CN1274829A - 制造氧气的方法 - Google Patents
制造氧气的方法 Download PDFInfo
- Publication number
- CN1274829A CN1274829A CN00107530A CN00107530A CN1274829A CN 1274829 A CN1274829 A CN 1274829A CN 00107530 A CN00107530 A CN 00107530A CN 00107530 A CN00107530 A CN 00107530A CN 1274829 A CN1274829 A CN 1274829A
- Authority
- CN
- China
- Prior art keywords
- oxygen
- heat exchanger
- liquid oxygen
- liquid
- heavy seeds
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B13/00—Oxygen; Ozone; Oxides or hydroxides in general
- C01B13/02—Preparation of oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D9/00—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D9/0062—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04078—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression
- F25J3/0409—Providing pressurised feed air or process streams within or from the air fractionation unit providing pressurized products by liquid compression and vaporisation with cold recovery, i.e. so-called internal compression of oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04157—Afterstage cooling and so-called "pre-cooling" of the feed air upstream the air purification unit and main heat exchange line
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04187—Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04284—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/0429—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
- F25J3/04303—Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04406—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
- F25J3/04412—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04763—Start-up or control of the process; Details of the apparatus used
- F25J3/04769—Operation, control and regulation of the process; Instrumentation within the process
- F25J3/04854—Safety aspects of operation
- F25J3/0486—Safety aspects of operation of vaporisers for oxygen enriched liquids, e.g. purging of liquids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2205/00—Processes or apparatus using other separation and/or other processing means
- F25J2205/30—Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes
- F25J2205/32—Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes as direct contact cooling tower to produce a cooled gas stream, e.g. direct contact after cooler [DCAC]
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2205/00—Processes or apparatus using other separation and/or other processing means
- F25J2205/30—Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes
- F25J2205/34—Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes as evaporative cooling tower to produce chilled water, e.g. evaporative water chiller [EWC]
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2220/00—Processes or apparatus involving steps for the removal of impurities
- F25J2220/52—Separating high boiling, i.e. less volatile components from oxygen, e.g. Kr, Xe, Hydrocarbons, Nitrous oxides, O3
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2290/00—Other details not covered by groups F25J2200/00 - F25J2280/00
- F25J2290/10—Mathematical formulae, modeling, plot or curves; Design methods
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2290/00—Other details not covered by groups F25J2200/00 - F25J2280/00
- F25J2290/12—Particular process parameters like pressure, temperature, ratios
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D21/00—Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
- F28D2021/0019—Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2250/00—Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
- F28F2250/10—Particular pattern of flow of the heat exchange media
- F28F2250/104—Particular pattern of flow of the heat exchange media with parallel flow
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Separation By Low-Temperature Treatments (AREA)
Abstract
将从低压精馏器底部提取出并由液氧泵压缩至预定供送压力的液体氧,在主热交换器中蒸发以制备氧气产品,同时氧气在主热交换器中以这样的线性速度循环,该线性速度等于或高于按照供送压力计算的具有200μm直径的氧滴的极限速度。这种方法能有效地防止重杂质在热交换器中沉淀和在低操作成本下生产高压氧气。
Description
本发明涉及一种制造氧气的方法,包括压缩由深冷分离所制得的液体氧和通过加热蒸发液体氧来制取高压气体氧。
大量的高压气体氧被用在钢铁工业上生产钢铁的转炉中的氧化精炼步骤中、化学工业中由乙烯氧化合成氧化乙烯的步骤中,以及在燃料发电厂中燃料如煤和石油残渣的部分氧化步骤中。近年来对这种氧的需求有增加的趋势。
以工业规模制造氧的典型方法,是深冷分离,它包括将原料空气在低温下精馏分离出氧。在深冷分离中,通过沸点差的方法将氮和氧从原料空气中分离出来。也就是说,将液化空气供入精馏器,比氧具有更高挥发性的氮在精馏器中蒸发,便得到高浓度的液体氧。
在用深冷分离法制造高压气体氧的方法中,从精馏器中提取出的液体氧用一个泵进行压缩,然后在热交换器中加热使液体氧蒸发气化。此方法的优点是,与压缩气体氧相比压缩成本费能够大大降低。
原料空气含有痕量的杂质,例如烃类如甲烷、乙烷、乙烯、乙炔、丙烷、丙烯、丁烷、丁烯及戊烷;二氧化碳;及氧化氮类,除主要组分如氮、氧及氩外。由于这些杂质比氮和氧有更高的沸点和较低的挥发性,所以它们称为重杂质。这些重杂质是溶解在比氮的挥发性更低的液体氧中。由于重杂质与氧相比具有较高的沸点和较低的挥发性,所以当液体氧在热交换器中进行蒸发时它们便浓集在液体氧中,和当其浓度超过溶解于液体氧的溶解度时,便以固相或液相沉淀在热交换器氧的通道中。沉淀的重杂质易于与热交换器中的氧反应并堵塞氧通道。结果,就降低了热交换器的性能和设备的综合性能。
下面是用来解决这些问题的己公开的一些普通方法。
日本未审查的专利申请公开号7-174460公开了从液相中提取大部分液体氧的方法,该液相在较低压力蒸馏塔中的最下层塔板之上的第二底部塔板上具有相对低的重杂质浓度。而且,一小部分的液体氧是从含有最大量杂质的最下层塔板中提取的。将所提取的液体氧压缩到一定的压力,该压力等于或高于最后供给压力,来提高氧的沸点,再送入热交换器中以提高在液体氧中所含重杂质的蒸汽压。重杂质的蒸发便以此而在热交换器中变得容易了并且这些重杂质不致聚积在热交换器中。
日本未审查的专利申请公开号8-61843公开了一种再循环流动用于除去重杂质的方法。再循环流动是指如下气体流。一种具有大约40%的富氧含量和含有浓缩重杂质的液体被从较高压力的精馏器的底部提取出来并给以足够的压缩使重杂质在热交换器中蒸发。残留空气的压力下降,然后使该空气向原料空气中会聚。会聚的空气流被供送入一种初步纯化单元装置中以除去重杂质。
然而,这些方法仍然具有以下问题。在前一种方法中,从第二层底部塔板中提取出的液体氧,含有低浓度的重杂质。因而,这种方法对于重杂质的沉淀不是一种基本对策。当该系统连续操作很长时期,例如一年时,重杂质将会显著地沉淀在热交换机中。因为该系统有两个氧通道,因此设备和操作费用增加了,由于使用了高价的设备如液体氧泵,和复杂的所有工艺方法。
后一种方法也要求一些附加设备例如液氧泵用于循环再流动。因而这种方法也需要高的设备和操作费用,由于其复杂的系统和复杂的操作。因此,这种方法也不是一种基本对策。
本发明的目的是提供一种生产气体氧的方法,是采用低费用的深冷分离,不会引起重杂质在热交换器的氧通道中沉淀。
在气体氧生产中,包括将通过精馏原料空气所分离出来的液体氧压缩到预定压力和在热交换器中蒸发液体氧,本发明完成了在各种条件下的实验并发现当热交换器中氧通道的气体氧的线性流速增加到能满足如下参数时,上述问题便得到克服。结果,完成了本发明。
按照本发明生产气体氧的方法,包括将精制原料空气所分离出来的液体氧压缩到预定供送压力并在热交换器中蒸发液体氧,其中在热交换器的氧通道中的气体氧以等于或大于极限速度的线性速度向上流动,极限速度是根据具有预定直径氧滴的供送压力算得的。
由原料空气制造气体氧的方法包括以下步骤:将精馏原料空气所分离出的液体氧压缩到预定供送的压力,将压缩后的液体氧在预定供送压力下送入热交换器,以及在热交换器中蒸发和气化液体氧,其中气体氧向上流动,是以等于或高于直径为200μm的液体氧滴的极限速度u的线性速度流动,液体氧滴的极限速度u是由下列公式(1)算得的: 式中u:液体氧滴的极限速度,
g:重力加速度,
PL:在供送压力下饱和液体氧的密度,
PG:在供送压力下饱和气体氧的密度,
μ:在供送压力下饱和气体氧的粘度,以及
DP:液体氧滴的直径。
公式(1)是按照艾伦(Allen)阻力定律测定微滴的极限速度的,它包括范围2<Re<500,其中Re是雷诺数。优选,气体氧以等于或高于直径为500μm的液体氧滴极限速度u的线性速度向上流动,液体氧滴的极限速度u是按照公式(2)计算的:
式中u:液体氧滴的极限速度,
g:重力加速度,
PL:在供送压力下饱和液体氧的密度,
PG:在供送压力下饱和气体氧的密度,
μ:在供送压力下饱和气体氧的粘度,以及
DP:液体氧滴的直径。
公式(2)是根据牛顿阻力定律测定微滴的极限速度的,它包括的范围为500<Re<100,000,式中Re是雷诺数。
更优选,气体氧以等于或高于按照公式(2)计算直径为1mm的液体氧滴的极限速度u的线性速度向上流动。
当气体氧以等于或高于在热交换器的氧通道中具有一预定直径的滴速度的线性速度向上流动时,,则重杂质的聚积和沉淀可以预防。原因可设想如下。
当液体氧在热交换器的氧通道中蒸发时,便形成氧微滴,这是由于在液体氧的表面上或气一液界面上的不规则性所致。一般认为氧微滴含有各种重杂质,其浓度基本上与在热交换器中的液体氧的浓度相同。这种微滴最后下降到以公式(1)或(2)计算的极限速度。如果周围的气体氧以等于或高于极限速度的线性速度上升,则这些微滴也将随着气体流一起上升。卷入气流中的氧滴通过周围热而蒸发,因而含在氧滴中的重杂质也完全蒸发掉。
由于氧滴卷入气流中,包含在氧滴中的重杂质被强制性地蒸发。这样的蒸发,比基于重杂质的蒸气压使重杂质从液相向气相移动,要显著有效。
因为这种方法和设备能够促使在热交换器氧通道中的重杂质蒸发,因而无需特殊的装置,如上述再循环流动,来预防重杂质沉淀。因而,这种方法可防止重杂质在液体氧中浓集及重杂质在氧通道中沉淀,同时也降低了操作费用。
附图简述
图1是按照本发明制造氧气的设备示意图;
图2是热交换器的透视图;及
图3是用于本发明各实施例中的实验设备示意图。
优选实施方案的描述:
图1是按照本发明制造气体氧方法中所使用的设备(空气分离设备)的示意图。该设备可有各种构型,这依所制造的氧的量和纯度而定和依是否回收稀有气体而定。
将原料空气从管线1开始输送,通过空气过滤器2除去粗粒灰尘,再进入空气压缩机3,在其中被压缩(压缩步骤)。
将压缩后的空气送入湿式冷却塔4,用来自管线8的冷却水来除去压缩热(冷却步骤)。要供送入湿式冷却塔4的来自管线8的一部分冷水被送入蒸发-冷却塔5,然后被在低压精馏器21中分离出的深冷氮气冷却,再由冷水泵7送入湿式冷却塔4。来自管线8的其余冷却水被通过冷水泵6直接送入湿式冷却塔4。深冷氮气通过管线10从蒸发冷却塔5中排出,而冷却水通过管线9从湿式冷却塔4中排出。
将在湿式冷却塔4中冷却后的原料空气,通过管线26送入双塔分子筛吸附单元装置11,以除去大部分重杂质(纯化步骤)。在此双塔分子筛吸附装置11中,一个塔吸附原料空气中的重杂质,而另一个塔解吸要再利用的所吸附的重杂质。解吸过程是通过循环氮气进行,该氮气是在低压精馏器21中纯化并由加热器14进行加热。用阀12对这些塔吸附/解吸进行换向开关,以及解吸过程中用过的氮气是通过管线10排出。
在分子筛吸附装置11中纯化后的原料空气通过管线13被送入一个低压精馏器21和一个高压精馏器22。即将一部原料空气送入主热交换器17,在其中液化,再送入高压精馏器22,而将另一部分原料空气在膨胀汽轮机19中压缩,在主热交换器17中冷却,在膨胀汽轮机19中膨胀,以及送入低压精馏器21。
高压精馏器22,在其上部产生高纯氮气。将产生的氮气送给装设在精馏器21内的主冷凝器23,并在其中放热液化。将此液氮再循环送入高压精馏器22。亦即,主冷凝器23也起着低压精馏器21的再沸器的功能,并能在高压精馏器22与低压精馏器21之间进行热交换。将从主冷凝器23出来的再循环液氮的一部分送入超冷单元20,在其中超冷却,再送入低压精馏器21作为回流液体,同时通过减压阀18对其减压。
在高压精馏器22的底部得到浓集了氧的空气,将其从高压精馏器22中提取出来,在超冷单元20中进行超冷,再送入低压精馏器21中,同时通过另一减压阀18对其减压。
该低压精馏器21精馏空气。在低压精馏器21的上部,产生高纯氮气作为最终产品。该高纯氮气从低压精馏器21上部提取出来,并通过管路24送入超冷单元20。该氮气是在超冷装置20和主热交换器17中变热,并从管线16中排出作为最后的氮气产品。
排出的氮气也可以是提取自低压精馏器21的顶部附近,送入分子筛吸附装置11和蒸发冷却塔5中。
此后作为最后氧气产品回收的高纯液体氧,是产生于低压精馏器21的底部。该液体氧含有在纯化步骤中没有除去的重杂质。本发明的特征在于制造气体氧的一个步骤,这种气体氧具有所希望的从含重杂质的液体氧的供送压力。
从低压精馏器21的底部提取出的液体氧,通过一个液氧泵(压缩装置)27被压缩至一预定输送压力,并通过管线25送入主热交换器17。液体氧通过在主热交换器17的氧通道中加热而蒸发,和从管线15中回收最后的氧气产品。在这个实施方案中,气体氧在氧通道中的线性速度被设定为高于液体氧滴极限速度,该液体氧滴具有预定直径,在线性速度中极限速度是依供送压力而定。
图2是主热交换器17的一例。图2中的主热交换器17是一种散热片式热交换器,具有常规结构。亦即,主热交换器17带有多个挡板172和在各挡板之间插置的一些波折形散热片171。主热交换器17包括用来输送要液化的空气的管线13,及该氧通道用来输送要蒸发的液体氧的管线25和用来输送最后的氧气产品的管线15。
为了将在主热交换器17的氧通道中蒸发的氧气管线15中的线性速度控制至上述预定速度或更高,对通向交换器17中管线15的氧通道的横截面,主热交换器17中的热交换效率,及供送液体氧的流动速率都需适当地确定。
也就是说,当氧在主热交换器17中在0.503MPa的压力下蒸发时,饱和液体氧的密度是1.042kg/m3,饱和气体氧的密度是19.8kg/m3,以及在此压力下饱和气体氧的粘度为9.02×10-6Pa·s(0.00000902Pa·s)。这样,直径为200μm的氧滴的极限速度u基于公式(1)计算为0.430m/s,而直径为500μm的氧滴的极限速度u按照公式(2)计算是0.874m/s,以及直径为1mm的氧滴的极限速度u按照公式(2)计算为1.24m/s。当在热交换器产生的氧气量或从热交换器出口排出的氧气量为10kg/s时,这种量便转变成饱和气体氧为0.505m3/s的密度。这样,当热交换器中氧通道的横截面为1.17m2或以下时,则氧气可以等于或高于直径为200μm的氧滴的极限速度0.430m/s的线性速度流动。当热交换器中的氧通道的横截面为0.578m2或以下时,则氧气可以等于或高于直径为500μm的氧滴的极限速度0.874m/s的线性速度流动。当热交换器中通道的横截面为0.407m2或以下时,则氧气可以等于或高于直径为1mm的氧滴的极限速度1.24m/s的线性速度流动。
实施例
曾对主热交换器17的通道中氧气的线性速度在各种条件下进行了实验,以防止重杂质的聚集和沉积。
图3是实验设备的示意图。作为重杂质的烃气体53被加入到液体氧51中,液体氧又通过泵52压缩至某一预定供送压力,将混合物在铝一散热片式热交换器59中蒸发。将未送入铝一散热片式热交换器59的液体氧61和从铝一散热片式热交换器59排出的氧气62取样,并测定这些样品中的重杂质浓度。在该附图中,编号54至58表示阀门。
实施例1
曾经使用含有典型量重杂质的原料空气就生产氧气作了研究,如表1所示。一般,原料空气是在精馏前通过在分子筛吸附装置中吸附进行纯化。在吸附过程中,各种重杂质显示出不同的除去率。重杂质的渗透率和经过吸附后重杂质在原料空气中的浓度如表1所示。将纯化了的原料空气在精馏器中精馏。在精馏过程中,这些重杂质溶解在较高沸点的氧中。因为原料空气含有大约20%的氧,所以在液体氧中的重杂质便浓集大约5倍。这样,浓集的重杂质便溶解在液体氧中被送入热交换器中。各重杂质的浓度示于表1中下部各栏内。
表1
重杂质 | 甲烷 | 乙烷 | 乙烯 | 乙炔 | 丙烷 | 丁烷 | 戊烷 |
在典型原料空气中的浓度 | 3ppm | 10ppb | 20ppb | 10ppb | 20ppb | 5ppb | 5ppb |
在吸附过程中的渗透率 | 100% | 100% | 100% | 5% | 25% | 10% | 10% |
经吸附过程之后在空气中的浓度 | 3ppm | 10ppb | 20ppb | 0.5ppb | 5ppb | 0.5ppb | 0.5ppb |
在液体氧中的浓度 | 15ppm | 50ppb | 100ppb | 2.5ppb | 25ppb | 2.5ppb | 2.5ppb |
表2
100μm氧滴的极限速度
注:NP是指“没有沉淀”和P是指“沉淀”。
压力 | 极限速度 | 甲烷 | 乙烷 | 乙烯 | 乙炔 | 丙烷 | 丁烷 | 戊烷 |
0.3MPa | 0.27m/s | NP | NP | NP | NP | NP | P | P |
0.5MPa | 0.22m/s | NP | NP | NP | NP | NP | NP | P |
1MPa | 0.16m/s | NP | NP | NP | NP | NP | NP | P |
2MPa | 0.10m/s | NP | NP | NP | NP | NP | NP | NP |
4MPa | 0.053m/s | NP | NP | NP | NP | NP | NP | NP |
表3
200μm氧滴的极限速度
注:NP是指“没有沉淀”和P是指“沉淀”。
压力 | 极限速度 | 甲烷 | 乙烷 | 乙烯 | 乙炔 | 丙烷 | 丁烷 | 戊烷 |
0.3MPa | 0.51m/s | NP | NP | NP | NP | NP | NP | NP |
0.5MPa | 0.44m/s | NP | NP | NP | NP | NP | NP | NP |
1MPa | 0.31m/s | NP | NP | NP | NP | NP | NP | NP |
2MPa | 0.20m/s | NP | NP | NP | NP | NP | NP | NP |
4MPa | 0.10m/s | NP | NP | NP | NP | NP | NP | NP |
表4
重杂质 | 甲烷 | 乙烷 | 乙烯 | 乙炔 | 丙烷 | 丁烷 | 戊烷 |
在原料空气中的浓度 | 4ppm | 20ppb | 40ppb | 20ppb | 40ppb | 20ppb | 20ppb |
在吸附过程中的渗透率 | 100% | 100% | 100% | 5% | 25% | 10% | 10% |
经吸附过程之后在空气中的浓度 | 4ppm | 20ppb | 40ppb | 1ppb | 10ppb | 2ppb | 2ppb |
在液体氧中的浓度 | 20ppm | 100ppb | 200ppb | 5ppb | 50ppb | 10ppb | 10ppb |
含有表1的下面一行中所示重杂质量的液体氧是使用上述设备制得的。将液体氧在热交换器中蒸发以制备气体氧并观察是否重杂质聚积和沉淀在热交换器中。
实验是在5个压力水平0.3MPa、0.5MPa、1MPa、2MPa、和4MPa下进行。蒸发后的气体氧,按照公式(1)计算,以相当于直径为100μm或200μm的氧滴的极限速度的线性速度循环进入热交换器,在每次供送压力下对比了送入热交换器的液体氧中的重杂质浓度和从热交换器中排出的气体氧中的重杂质浓度。实验速度是基于在该压力下的饱和气体密度。
表2和表3分别表示直径为100μm和200μm的氧滴极限速度的结果。
如表2所示,当气体氧是以线性速度相当于直径100μm的氧滴和极限速度循环进入热交换器时,在1MPa或之下输送的丁烷和戊烷聚积的水平高于溶解度并沉淀在热交换器中。据认为,热交换器中的气体氧在低线性速度下,卷入气相中的这些重杂质不能够充分迁移。这样,重杂质的迁移基本上决定于重杂质的蒸汽压。结果,就不能促进具有低蒸汽压的丁烷和戊烷气化。
相反,如表3中所示,当气体氧是以线性速度相当于直径200μm的氧滴的极限速度循环进入热交换器时,在热交换器中的液体氧中的各重杂质的浓度是保持在低于其在液体氧中的溶解度的水平,并且从热交换器中排出的气体氧中各组分的浓度已达到送入热交换器的液体氧中相应的组分的浓度。这样以来,这是一种稳态,并且这些重杂质不会沉积在热交换器中。
据认为,在足够高的线性气体氧速度下,重杂质向气相中的迁移通过卷带而促进。
这些实验结果表明,这些重杂质在热交换器中的聚积和沉淀,在设备以线性速度相当于直径为200μm的氧滴的极限速度操作时,是能够预防的。
实施例2
对氧的生产已用含有大量重杂质的原料空气作了研究,如表4所示。这种高含量的重杂质有时可在工业区观察到。已经计算了分离自原料空气的液体氧中所含重杂质的浓度,如实施例1所述。送入热交换器的液体中重杂质的浓度,已列示于表4的最下一行中。
如表4中所示,随着原料空气中重杂质增加,送入热交换器的液体氧中的重杂质的浓度也增加了并且这些重杂质趋于沉积在热交换器中。
含有表4最下面一行所示浓度的重杂质的液体氧,是用实施例1所述的设备生产的。将液体氧在热交换器中蒸发来制备气体氧并观察看是否有重杂质聚积和沉淀在热交换器中。
实验是在5个压力水平0.3MPa、0.5MPa、1MPa、2MPa及4MPa下进行。蒸发的气体氧在热交换器中循环,其线性速度按照公式(1)计算相当于直径为200μm的液体氧滴的极限速度,而具有直径为500μm的液体氧滴的极限速度按照公式(2)计算,或者具有直径为1mm的极限速度是按照公式(2)计算,以及对比了在每种输送压力下送入热交换器的液体氧中重杂质的浓度和从热交换器中排出的气体氧中重杂质的浓度。
表5至表7分别表示在氧滴直径为200μm、500μm、及1mm情况下的结果。
表5
200μm氧滴的极限速度
注:NP表示“没有沉淀”和P表示“沉淀”。
压力 | 极限速度 | 甲烷 | 乙烷 | 乙烯 | 乙炔 | 丙烷 | 丁烷 | 戊烷 |
0.3MPa | 0.51m/s | NP | NP | NP | NP | NP | NP | P |
0.5MPa | 0.44m/s | NP | NP | NP | NP | NP | NP | P |
1MPa | 0.31m/s | NP | NP | NP | NP | NP | NP | P |
2MPa | 0.20m/s | NP | NP | NP | NP | NP | NP | P |
4MPa | 0.10m/s | NP | NP | NP | NP | NP | NP | NP |
表6
500μm氧滴的极限速度
注:NP表示“没有沉淀”和P表示“沉淀”。
压力 | 极限速度 | 甲烷 | 乙烷 | 乙烯 | 乙炔 | 丙烷 | 丁烷 | 戊烷 |
0.3MPa | 1.1m/s | NP | NP | NP | NP | NP | NP | P |
0.5MPa | 0.87m/s | NP | NP | NP | NP | NP | NP | NP |
1MPa | 0.60m/s | NP | NP | NP | NP | NP | NP | NP |
2MPa | 0.39m/s | NP | NP | NP | NP | NP | NP | NP |
4MPa | 0.20m/s | NP | NP | NP | NP | NP | NP | NP |
表7
1mm氧滴的极限速度
注:NP表示“没有沉淀”和P表示“沉淀”。
压力 | 极限速度 | 甲烷 | 乙烷 | 乙烯 | 乙炔 | 丙烷 | 丁烷 | 戊烷 |
0.3MPa | 1.6m/s | NP | NP | NP | NP | NP | NP | NP |
0.5MPa | 1.2m/s | NP | NP | NP | NP | NP | NP | NP |
1Mpa | 0.84m/s | NP | NP | NP | NP | NP | NP | NP |
2Mpa | 0.55m/s | NP | NP | NP | NP | NP | NP | NP |
4Mpa | 0.28m/s | NP | NP | NP | NP | NP | NP | NP |
如表5所示,当气体氧以相当于直径为200μm的氧滴的极限速度的线性速度在热交换器中循环时,这时的输送压力为2MPa或以下至高于溶解度的水平,戊烷便发生聚积并沉淀在热交换器中。可以认为,在热交换器中气体氧的较低线性速度下,重杂质通过卷入气相中的移动是不够充分的。因而,重杂质的迁移基本上决定于重杂质的蒸汽压。结果,有较低蒸汽压的戊烷的蒸发,没有得到促进。
与此相反,如表6所示,当气体氧以相当于直径为500μm的氧滴的极限速度的线性速度在热交换器中循环时,重杂质没有发生沉淀,只有戊烷在输送压力为0.3MPa情况下发生了沉淀。
而且,如表7所示,当气体氧以相当于直径为1mm的氧滴的极限速度的线性速度在热交换器中循环时,在热交换器的液体氧中每种杂质的浓度保持在低于其溶解于液体氧的溶解度的水平,以及从热交换器中排出的气体氧中的每种组分的浓度达到送入交换器的液体氧中相应组分的浓度。因而,这是一种稳态并且这些重杂质没有沉积在热交换器中。
可以认为,在不够高的气体氧的线性速度下,重杂质移入气相中的迁移通过夹带卷入而促进了。
这些实验结果表明,各种重杂质在热交换器中聚积和沉淀是能够防止的,条件是设备操作必须以相当于直径为500μm以上,优选1mm的氧滴的极限速度的线性速度进行。
下面的实施方案也可优选地用于本发明。
A.本发明可应用于任何已知生产厂来生产氧气自由精馏器分离出的液体氧,除过上述工厂之外。
B.除过上述散热片式热交换器之外,本发明可应用于任何已知的热交换器中。
Claims (3)
1.一种从原料空气制造气体氧的方法,其特征在于包括如下各步骤:
将由精馏原料空气分离出的液体氧压缩到预定供送压力;
将压缩的液体氧在预定供送压力下送入热交换器中;以及
在热交换器中蒸发和气化液体氧;
其中气体氧以这样的线性速度向上流动,该线性速度等于或高于按照公式(1)计算的直径为200μm的液体氧滴的极限速度u: 式中u:液体氧滴的极限速度,
g:重力加速度,
PL:在供送压力下饱和液体氧的密度,
PG:在供送压力下饱和气体氧的密度,
μ:在供送压力下饱和气体氧的粘度,以及
DP:液体氧滴的直径。
2.如权利要求1所述的制造气体氧的方法,其特征在于气体氧以这样的线性速度向上流动,该线性速度等于或高于以公式(2)计算的直径为500μm的液体氧滴极限速度u:
式中u:液体氧滴的极限速度,
g:重力加速度,
PL:在供送压力下饱和液体氧的密度,
PG:在供送压力下饱和气体氧的密度,
μ:在供送压力下饱和气体氧的粘度,以及
DP:液体氧滴的直径。
3.如权利要求2所述的制造气体氧的方法,其特征在于气体氧是以这样的线性速度向上流动的,该线性速度等于或高于以公式(2)计算的具有直径为1mm的液体氧滴的极限速度u。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP142030/99 | 1999-05-21 | ||
JP14203099A JP3538338B2 (ja) | 1999-05-21 | 1999-05-21 | 酸素ガスの製造方法 |
JP142030/1999 | 1999-05-21 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1274829A true CN1274829A (zh) | 2000-11-29 |
CN1125306C CN1125306C (zh) | 2003-10-22 |
Family
ID=15305743
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN00107530A Expired - Fee Related CN1125306C (zh) | 1999-05-21 | 2000-05-17 | 制造氧气的方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US6321566B1 (zh) |
JP (1) | JP3538338B2 (zh) |
KR (1) | KR100352513B1 (zh) |
CN (1) | CN1125306C (zh) |
DE (1) | DE10024708B4 (zh) |
FR (1) | FR2793701B1 (zh) |
TW (1) | TW442643B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101044366B (zh) * | 2004-06-29 | 2011-05-04 | 乔治洛德方法研究和开发液化空气有限公司 | 紧急备用供给压力气体的方法和设备 |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3715497B2 (ja) * | 2000-02-23 | 2005-11-09 | 株式会社神戸製鋼所 | 酸素の製造方法 |
FR2830463B1 (fr) * | 2001-10-09 | 2004-08-06 | Air Liquide | Procede et appareil de traitement d'un gaz par adsorption, notamment d'epuration d'air atmospherique avant separation par distillation |
US6718795B2 (en) * | 2001-12-20 | 2004-04-13 | Air Liquide Process And Construction, Inc. | Systems and methods for production of high pressure oxygen |
US7788073B2 (en) * | 2005-12-13 | 2010-08-31 | Linde Aktiengesellschaft | Processes for determining the strength of a plate-type exchanger, for producing a plate-type heat exchanger, and for producing a process engineering system |
EP1830149B2 (de) * | 2005-12-13 | 2013-11-20 | Linde AG | Verfahren zur Bestimmung der Festigkeit eines Plattenwärmeaustauschers, zur Herstellung eines Plattenwärmeaustauschers und zur Herstellung einer verfahrenstechnischen Anlage |
FR2940413B1 (fr) * | 2008-12-19 | 2013-01-11 | Air Liquide | Procede de capture du co2 par cryo-condensation |
KR101267634B1 (ko) | 2011-05-30 | 2013-05-27 | 현대제철 주식회사 | 산소 제조 장치 |
JP5982221B2 (ja) * | 2012-08-21 | 2016-08-31 | 株式会社神戸製鋼所 | プレートフィン熱交換器及びプレートフィン熱交換器の補修方法 |
EP3124902A1 (de) * | 2015-07-28 | 2017-02-01 | Linde Aktiengesellschaft | Luftzerlegungsanlage, betriebsverfahren und steuereinrichtung |
EP3473961B1 (en) | 2017-10-20 | 2020-12-02 | Api Heat Transfer, Inc. | Heat exchanger |
EP3948124B1 (de) * | 2019-04-05 | 2022-11-02 | Linde GmbH | Verfahren zum betreiben eines wärmetauschers, anordnung mit wärmetauscher und anlage mit entsprechender anordnung |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3086371A (en) * | 1957-09-12 | 1963-04-23 | Air Prod & Chem | Fractionation of gaseous mixtures |
FR2692664A1 (fr) | 1992-06-23 | 1993-12-24 | Lair Liquide | Procédé et installation de production d'oxygène gazeux sous pression. |
US5379599A (en) * | 1993-08-23 | 1995-01-10 | The Boc Group, Inc. | Pumped liquid oxygen method and apparatus |
US5355681A (en) * | 1993-09-23 | 1994-10-18 | Air Products And Chemicals, Inc. | Air separation schemes for oxygen and nitrogen coproduction as gas and/or liquid products |
US5467601A (en) * | 1994-05-10 | 1995-11-21 | Praxair Technology, Inc. | Air boiling cryogenic rectification system with lower power requirements |
GB9414938D0 (en) | 1994-07-25 | 1994-09-14 | Boc Group Plc | Air separation |
US5471842A (en) * | 1994-08-17 | 1995-12-05 | The Boc Group, Inc. | Cryogenic rectification method and apparatus |
US5551258A (en) * | 1994-12-15 | 1996-09-03 | The Boc Group Plc | Air separation |
-
1999
- 1999-05-21 JP JP14203099A patent/JP3538338B2/ja not_active Expired - Fee Related
-
2000
- 2000-05-01 US US09/563,165 patent/US6321566B1/en not_active Expired - Lifetime
- 2000-05-17 CN CN00107530A patent/CN1125306C/zh not_active Expired - Fee Related
- 2000-05-18 FR FR0006378A patent/FR2793701B1/fr not_active Expired - Fee Related
- 2000-05-18 DE DE10024708A patent/DE10024708B4/de not_active Revoked
- 2000-05-18 KR KR1020000026753A patent/KR100352513B1/ko not_active IP Right Cessation
- 2000-05-19 TW TW089109665A patent/TW442643B/zh not_active IP Right Cessation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101044366B (zh) * | 2004-06-29 | 2011-05-04 | 乔治洛德方法研究和开发液化空气有限公司 | 紧急备用供给压力气体的方法和设备 |
Also Published As
Publication number | Publication date |
---|---|
US6321566B1 (en) | 2001-11-27 |
JP2000329457A (ja) | 2000-11-30 |
FR2793701B1 (fr) | 2002-08-30 |
JP3538338B2 (ja) | 2004-06-14 |
TW442643B (en) | 2001-06-23 |
DE10024708B4 (de) | 2007-10-25 |
CN1125306C (zh) | 2003-10-22 |
KR100352513B1 (ko) | 2002-09-11 |
KR20010049369A (ko) | 2001-06-15 |
DE10024708A1 (de) | 2001-01-25 |
FR2793701A1 (fr) | 2000-11-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1104619C (zh) | 液化和处理天然气的方法 | |
CN101605724B (zh) | 高纯度二氧化碳的回收方法 | |
CN1125306C (zh) | 制造氧气的方法 | |
CN1097247A (zh) | 空气分离 | |
CN1506302A (zh) | 回收氪和/或氙的方法和设备 | |
CN1960938A (zh) | 用于制氢设备冷却的方法和装置 | |
CN1143623A (zh) | 从气相催化氧化三/四碳化合物生成的反应气体混合物中分离(甲基)丙烯酸的方法 | |
CN107438475B (zh) | 从吸收剂中能量有效回收二氧化碳的方法和适于运行该方法的设备 | |
CN1318619A (zh) | 回收c2+烃的氮制冷方法 | |
CN102946972A (zh) | 利用液态二氧化碳来净化二氧化碳的方法和装置 | |
CN1060137C (zh) | 制备高纯度溴化氢的方法及设备 | |
CN1122013C (zh) | 含丙烯醛的气流的纯化方法与设备 | |
CN110072846A (zh) | 甲苯二异氰酸酯的纯化方法 | |
CN108821253B (zh) | 一种电子级磷烷的提纯系统和处理方法 | |
CN1338449A (zh) | 从含有烃类的混合气中分离回收乙烯、乙烷、丙烯和氢气的方法 | |
CN1237536A (zh) | 联合生产氨合成混合物和一氧化碳的方法和设备 | |
CN1252517A (zh) | 生产一氧化碳的方法 | |
CN1074748A (zh) | 生产增压产品的低温精馏系统 | |
CN113527043A (zh) | 一种氯乙烯高沸物处理方法 | |
CN1107572A (zh) | 分离空气的方法和设备 | |
RU2596775C1 (ru) | Способ извлечения компонентов из парогазовых смесей, образующихся при производстве поликристаллического кремния | |
RU2338734C1 (ru) | Способ выделения углеводородов c3+ из попутных нефтяных газов | |
CN215610590U (zh) | 一种有机溶剂的除杂除水装置 | |
CN104436980B (zh) | 处理挥发性有机化合物废气的方法和设备 | |
CN107746366A (zh) | 从石脑油中提取异戊烷的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C06 | Publication | ||
PB01 | Publication | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20031022 Termination date: 20160517 |
|
CF01 | Termination of patent right due to non-payment of annual fee |