CN1252255C - 辅酶nadh的光化学再生方法 - Google Patents
辅酶nadh的光化学再生方法 Download PDFInfo
- Publication number
- CN1252255C CN1252255C CN 200410020227 CN200410020227A CN1252255C CN 1252255 C CN1252255 C CN 1252255C CN 200410020227 CN200410020227 CN 200410020227 CN 200410020227 A CN200410020227 A CN 200410020227A CN 1252255 C CN1252255 C CN 1252255C
- Authority
- CN
- China
- Prior art keywords
- nadh
- light
- photochemical
- regeneration
- enzymes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Catalysts (AREA)
Abstract
本发明公开了一种辅酶NADH的光化学再生方法。属于辅酶再生技术。以可见光或紫外光为光源,实现辅酶NADH的光化学再生方法,其特征在于:以含碳的TiO2作为光催化剂,以水、抗坏血酸、甲酸钠、EDTA或巯基乙醇为电子供体,光体系下在铑金属络合物[Cp*Rh(bpy)(H2O)]存在和无酶参与的情况下使NADH再生。本发明的优点在于:含碳的TiO2能吸收可见光,制备过程简单,成本较低,NADH的光化学再生在可见光照射下进行,能量利用率高,而且避免了紫外光对酶的影响;不需要有毒电子媒介物甲基紫晶的参与;不需要酶的参与,避免了再生酶与合成酶最适条件不同而使体系难以控制的弊病。
Description
技术领域
本发明是涉及一种NADH的光化学再生方法,属于辅酶再生技术。
背景技术
在酶的六大类型中,30%~35%为氧化还原酶。大部分氧化还原酶催化作用的发挥需要烟酰胺腺嘌呤二核苷酸辅酶(NAD(P)+、NAD(P)H)作为氧化剂或还原剂直接参与反应。然而,NAD(P)+和NAD(P)H的价格昂贵,通常比酶促反应所得产物要贵得多。因此,从技术经济性的角度来看,对辅酶进行再生并循环使用是很有必要的。此外,辅酶再生能够简化产物的分离,并有利于酶促反应向正反应方向移动。
目前已有的再生方法包括酶法、电化学法、光化学法等。酶法再生的优点在于反应速率快,选择性高,再生体系与合成体系兼容性好。但所用酶往往比较昂贵,且体系涉及两种或两种以上酶。酶的最适应用条件往往不一致,给过程优化带来困难。电化学法的再生能量来自于洁净的电能,与酶法相比成本低。电化学法中氧化还原电势的控制和反应过程的监测都较为容易。但是它与酶促合成体系的兼容性差,选择性低(尤其是对于还原态辅酶的再生),因此电化学法比较适合于氧化态辅酶的再生。光化学法再生辅酶利用的是廉价且洁净的光能,通常需要光敏剂、电子媒介物和电子供体。光化学再生法目前还未获得理想的效果,其再生效率很低,但具有广阔的潜在应用前景。
现有的NADH光化学再生法常采用金属络合物,如Ru(II)-三(二嘧啶)(Ru(bpy)3 2+)、Zn(II)-N-(四甲基吡啶)卟啉(Zn-TMPy4+)或半导体(TiO2、CdS)为光敏剂,在电子媒介物甲基紫晶(MV2+)和酶(铁氧化还原酶FDR或硫辛酰胺脱氢酶LipDH)存在下将NAD+还原为NADH。这些方法都存在着严重的不足:光敏剂Ru(bpy)3 2+和Zn-TMPy4+在光体系下极不稳定,易发生光降解;TiO2虽然在光体系下很稳定,而且无毒、价格便宜,但TiO2是宽禁带半导体,只能被波长较短的紫外光(λ<387nm)激发,而这部分光只占到太阳光的8%,能量利用率低;CdS虽然能够被可见光激发,但它在光体系下易发生光腐蚀;电子媒介物MV2+是有毒物质,容易污染产物,且MV+具有很强的还原性,不仅能将NAD+还原,在有些情况下还能将酶促合成的产物还原。将无机半导体颗粒CdS直接与氢化酶的活性中心相连接,使电子直接在酶与半导体间传递虽然可以避免使用甲基紫晶,但氢化酶价格昂贵且不稳定,而且将CdS与其活性中心相连的反应过程复杂。此外,上述方法都需要有酶的参与,从而再生的成本较高。
发明内容
本发明的目的在于提供一种辅酶NADH的光化学再生方法。该方法过程简单,再生成本较低。
本发明是通过下述技术方案实现的。以可见光或紫外光为光源,实现辅酶NADH的光化学再生方法,其特征在于:以1mol辅酶NAD+为基准,加入1~5mol的水、抗坏血酸、甲酸钠、EDTA或巯基乙醇电子供体,加入0.4~2.5mol的铑金属络合物[Cp*Rh(bpy)(H2O)],加入含碳量为18.3~49.2%的100~600mol的TiO2光催化剂,在温度25~37℃,pH值在6.5~7.5条件下,反应得到NADH。
本发明提出的光化学再生NADH的优点在于:含碳的TiO2能吸收可见光,与掺杂贵金属(Mo、Co、Pt)以降低TiO2激发能的方法相比,掺碳的方法更为简单,成本较低,是一种新型材料,此前从未用于NADH的再生;NADH的光化学再生在可见光照射下进行,能量利用率高,而且避免了紫外光对酶的影响;不需要有毒电子媒介物甲基紫晶的参与;不需要酶的参与,不仅降低了成本,而且避免了再生酶与合成酶最适条件不同而使体系难以控制的弊病。
附图说明
图1为NADH纯品的质谱图。
图2为NAD+纯品的质谱图。
图3为反应产物混合物的质谱图,图3中丰度在710.2处为产物NADH的特征峰。
具体实施方式
实施例一
分别称取80mg含碳量分别为0、18.3%、27.5%、39.7%和49.2%的五种TiO2催化剂,在T=37℃、pH=6.5下进行光照实验,[Cp*Rh(bpy)(H2O)]2+起始浓度为0.2mM,NAD+起始浓度0.2mM,反应总体积为50mL,反应进行11小时。
(1)在λ≤365nm(紫外光)光照下反应。
(2)在λ≥400nm(可见光)光照下反应。
产物NADH由质谱进行定性测量,NADH的特征峰为733.2、732.3和710.2;由于NADH在340nm处有强吸收,因此NADH的浓度由紫外-可见分光光度计测量。每次取样0.6mL,稀释至3mL后在紫外-可见分光光度计上测量340nm处的吸光度。
实施例二
称取80mg含碳量49.2%的TiO2样品,在λ≥400nm(可见光)光照下反应,反应体积为50mL。通过测量反应10h后NAD+的转化率,考察了pH值、反应温度、NAD+浓度、[Cp*Rh(bpy)(H2O)]2+浓度等反应条件对反应转化率的影响。反应条件及NAD+转化率列于下表:
表1反应体系pH值对NAD+转化率的影响
序号 | pH | T/℃ | NAD+浓度/mM | 铑络合物浓度/mM | NAD+转化率% |
12345 | 6.06.57.07.58.0 | 3131313131 | 0.20.20.20.20.2 | 0.20.20.20.20.2 | 39.925.817.814.311.2 |
表2温度对NAD+转化率的影响
序号 | pH | T/℃ | NAD+浓度/mM | 铑络合物浓度/mM | NAD+转化率% |
123 | 6.56.56.5 | 252831 | 0.20.20.2 | 0.20.20.2 | 11.217.025.8 |
45 | 6.56.5 | 3437 | 0.20.2 | 0.20.2 | 39.057.4 |
表3NAD+浓度对NAD+转化率的影响
序号 | pH | T/℃ | NAD+浓度/mM | 铑络合物浓度/mM | NAD+转化率% |
12345 | 6.56.56.56.56.5 | 3131313131 | 0.10.20.30.40.5 | 0.20.20.20.20.2 | 19.825.830.533.334.2 |
表4[Cp*Rh(bpy)(H2O)]2+浓度对NAD+转化率的影响
序号 | pH | T/℃ | NAD+浓度/mM | 铑络合物浓度/mM | NAD+转化率% |
12345 | 6.56.56.56.56.5 | 3131313131 | 0.20.20.20.20.2 | 0.10.20.30.40.5 | 15.725.834.138.940.9 |
本发明采用含碳TiO2和铑金属络合物为催化剂,以可见光或紫外光为光源,实现了辅酶NADH的再生,实验中,NAD+的转化率可达到57.4%。
Claims (1)
1.一种辅酶NADH的光化学再生方法,该方法是以可见光或紫外光为光源,实现辅酶NADH的光化学再生,其特征在于:以1mol辅酶NAD+为基准,加入1~5mol的水、抗坏血酸、甲酸钠、EDTA或巯基乙醇电子供体,加入0.4~2.5mol的铑合金络合物,加入含碳量为18.3~49.2%的100mol的TiO2光催化剂,在温度25~37℃,pH值在6.5~7.5条件下,反应得到NADH。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 200410020227 CN1252255C (zh) | 2004-08-03 | 2004-08-03 | 辅酶nadh的光化学再生方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 200410020227 CN1252255C (zh) | 2004-08-03 | 2004-08-03 | 辅酶nadh的光化学再生方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1597940A CN1597940A (zh) | 2005-03-23 |
CN1252255C true CN1252255C (zh) | 2006-04-19 |
Family
ID=34663178
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 200410020227 Expired - Fee Related CN1252255C (zh) | 2004-08-03 | 2004-08-03 | 辅酶nadh的光化学再生方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1252255C (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2766499C (en) * | 2009-06-29 | 2018-05-22 | Bayer Bioscience N.V. | Improvement of yield in crop plants through selection of epigenetically modified populations |
ITMI20131135A1 (it) * | 2013-07-05 | 2015-01-06 | Catalisi Innovativa Per Il Riciclo Del Carbonio E | Fotocatalizzatore per la riduzione nel visibile di nad+ a nadh in un processo ibrido chemo-enzimatico di riduzione di co2 a metanolo |
CN110327926B (zh) * | 2019-06-18 | 2023-07-14 | 中国石油大学(华东) | 一种铁离子掺杂二氧化钛纳米材料的制备方法 |
CN114192173A (zh) * | 2021-11-05 | 2022-03-18 | 五邑大学 | 一种用于nadh再生的光催化剂及其制备方法和应用 |
-
2004
- 2004-08-03 CN CN 200410020227 patent/CN1252255C/zh not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN1597940A (zh) | 2005-03-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Guo et al. | Construction of highly efficient and stable ternary AgBr/Ag/PbBiO2Br Z-scheme photocatalyst under visible light irradiation: performance and mechanism insight | |
Le et al. | Carbon dots sensitized 2D-2D heterojunction of BiVO4/Bi3TaO7 for visible light photocatalytic removal towards the broad-spectrum antibiotics | |
Xiao et al. | Synthesis of EDTA-bridged CdS/g-C3N4 heterostructure photocatalyst with enhanced performance for photoredox reactions | |
Shi et al. | Magnetically retrievable CdS/reduced graphene oxide/ZnFe2O4 ternary nanocomposite for self-generated H2O2 towards photo-Fenton removal of tetracycline under visible light irradiation | |
Wang et al. | Facile fabrication of direct Z-scheme MoS2/Bi2WO6 heterojunction photocatalyst with superior photocatalytic performance under visible light irradiation | |
Dou et al. | The simultaneous promotion of Cr (VI) photoreduction and tetracycline removal over 3D/2D Cu2O/BiOBr S-scheme nanostructures | |
Zheng et al. | Synthesis of Fe3O4@ CdS@ CQDs ternary core–shell heterostructures as a magnetically recoverable photocatalyst for selective alcohol oxidation coupled with H2O2 production | |
Wu et al. | Surfactants-assisted preparation of BiVO4 with novel morphologies via microwave method and CdS decoration for enhanced photocatalytic properties | |
CN101327968B (zh) | 转盘负载催化剂光电催化降解有机物反应器及降解方法 | |
Ni et al. | Peroxymonosulfate activation by Co3O4/SnO2 for efficient degradation of ofloxacin under visible light | |
Jo et al. | In situ phase transformation synthesis of unique Janus Ag2O/Ag2CO3 heterojunction photocatalyst with improved photocatalytic properties | |
Kong et al. | Efficient production of acetate from inorganic carbon (HCO3–) in microbial electrosynthesis systems incorporating Ag3PO4/g-C3N4 anaerobic photo-assisted biocathodes | |
Sui et al. | A biocathode-driven photocatalytic fuel cell using an Ag-doped TiO2/Ti mesh photoanode for electricity generation and pollutant degradation | |
CN101798126A (zh) | 一种光电催化处理工业废水的方法 | |
CN108793422A (zh) | 光催化电极耦合微生物燃料电池促进焦化废水处理方法 | |
CN104707658A (zh) | 一种Pd/金属有机骨架化合物催化剂及其制备方法和应用 | |
CN1806915A (zh) | 氧化钴负载的钒酸铋复合光催化剂及其制备方法 | |
Li et al. | Fabrication of 0D/1D Bi2MoO6/Bi/TiO2 heterojunction with effective interfaces for boosted visible-light photocatalytic degradation of tetracycline | |
CN108855062A (zh) | 一种Au-TiO2多刺状异质结构复合纳米颗粒光催化剂及其制备方法 | |
Lu et al. | Photocatalytic activity and mechanism of cerium dioxide with different morphologies for tetracycline degradation | |
Liang et al. | Hybridizing electron-mediated H5PMo10V2O40 with CdS/g-C3N4 for efficient photocatalytic performance of Z-scheme heterojunction in wastewater treatment | |
CN1252255C (zh) | 辅酶nadh的光化学再生方法 | |
CN110354845A (zh) | 一种碳纳米点修饰的钨酸铋光催化剂及其制备方法和应用 | |
CN110902804A (zh) | 利用热辅助苯醌废水催化过硫酸盐去除废水中污染物的方法 | |
Guo et al. | Enhanced photocatalytic nitrogen fixation of etched Ag-doped PM-CdS catalyst under visible light irradiation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C19 | Lapse of patent right due to non-payment of the annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |