la modalidad específica de esta, aquellos con experiencia en la materia apreciarán que, a partir de la anterior descripción de las fases y condiciones del proceso, así como de la configuración de las torres de segregación gravitacional y torres de rectificación, apreciarán fácilmente alteraciones, variaciones, y equivalentes de las modalidades descritas en la presente solicitud, todas estas formando parte de la presente invención. En consecuencia, el alcance de la presente invención debe evaluarse como el de las reivindicaciones adjuntas y cualquier equivalente de ellas. Además, también se contemplan todas las combinaciones y/o su combinación de las modalidades, intervalos, ejemplos, y alternativas descritas, máxime en la medida en que no existen crudos iguales y mucho menos asfáltenos iguales.

Claims

Reivindicaciones
1. Un proceso para la remoción de asfáltenos a los crudos, caracterizado porque comprende: una fase de desestabilización de asfáltenos presentes en el crudo, una fase de segregación gravitacional primaria y una fase de rectificación, en donde: la fase de desestabilización de asfáltenos comprende: modificar la composición de la corriente de crudo mediante la recirculación a la carga de crudo, en una válvula mezcladora de crudo, de una corriente de hidrocarburos livianos condensada, proveniente de una corriente gaseosa de hidrocarburos livianos resultante de la fase de segregación gravitacional primaria, y adicionar agua a la carga en una válvula mezcladora de alta intensidad para formar una emulsión (o/w) crudo/agua; la fase de segregación gravitacional primaria comprende: alimentar la emulsión (o/w) crudo/agua, preparada en la fase de desestabilización de asfáltenos en el crudo, a una primera torre de segregación gravitacional y realizar la operación de segregación a una de temperatura en el fondo de la torre entre 10°C - 50°C y a una temperatura en la cima de la torre entre 60°C y la temperatura de ebullición de los hidrocarburos livianos, definidos, presentes en el crudo, retirar como productos de cima una corriente gaseosa de hidrocarburos livianos y una corriente líquida de hidrocarburos más livianos que el agua, precursora del crudo mejorado, y retirar como producto de fondo una corriente de residuos asfalténicos, más pesada que el agua, precursora del asfalteno; y la fase de rectificación comprende: someter a rectificación la corriente líquida de hidrocarburos más livianos que el agua, producto de cima de la primera torre de segregación gravitacional, y la corriente más pesada que el agua, de residuos asfalténicos, producto de fondo de la primera torre de segregación gravitacional, en torres de rectificación separadas que incluyen por lo menos una torre de rectificación de pesados, a la cual se carga la corriente líquida de hidrocarburos livianos, y por lo menos una torre de rectificación de livianos, a la cual se cargan los residuos asfalténicos.
2. El proceso de conformidad con la reivindicación 1 caracterizado porque adicionalmente comprende una etapa de puesta en marcha del proceso, anterior a la fase de desestabilización de asfáltenos, que consiste en alimentar una corriente de crudo proveniente de un almacenamiento de crudo a la primera torre de segregación gravitacional, haciendo pasar dicha corriente primero por la válvula mezcladora de crudo y seguidamente por la válvula mezcladora de alta intensidad antes de su ingreso a la primera torre de segregación gravitacional.
3. El proceso de conformidad con la reivindicación 1 caracterizado porque la operación de segregación en la primera torre de segregación gravitacional se realiza a una de temperatura en la cima de la torre entre 60°C y 110°C.
4. El proceso de conformidad con la reivindicación 3 caracterizado porque la operación de segregación en la primera torre de segregación gravitacional se realiza a una de temperatura en la cima de la torre entre 60°C y 80°C.
5. El proceso de conformidad con la reivindicación 1 caracterizado porque en la fase de desestabilización de asfáltenos se controla la temperatura de la emulsión formada en el rango entre 10°C y 50°C, antes de ser alimentada a la primera torre de segregación gravitacional.
6. El proceso de conformidad con la reivindicación 1 , caracterizado además porque, en la fase de segregación gravitacional primaria, los excedentes de agua se retiran por una corriente lateral en una sección inferior de la torre.
7. El proceso de conformidad con la reivindicación 1 , caracterizado porque la por lo menos una torre de rectificación de pesados se opera a temperatura de 20°C a 30°C en la cima y de 0°C a 10°C en el fondo.
8. El proceso de conformidad con la reivindicación 1 , caracterizado porque la por lo menos una torre de rectificación de livianos se opera a temperatura de aproximadamente 80°C en la cima y entre 20 a 60°C en el fondo.
9. El proceso de reivindicación 1 , caracterizado además porque las corrientes cargadas a la por lo menos una torre de rectificación de livianos y a la por lo menos una torre de rectificación de pesados se emulsionan con agua de proceso previamente a su ingreso a cada una de las torres.
10. El proceso de reivindicación 1 , caracterizado además porque la corriente de fondo resultante de la por lo menos una torre rectificadora de pesados y la corriente de cima resultante de la por lo menos una torre rectificadora de livianos se recirculan a la torre de segregación gravitacional primaria.
11. El proceso de reivindicación 10, caracterizado además porque la recirculación de la corriente de fondo resultante de la por lo menos una torre rectificadora de pesados se realiza en un punto de la torre de segregación gravitacional primaria que es superior al punto de entrada de la corriente de carga a esta torre.
12. El proceso de reivindicación 10, caracterizado además porque la corriente de fondo resultante de la por lo menos una torre rectificadora de pesados se emulsiona con agua de proceso antes de ser recirculada a la torre de segregación gravitacional primaria.
13. El proceso de reivindicación 12, caracterizado porque el agua de proceso para la emulsión de la corriente de fondo resultante de la por lo menos una torre rectificadora de pesados está a una temperatura inferior a 10°C, sin alcanzar el punto de congelamiento.
14. El proceso de reivindicación 1 , caracterizado además porque las corrientes cargadas a la, por lo menos una, torre de rectificación de livianos y a la, por lo menos una, torre de rectificación de pesados se emulsionan con agua de proceso previamente a su ingreso a cada una de las torres.
15. El proceso de conformidad con la reivindicación 1 , caracterizado porque además, incluye una fase opcional de segregación gravitacional, posterior a la fase de primera segregación gravitacional y anterior a la fase de rectificación, en la que cada una de las corrientes líquidas provenientes de la segregación gravitacional primaria se someten a una segunda segregación gravitacional; en donde la fase opcional de segregación gravitacional se realiza con al menos dos torres de segregación gravitacional: una segunda torre de segregación gravitacional para los hidrocarburos livianos y una tercera torre de segregación gravitacional para los residuos asfalténicos; y en donde la segunda torre de segregación gravitacional, para la corriente de hidrocarburos livianos, se opera a una temperatura entre 0°C a 30°C en el fondo, y la tercera torre de segregación gravitacional, para los residuos asfalténicos, se opera a una temperatura igual o superior a 75°C en la cima.
16. El proceso de conformidad con la reivindicación 15 caracterizado además porque la corriente de cima de la segunda torre de segregación gravitacional se direcciona como alimentación a la por lo menos una torre de rectificación de pesados, se recircula para mezcla con la carga de crudo en la fase de desestabilización de asfáltenos, o ambas.
17. El proceso de conformidad con la reivindicación 16 caracterizado porque cuando la corriente de cima de la segunda torre de segregación gravitacional se recircula con la carga de crudo en la fase de desestabilización de asfáltenos, dicha corriente, que comprende hidrocarburos livianos, se retira por la cima de la segunda torre de segregación gravitacional en forma gaseosa y se condensa previo a su recirculación a la carga.
18. El proceso de conformidad con la reivindicación 15 caracterizado además porque la corriente de cima de la tercera torre de segregación gravitacional se direcciona como alimentación a la torre de segregación gravitacional primaria, se recircula para mezcla con la carga de residuos asfalténicos de la segunda torre de segregación gravitacional, o ambas.
19. El proceso de conformidad con la reivindicación 18 caracterizado porque cuando la corriente de cima de la tercera torre de segregación gravitacional se recircula con la carga de residuos asfalténicos de la tercera torre de segregación gravitacional, dicha corriente, que comprende hidrocarburos livianos, se retira por la cima de la tercera torre de segregación gravitacional en forma gaseosa y se condensa previo a su recirculación a la carga.
20. El proceso de la reivindicación 15, caracterizado además porque las corrientes de carga a las torres de segregación gravitacional secundaria se emulsionan previamente con agua de proceso.
21. El proceso de conformidad con la reivindicación 15 caracterizado además porque incluye adicionar opclonalmente agua de proceso a las torres de segregación gravitacional secundaria.
22. El proceso de conformidad con la reivindicación 21 caracterizado además porque opcionalmente se adiciona agua tipo granizado a la corriente de agua de proceso.
23. El proceso de conformidad con las reivindicaciones 21 y 22 caracterizado porque la adición de agua de proceso a las torres de segregación gravitacional secundaria se realiza en un punto que es superior al ingreso de la alimentación a cada una de estas torres.
24. El proceso de conformidad con la reivindicación 21 caracterizado porque, el agua de proceso adicionada a las torres de segregación gravitacional secundaria está a una temperatura entre 0 y 10 °C, sin alcanzar el punto de congelamiento.
25. El proceso de reivindicación 15, caracterizado además porque la corriente de fondo de la segunda torre de segregación gravitacional se recircula, junto con la corriente de fondo de la torre rectificadora de pesados, a la torre de segregación gravitacional primaria, en un punto de la torre de segregación gravitacional primaria que es superior al ingreso de la corriente de carga de crudo a esta torre.
26. El proceso de reivindicación 15, caracterizado además porque la corriente de cima de la tercera torre de segregación gravitacional se recircula, junto con la corriente de cima de la torre de rectificación de livianos, a la torre de segregación gravitacional primaria, en un punto de la torre de segregación gravitacional ubicado debajo al ingreso de la corriente de carga de crudo a esta torre.
27. El proceso de conformidad con las reivindicaciones anteriores caracterizado porque las corrientes de agua de proceso provienen de dos circuitos cerrados de agua de proceso, los cuales operan a temperaturas diferentes, uno a una temperatura entre 0 y 5 °C, sin alcanzar el punto de congelamiento, y el otro una temperatura igual o superior a 90 °C, sin alcanzar el punto de ebullición del agua.
28. Una torre de segregación gravitacional para la segregación gravitacional de asfáltenos de crudos, caracterizada porque comprende: una sección superior para el manejo de gases de hidrocarburos livianos, que comprende una boquilla en su parte superior para la salida de dichos gases; una primera sección intermedia, ubicada de manera adyacente a la sección superior de la torre y por debajo de esta, en donde se evaporan los hidrocarburos parafínicos de hasta 6 átomos de carbono, en donde la primera sección comprende: un serpentín de calentamiento dispuesto en su interior, y que tiene una boquilla superior de ingreso del fluido caliente y una boquilla inferior de salida de fluido; y una bota colectora que comprende un plato recolector cóncavo tipo embudo ubicado en la parte inferior de un ducto interior de la segunda sección intermedia, y que tiene una boquilla de extracción de hidrocarburos livianos de crudo mejorado; una segunda sección intermedia, ubicada de manera adyacente a la primera sección intermedia y por debajo de esta, y que comprende una boquilla en su parte central de ingreso de alimentación de carga de crudo, y por lo menos dos boquillas de ingreso de corrientes de proceso provenientes de torres rectificadoras dispuestas aguas abajo, así como de una operación opcional de segregación gravitacional; y una sección inferior, ubicada de manera adyacente a la segunda sección intermedia de la torre y por debajo de esta, que comprende un arreglo interno en forma cónica, cuya superficie es lisa; y una boquilla de retiro de los excedentes de agua de proceso.
29. Una torre de rectificación para la rectificación de corrientes livianas y de pesadas provenientes de un crudo caracterizada porque comprende una sección externa y un arreglo interno consistente en una bota colectora.
30. La torre de rectificación de la reivindicación 29 caracterizada porque la bota colectora comprende una canasta perforada soportada contra las paredes internas de la sección externa y ubicada sobre un tubo cilindrico que tiene un plato cóncavo recolector en su parte inferior, perforado y conectado a una boquilla para la extracción de hidrocarburos livianos.
31 . La torre de rectificación de la reivindicación 30 caracterizada porque el tubo cilindrico tiene un diámetro interno tal que permite el flujo ascendente de los hidrocarburos más livianos que el agua hacia la canasta perforada.
32. La torre de rectificación de la reivindicación 31 caracterizada porque el diámetro del tubo cilindrico es igual o inferior a 1/3 del diámetro de la torre.
33. La torre de rectificación de la reivindicación 29 caracterizada porque la sección externa comprende una boquilla de alimentación, por lo menos una boquilla de suministro de agua de proceso y por lo menos una boquilla de retiro de la corriente de fondo.
PCT/IB2019/057494 2019-09-05 2019-09-05 Proceso para la segregación gravitacional con agua de asfaltenos a los crudos, y equipos para su implementación WO2021044196A1 (es)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/IB2019/057494 WO2021044196A1 (es) 2019-09-05 2019-09-05 Proceso para la segregación gravitacional con agua de asfaltenos a los crudos, y equipos para su implementación
CONC2022/0004353A CO2022004353A2 (es) 2019-09-05 2022-04-05 Proceso para la segregación gravitacional con agua de asfaltenos a los crudos, y equipos para su implementación

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2019/057494 WO2021044196A1 (es) 2019-09-05 2019-09-05 Proceso para la segregación gravitacional con agua de asfaltenos a los crudos, y equipos para su implementación

Publications (1)

Publication Number Publication Date
WO2021044196A1 true WO2021044196A1 (es) 2021-03-11

Family

ID=74852440

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2019/057494 WO2021044196A1 (es) 2019-09-05 2019-09-05 Proceso para la segregación gravitacional con agua de asfaltenos a los crudos, y equipos para su implementación

Country Status (2)

Country Link
CO (1) CO2022004353A2 (es)
WO (1) WO2021044196A1 (es)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2260777A1 (de) * 1972-12-12 1974-06-20 Baschkirskij Nii Pererabotke N Verfahren zur entasphaltenierung schwerer erdolrueckstaende
GB2145730A (en) * 1983-08-08 1985-04-03 Elf Aquitaine Process and apparatus for simultaneously dewatering, desalting and deasphalting a mixture of hydrocarbons
US5948242A (en) * 1997-10-15 1999-09-07 Unipure Corporation Process for upgrading heavy crude oil production
US7981277B2 (en) * 2007-12-27 2011-07-19 Kellogg Brown & Root Llc Integrated solvent deasphalting and dewatering
US20150152340A1 (en) * 2013-12-03 2015-06-04 Exxonmobil Research And Engineering Company Desalter emulsion separation by emulsion recycle
US20180237705A1 (en) * 2013-02-25 2018-08-23 Meg Energy Corp. Separation of solid asphaltenes from heavy liquid hydrocarbons using novel apparatus and process ("ias")

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2260777A1 (de) * 1972-12-12 1974-06-20 Baschkirskij Nii Pererabotke N Verfahren zur entasphaltenierung schwerer erdolrueckstaende
GB2145730A (en) * 1983-08-08 1985-04-03 Elf Aquitaine Process and apparatus for simultaneously dewatering, desalting and deasphalting a mixture of hydrocarbons
US5948242A (en) * 1997-10-15 1999-09-07 Unipure Corporation Process for upgrading heavy crude oil production
US7981277B2 (en) * 2007-12-27 2011-07-19 Kellogg Brown & Root Llc Integrated solvent deasphalting and dewatering
US20180237705A1 (en) * 2013-02-25 2018-08-23 Meg Energy Corp. Separation of solid asphaltenes from heavy liquid hydrocarbons using novel apparatus and process ("ias")
US20150152340A1 (en) * 2013-12-03 2015-06-04 Exxonmobil Research And Engineering Company Desalter emulsion separation by emulsion recycle

Also Published As

Publication number Publication date
CO2022004353A2 (es) 2022-04-29

Similar Documents

Publication Publication Date Title
CN1152118C (zh) 改进重质原油生产的方法
US8262865B2 (en) Optimizing heavy oil recovery processes using electrostatic desalters
US7867382B2 (en) Processing unconventional and opportunity crude oils using one or more mesopore structured materials
RU2510726C2 (ru) Способ снижения кислотности углеводородов
US8257579B2 (en) Method for the well-head treatment of heavy and extra-heavy crudes in order to improve the transport conditions thereof
US20040007500A1 (en) Method of removing water an contaminants from crude oil containing same
EP2737021A2 (en) Process for stabilization of heavy hydrocarbons
US20130140216A1 (en) Process and system for enhanced separation of hydrocarbon emulsions
JP6886480B2 (ja) 超臨界水分離プロセス
WO2018005443A1 (en) Crude quality enhancement by simultaneous crude stabilization, sweetening, and desalting via microwave assisted heating
US10336951B2 (en) Desalter emulsion separation by hydrocarbon heating medium direct vaporization
CA2792901C (en) Bitumen froth treatment settler feed distributor
KR101542292B1 (ko) 탄화수소 스트림 내에서 풀라들을 분산하는 방법
WO2021044196A1 (es) Proceso para la segregación gravitacional con agua de asfaltenos a los crudos, y equipos para su implementación
Soto Ionic liquids for extraction processes in refinery-related applications
CA2435344C (en) Method of removing water and contaminants from crude oil containing same
WO2013156535A1 (en) Method of cleaning water to remove hydrocarbon therefrom
RU2732242C1 (ru) Способ получения мазута из пропарочно-промывочных смесей нефтепродуктов
US20220267683A1 (en) Liquid-liquid extraction of hydrocarbons in bulk storage tanks
CA3022131C (en) Method and apparatus to produce sales oil in a surface facility for a solvent based eor process
RU2330060C1 (ru) Способ подготовки высоковязкой нефти
CA3209132A1 (en) Liquid-liquid extraction of hydrocarbons in bulk storage tanks
WO2022178463A1 (en) Liquid-liquid extraction of hydrocarbons in bulk storage tanks
Piskunov et al. IMPROVEMENT OF REFINERY PROFITABILITY BY SYNERGY WITH COLLOIDAL CHEMISTRY SCIENCE
MXPA00003692A (es) Proceso para mejorar la calidad de la produccion de petroleo crudo pesado

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19944291

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19944291

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19944291

Country of ref document: EP

Kind code of ref document: A1