CN1252255C - 辅酶nadh的光化学再生方法 - Google Patents

辅酶nadh的光化学再生方法 Download PDF

Info

Publication number
CN1252255C
CN1252255C CN 200410020227 CN200410020227A CN1252255C CN 1252255 C CN1252255 C CN 1252255C CN 200410020227 CN200410020227 CN 200410020227 CN 200410020227 A CN200410020227 A CN 200410020227A CN 1252255 C CN1252255 C CN 1252255C
Authority
CN
China
Prior art keywords
nadh
light
photochemical
regeneration
enzymes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN 200410020227
Other languages
English (en)
Other versions
CN1597940A (zh
Inventor
姜忠义
吴洪
吕陈秋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN 200410020227 priority Critical patent/CN1252255C/zh
Publication of CN1597940A publication Critical patent/CN1597940A/zh
Application granted granted Critical
Publication of CN1252255C publication Critical patent/CN1252255C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Catalysts (AREA)

Abstract

本发明公开了一种辅酶NADH的光化学再生方法。属于辅酶再生技术。以可见光或紫外光为光源,实现辅酶NADH的光化学再生方法,其特征在于:以含碳的TiO2作为光催化剂,以水、抗坏血酸、甲酸钠、EDTA或巯基乙醇为电子供体,光体系下在铑金属络合物[Cp*Rh(bpy)(H2O)]存在和无酶参与的情况下使NADH再生。本发明的优点在于:含碳的TiO2能吸收可见光,制备过程简单,成本较低,NADH的光化学再生在可见光照射下进行,能量利用率高,而且避免了紫外光对酶的影响;不需要有毒电子媒介物甲基紫晶的参与;不需要酶的参与,避免了再生酶与合成酶最适条件不同而使体系难以控制的弊病。

Description

辅酶NADH的光化学再生方法
                           技术领域
本发明是涉及一种NADH的光化学再生方法,属于辅酶再生技术。
                           背景技术
在酶的六大类型中,30%~35%为氧化还原酶。大部分氧化还原酶催化作用的发挥需要烟酰胺腺嘌呤二核苷酸辅酶(NAD(P)+、NAD(P)H)作为氧化剂或还原剂直接参与反应。然而,NAD(P)+和NAD(P)H的价格昂贵,通常比酶促反应所得产物要贵得多。因此,从技术经济性的角度来看,对辅酶进行再生并循环使用是很有必要的。此外,辅酶再生能够简化产物的分离,并有利于酶促反应向正反应方向移动。
目前已有的再生方法包括酶法、电化学法、光化学法等。酶法再生的优点在于反应速率快,选择性高,再生体系与合成体系兼容性好。但所用酶往往比较昂贵,且体系涉及两种或两种以上酶。酶的最适应用条件往往不一致,给过程优化带来困难。电化学法的再生能量来自于洁净的电能,与酶法相比成本低。电化学法中氧化还原电势的控制和反应过程的监测都较为容易。但是它与酶促合成体系的兼容性差,选择性低(尤其是对于还原态辅酶的再生),因此电化学法比较适合于氧化态辅酶的再生。光化学法再生辅酶利用的是廉价且洁净的光能,通常需要光敏剂、电子媒介物和电子供体。光化学再生法目前还未获得理想的效果,其再生效率很低,但具有广阔的潜在应用前景。
现有的NADH光化学再生法常采用金属络合物,如Ru(II)-三(二嘧啶)(Ru(bpy)3 2+)、Zn(II)-N-(四甲基吡啶)卟啉(Zn-TMPy4+)或半导体(TiO2、CdS)为光敏剂,在电子媒介物甲基紫晶(MV2+)和酶(铁氧化还原酶FDR或硫辛酰胺脱氢酶LipDH)存在下将NAD+还原为NADH。这些方法都存在着严重的不足:光敏剂Ru(bpy)3 2+和Zn-TMPy4+在光体系下极不稳定,易发生光降解;TiO2虽然在光体系下很稳定,而且无毒、价格便宜,但TiO2是宽禁带半导体,只能被波长较短的紫外光(λ<387nm)激发,而这部分光只占到太阳光的8%,能量利用率低;CdS虽然能够被可见光激发,但它在光体系下易发生光腐蚀;电子媒介物MV2+是有毒物质,容易污染产物,且MV+具有很强的还原性,不仅能将NAD+还原,在有些情况下还能将酶促合成的产物还原。将无机半导体颗粒CdS直接与氢化酶的活性中心相连接,使电子直接在酶与半导体间传递虽然可以避免使用甲基紫晶,但氢化酶价格昂贵且不稳定,而且将CdS与其活性中心相连的反应过程复杂。此外,上述方法都需要有酶的参与,从而再生的成本较高。
                           发明内容
本发明的目的在于提供一种辅酶NADH的光化学再生方法。该方法过程简单,再生成本较低。
本发明是通过下述技术方案实现的。以可见光或紫外光为光源,实现辅酶NADH的光化学再生方法,其特征在于:以1mol辅酶NAD+为基准,加入1~5mol的水、抗坏血酸、甲酸钠、EDTA或巯基乙醇电子供体,加入0.4~2.5mol的铑金属络合物[Cp*Rh(bpy)(H2O)],加入含碳量为18.3~49.2%的100~600mol的TiO2光催化剂,在温度25~37℃,pH值在6.5~7.5条件下,反应得到NADH。
本发明提出的光化学再生NADH的优点在于:含碳的TiO2能吸收可见光,与掺杂贵金属(Mo、Co、Pt)以降低TiO2激发能的方法相比,掺碳的方法更为简单,成本较低,是一种新型材料,此前从未用于NADH的再生;NADH的光化学再生在可见光照射下进行,能量利用率高,而且避免了紫外光对酶的影响;不需要有毒电子媒介物甲基紫晶的参与;不需要酶的参与,不仅降低了成本,而且避免了再生酶与合成酶最适条件不同而使体系难以控制的弊病。
                            附图说明
图1为NADH纯品的质谱图。
图2为NAD+纯品的质谱图。
图3为反应产物混合物的质谱图,图3中丰度在710.2处为产物NADH的特征峰。
                           具体实施方式
实施例一
分别称取80mg含碳量分别为0、18.3%、27.5%、39.7%和49.2%的五种TiO2催化剂,在T=37℃、pH=6.5下进行光照实验,[Cp*Rh(bpy)(H2O)]2+起始浓度为0.2mM,NAD+起始浓度0.2mM,反应总体积为50mL,反应进行11小时。
(1)在λ≤365nm(紫外光)光照下反应。
(2)在λ≥400nm(可见光)光照下反应。
产物NADH由质谱进行定性测量,NADH的特征峰为733.2、732.3和710.2;由于NADH在340nm处有强吸收,因此NADH的浓度由紫外-可见分光光度计测量。每次取样0.6mL,稀释至3mL后在紫外-可见分光光度计上测量340nm处的吸光度。
实施例二
称取80mg含碳量49.2%的TiO2样品,在λ≥400nm(可见光)光照下反应,反应体积为50mL。通过测量反应10h后NAD+的转化率,考察了pH值、反应温度、NAD+浓度、[Cp*Rh(bpy)(H2O)]2+浓度等反应条件对反应转化率的影响。反应条件及NAD+转化率列于下表:
                   表1反应体系pH值对NAD+转化率的影响
  序号   pH   T/℃   NAD+浓度/mM   铑络合物浓度/mM   NAD+转化率%
  12345   6.06.57.07.58.0   3131313131   0.20.20.20.20.2   0.20.20.20.20.2   39.925.817.814.311.2
                            表2温度对NAD+转化率的影响
  序号   pH   T/℃   NAD+浓度/mM   铑络合物浓度/mM   NAD+转化率%
  123   6.56.56.5   252831   0.20.20.2   0.20.20.2   11.217.025.8
  45   6.56.5   3437   0.20.2   0.20.2   39.057.4
                      表3NAD+浓度对NAD+转化率的影响
  序号   pH   T/℃   NAD+浓度/mM   铑络合物浓度/mM   NAD+转化率%
  12345   6.56.56.56.56.5   3131313131   0.10.20.30.40.5   0.20.20.20.20.2   19.825.830.533.334.2
               表4[Cp*Rh(bpy)(H2O)]2+浓度对NAD+转化率的影响
  序号   pH   T/℃   NAD+浓度/mM   铑络合物浓度/mM   NAD+转化率%
  12345   6.56.56.56.56.5   3131313131   0.20.20.20.20.2   0.10.20.30.40.5   15.725.834.138.940.9
本发明采用含碳TiO2和铑金属络合物为催化剂,以可见光或紫外光为光源,实现了辅酶NADH的再生,实验中,NAD+的转化率可达到57.4%。

Claims (1)

1.一种辅酶NADH的光化学再生方法,该方法是以可见光或紫外光为光源,实现辅酶NADH的光化学再生,其特征在于:以1mol辅酶NAD+为基准,加入1~5mol的水、抗坏血酸、甲酸钠、EDTA或巯基乙醇电子供体,加入0.4~2.5mol的铑合金络合物,加入含碳量为18.3~49.2%的100mol的TiO2光催化剂,在温度25~37℃,pH值在6.5~7.5条件下,反应得到NADH。
CN 200410020227 2004-08-03 2004-08-03 辅酶nadh的光化学再生方法 Expired - Fee Related CN1252255C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200410020227 CN1252255C (zh) 2004-08-03 2004-08-03 辅酶nadh的光化学再生方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200410020227 CN1252255C (zh) 2004-08-03 2004-08-03 辅酶nadh的光化学再生方法

Publications (2)

Publication Number Publication Date
CN1597940A CN1597940A (zh) 2005-03-23
CN1252255C true CN1252255C (zh) 2006-04-19

Family

ID=34663178

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200410020227 Expired - Fee Related CN1252255C (zh) 2004-08-03 2004-08-03 辅酶nadh的光化学再生方法

Country Status (1)

Country Link
CN (1) CN1252255C (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2766499C (en) * 2009-06-29 2018-05-22 Bayer Bioscience N.V. Improvement of yield in crop plants through selection of epigenetically modified populations
ITMI20131135A1 (it) * 2013-07-05 2015-01-06 Catalisi Innovativa Per Il Riciclo Del Carbonio E Fotocatalizzatore per la riduzione nel visibile di nad+ a nadh in un processo ibrido chemo-enzimatico di riduzione di co2 a metanolo
CN110327926B (zh) * 2019-06-18 2023-07-14 中国石油大学(华东) 一种铁离子掺杂二氧化钛纳米材料的制备方法
CN114192173A (zh) * 2021-11-05 2022-03-18 五邑大学 一种用于nadh再生的光催化剂及其制备方法和应用

Also Published As

Publication number Publication date
CN1597940A (zh) 2005-03-23

Similar Documents

Publication Publication Date Title
Guo et al. Construction of highly efficient and stable ternary AgBr/Ag/PbBiO2Br Z-scheme photocatalyst under visible light irradiation: performance and mechanism insight
Le et al. Carbon dots sensitized 2D-2D heterojunction of BiVO4/Bi3TaO7 for visible light photocatalytic removal towards the broad-spectrum antibiotics
Xiao et al. Synthesis of EDTA-bridged CdS/g-C3N4 heterostructure photocatalyst with enhanced performance for photoredox reactions
Shi et al. Magnetically retrievable CdS/reduced graphene oxide/ZnFe2O4 ternary nanocomposite for self-generated H2O2 towards photo-Fenton removal of tetracycline under visible light irradiation
Wang et al. Facile fabrication of direct Z-scheme MoS2/Bi2WO6 heterojunction photocatalyst with superior photocatalytic performance under visible light irradiation
Dou et al. The simultaneous promotion of Cr (VI) photoreduction and tetracycline removal over 3D/2D Cu2O/BiOBr S-scheme nanostructures
Zheng et al. Synthesis of Fe3O4@ CdS@ CQDs ternary core–shell heterostructures as a magnetically recoverable photocatalyst for selective alcohol oxidation coupled with H2O2 production
Wu et al. Surfactants-assisted preparation of BiVO4 with novel morphologies via microwave method and CdS decoration for enhanced photocatalytic properties
CN101327968B (zh) 转盘负载催化剂光电催化降解有机物反应器及降解方法
Ni et al. Peroxymonosulfate activation by Co3O4/SnO2 for efficient degradation of ofloxacin under visible light
Jo et al. In situ phase transformation synthesis of unique Janus Ag2O/Ag2CO3 heterojunction photocatalyst with improved photocatalytic properties
Kong et al. Efficient production of acetate from inorganic carbon (HCO3–) in microbial electrosynthesis systems incorporating Ag3PO4/g-C3N4 anaerobic photo-assisted biocathodes
Sui et al. A biocathode-driven photocatalytic fuel cell using an Ag-doped TiO2/Ti mesh photoanode for electricity generation and pollutant degradation
CN101798126A (zh) 一种光电催化处理工业废水的方法
CN108793422A (zh) 光催化电极耦合微生物燃料电池促进焦化废水处理方法
CN104707658A (zh) 一种Pd/金属有机骨架化合物催化剂及其制备方法和应用
CN1806915A (zh) 氧化钴负载的钒酸铋复合光催化剂及其制备方法
Li et al. Fabrication of 0D/1D Bi2MoO6/Bi/TiO2 heterojunction with effective interfaces for boosted visible-light photocatalytic degradation of tetracycline
CN108855062A (zh) 一种Au-TiO2多刺状异质结构复合纳米颗粒光催化剂及其制备方法
Lu et al. Photocatalytic activity and mechanism of cerium dioxide with different morphologies for tetracycline degradation
Liang et al. Hybridizing electron-mediated H5PMo10V2O40 with CdS/g-C3N4 for efficient photocatalytic performance of Z-scheme heterojunction in wastewater treatment
CN1252255C (zh) 辅酶nadh的光化学再生方法
CN110354845A (zh) 一种碳纳米点修饰的钨酸铋光催化剂及其制备方法和应用
CN110902804A (zh) 利用热辅助苯醌废水催化过硫酸盐去除废水中污染物的方法
Guo et al. Enhanced photocatalytic nitrogen fixation of etched Ag-doped PM-CdS catalyst under visible light irradiation

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee