CN1242429C - 具有偏置磁层结构的磁场元件 - Google Patents

具有偏置磁层结构的磁场元件 Download PDF

Info

Publication number
CN1242429C
CN1242429C CNB018004687A CN01800468A CN1242429C CN 1242429 C CN1242429 C CN 1242429C CN B018004687 A CNB018004687 A CN B018004687A CN 01800468 A CN01800468 A CN 01800468A CN 1242429 C CN1242429 C CN 1242429C
Authority
CN
China
Prior art keywords
layer structure
magnetic
field element
layer
biasing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB018004687A
Other languages
English (en)
Other versions
CN1364300A (zh
Inventor
M·F·吉利斯
K·-M·H·伦森
A·E·T·奎珀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips Electronics NV filed Critical Koninklijke Philips Electronics NV
Publication of CN1364300A publication Critical patent/CN1364300A/zh
Application granted granted Critical
Publication of CN1242429C publication Critical patent/CN1242429C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3268Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn
    • H01F10/3272Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn by use of anti-parallel coupled [APC] ferromagnetic layers, e.g. artificial ferrimagnets [AFI], artificial [AAF] or synthetic [SAF] anti-ferromagnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/093Magnetoresistive devices using multilayer structures, e.g. giant magnetoresistance sensors
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • G11B5/3909Arrangements using a magnetic tunnel junction
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3254Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being semiconducting or insulating, e.g. for spin tunnel junction [STJ]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3263Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being symmetric, e.g. for dual spin valve, e.g. NiO/Co/Cu/Co/Cu/Co/NiO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3268Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • H10B61/10Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having two electrodes, e.g. diodes or MIM elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B2005/3996Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects large or giant magnetoresistive effects [GMR], e.g. as generated in spin-valve [SV] devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Power Engineering (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Hall/Mr Elements (AREA)
  • Magnetic Heads (AREA)
  • Thin Magnetic Films (AREA)
  • Semiconductor Memories (AREA)

Abstract

一种磁场元件,该元件被提供有第一磁层结构(7)、具有基本上为固定磁化(M11)方向的第二磁层结构(11)、以及将第一磁层结构和第二磁层结构彼此分开的隔离层结构(9)的层叠。该磁场元件还被提供有将纵向偏置场施加给第一磁层结构的偏置装置,该偏置装置包括位于第一磁层结构对面的薄偏置磁层结构(3)。偏置磁层结构提供垂直于第二磁层结构磁化方向的磁耦合场分量(M3)并且被非磁层结构(5)从第一磁层结构分隔开。第一磁层结构被铁磁耦合到偏置磁层结构。磁场元件适合于很高密度的应用。

Description

具有偏置磁层结构的磁场元件
本发明涉及磁场元件,该磁场元件被提供了第一磁层结构、具有基本上为固定磁化方向的第二磁层结构,以及将第一磁层结构和第二磁层结构彼此分开的隔离层结构的层叠,该磁场元件还被提供了用于将纵向偏置场施加给第一磁层结构的偏置装置。
US-A6,023,359公开了用于传感外部磁场的磁隧道结磁阻传感器。磁隧道结器件包括被绝缘隧道势垒层相互分开的固定铁磁层和传感铁磁层,并且它是建立在自旋-极化电子隧道现象的基础上。当传感电流从一铁磁层到另一铁磁层垂直穿过磁隧道结时,磁隧道结器件的响应通过测量磁隧道结的电阻被确定。磁隧道结器件容易遇到维持单个磁畴态的问题。移动畴壁会引起噪声并且降低信噪比。当需要线性响应时,这会导致传感器的不可再现的响应。由于这种问题,公知的磁隧道结磁阻传感器在与传感铁磁层进行静磁耦合的磁隧道结层叠中被提供了偏置铁磁层。非磁电导隔离层被呈现在偏置层与层叠中的其它层之间,这样就防止了偏置层与传感铁磁层之间的铁磁耦合。来自偏置铁磁层的去磁化场与传感铁磁层的边缘进行静磁耦合。这样,其中的隔离层足够厚,传感层与偏置层的磁矩通过反铁磁耦合场相互进行磁耦合,该反铁磁耦合场由传感层与偏置层边缘的静磁耦合产生。
公知传感器的缺点在于具有偏置层的传感层的磁耦合角度依赖于元件的几何结构,特别是其中的关联层。此外,为了抑制可能的铁磁耦合,反铁磁静磁耦合需要厚的隔离层,但是,这样厚的层会在面内电流的情况中引进不希望的电分流。这种影响使得反铁磁耦合机制实际上不适合于用在GMR或AMR元件中。在本文中,请注意公开的测量仅涉及磁隧道结磁阻传感器。
本发明的一个目的是改善开始段落中所描述的那种磁场元件,用这种方式,由偏置装置感应的磁耦合相对地独立于场元件的几何结构。
根据本发明的磁场元件可实现此目的,该磁场元件被提供了第一磁层结构、具有基本上为固定磁化方向的第二磁层结构、以及将第一磁层结构和第二磁层结构彼此分开的隔离层结构的层叠,磁场元件还被提供了用于将纵向偏置场施加给第一磁场层结构的偏置装置,其中偏置装置包括位于第一磁层结构对面的偏置磁层结构,该偏置磁层结构提供了一个垂直于第二磁层结构的磁化方向的磁耦合场分量,并且被非磁层结构从第一磁层结构分开,从而第一磁层结构主要被铁磁耦合到偏置磁层结构。纵向偏置场被垂直地导向第二磁层结构的固定磁化方向。施加的测量通过非磁层结构在偏置磁层结构与第一磁层结构之间引起磁耦合。在磁场元件的制造过程中,偏置磁层结构可利用一种已经存在的技术的简单的方法来实现。在偏置磁层结构的形成过程中,应施加磁场,其在第二磁层结构的形成期间使施加的场的角度大于0°并小于180°。
用在场元件中的偏置装置可用于不同传感原理的传感器中。根据本发明的磁场元件可以是一种自旋隧道结元件,在该情况中,隔离层结构包括绝缘材料的隧道势垒层,如Al2O3,或者巨磁阻类型的自旋阀(spin-valve)元件。在两种情况中,一个很重要的磁特征是第一磁层结构的磁滞。当该层结构的磁矩由磁源例如一通过的磁盘的磁场来进行排列时,就可实现与第二磁层结构磁矩的反平行排列。这种影响导致电阻的改变。为了防止在磁场元件的输出端失真,必须防止在所述磁排列过程中无规律地穿过第一磁层结构移动的畴壁的引入。如果磁滞存在于第一磁层结构中,就会引进畴壁。已经证实在根据本发明的传感器中的所述磁滞明显被降低甚至完全被消除。
在根据本发明的磁场元件中,磁耦合场,即纵向偏置场,存在于偏置磁层结构与第一磁层结构之间。引起的耦合主要是铁磁的,即铁磁耦合超过可能存在的反铁磁耦合起支配作用。这种支配可通过精心地将隔离层结构的厚度选择为关联层结构的铁磁材料的函数来得到。铁磁耦合被限定在一个大的面积上,即原则上为偏置层结构和第一层结构的相对面,发生在很局部的水平上,即为结构的颗粒尺寸的数量级。更精确的,由于磁层结构的起伏或者粗糙,因此需要的铁磁耦合要通过利用铁磁耦合来获得。这种耦合也被称为橙皮耦合或者拓扑耦合。在此发明中,偏置磁层结构和第一磁层结构的相关起伏导致铁磁耦合,所述的结构被具有足够厚度的非磁隔离层结构分开。在平行磁化的情况中,磁通穿过隔离结构从该磁结构到其它的结构;这使得具有平行磁化的情形在反平行配置上起积极的有利作用。
通过使隔离层结构充分薄,例如在将Ta用作隔离材料的情况下层厚度一般小于约3纳米,以及通过使偏置层结构中铁磁层的饱和磁化选择得足够大,可确保铁磁耦合超过静磁反铁磁耦合而起支配作用,因此铁磁耦合相对独立于场元件的几何结构并且至少元件的大部分是均匀的。
上述测量允许施加比使用其它偏置装置可能施加的更低的磁场。由于在微观水平的相互作用,铁磁耦合在场元件的主要部分是均匀的并且几乎不依赖于磁场元件的尺寸和环境:此外,该偏置装置具有简单的性质,并且为高密度应用提供了一种可行的解决办法。铁磁耦合的一个可替代机制可能是利用夹层交换耦合,在该情况中,层的厚度必须要很仔细地加以选择。
通常,第一磁层结构将具有易磁化轴,其垂直于第二磁层结构的固定磁化方向。第一磁层结构通常包括铁磁材料的铁磁层,如NiFe合金或者CoFe合金,铁磁层是所谓的自由层。第二磁层结构可包括铁磁材料的所谓被钉扎层,如NiFe合金或者CoFe合金,以及交换偏置材料的所谓钉扎层,如反铁磁材料,例如IrMn合金。
注意,US-A5,729,410公开了一种用作传感器的公知的磁场元件,该传感器被用于读取磁记录的数据并且具有一固定的铁磁层和一传感铁磁层,其被形成在绝缘隧道势垒层的对面。硬偏置铁磁材料的两个层部分,特别是CoPtCr合金,被置于接近传感铁磁层的侧边缘但与其隔开。所述层部分与传感铁磁层电绝缘但与之进行静磁耦合,并用来一对该传感层的磁矩进行纵向偏置。该公知传感器的缺点在于硬偏置材料的层部分难于控制,并且只对大磁道宽度真正实用,磁边宽度中的这种磁体是离得很开的并且引起的场既具有低的值,如五至十奥斯特,而且还是均匀的。它对很高密度的记录不是一种合适的解决办法。公知传感器的另一缺点在于所述层部分由一种在该传感器中其它地方都不使用的材料制成。这在沉积系统中需要额外的源。此外,在制造过程需要额外的掩膜步骤以限定所述层部分的结构。此外,硬磁材料经常显示出强的温度依赖性。
根据本发明的磁场元件的一实施例,其特征在于偏置磁层结构具有固定的磁化方向,其相对于第二磁层结构的磁化方向具有最小45°和最大135°的角度。在此优选实施例中,该偏置磁层结构对第一磁层结构具有显著的影响,在此意义上,第一磁层结构中的磁滞基本被降低。在该实施例中实现了最大的纵向偏置场,其特征在于偏置磁层结构的磁化方向相对于第二磁层结构的磁化方向具有基本上为90°的角度。
在一个根据本发明的磁场元件的实施例中,非磁层结构包括材料Cu、Ru、和Ta和/或非磁氧化物如Al2O3中的一种或多种材料的一层。通过调节该层的厚度,可调整纵向偏置场,例如从很厚的Cu层的大约5奥斯特到很薄的Cu层的几百奥斯特。Ta是优选的,特别是在自旋阀(spin-valve)元件中,由于它的高电阻系数。此外,Ta产生需要的结构。
根据本发明的磁场元件的一实施例,其特征在于偏置磁层结构包括被钉扎层结构和用于钉扎被钉扎层结构的钉扎层结构。该被钉扎层结构优选地包括磁材料的铁磁层,例如NiFe合金、Co或CoFe合金。
最后提到的根据本发明的磁场元件的实施例,其特征优选地还在于钉扎层结构包括一层交换偏置材料,如反铁磁材料,例如FeMn合金,IrMn合金或者铁磁材料,例如TbCo合金或TbFeCo合金。
如果需要被钉扎层结构可包括由一层非磁材料分开的两个铁磁层。该结构可能是例如两层铁磁材料,如NiFe合金或CoFe合金,以及合适厚度的并为非磁材料如Ru、Rh或Cu的介入层。该介入层导致铁磁材料层之间的反铁磁耦合。这样一种包括由非磁材料的介入层分开的铁磁材料层的结构通常被称为人工反铁磁性物质(AAF)。
根据本发明的磁场元件的一实施例的特征在于偏置磁层结构包括由一层非磁材料分隔开的两个铁磁层。在此实施例中,磁杂散场可被最小化。
根据本发明的磁场元件的一实施例的特征在于被钉扎层结构包括由一层非磁材料分隔开的两个铁磁层,铁磁层中的一层靠近钉扎层结构的交换偏置材料层。在此实施例中,偏置磁层结构的磁稳定性进一步得到改善。
本发明还涉及包括磁场元件的自旋隧道结器件。根据本发明的自旋隧道结器件被提供有根据本发明的磁场元件,包括例如绝缘材料如Al2O3的隧道势垒层的隔离层结构。
本发明还涉及包括磁场元件的巨磁阻器件。根据本发明的巨磁阻器件包括根据本发明的磁场元件。绝缘材料如Al2O3,或高电阻率的材料如Ta、W或Mo被优选作为用于非磁层的材料。
两种上面提到的器件可被用作传感器,例如用于汽车应用的传感器,或者磁头,如用于与磁记录或信息介质配合的读出头。
本发明还涉及用于从磁信息载体中读取信息的系统,该系统包括根据本发明的磁场元件或者根据本发明的器件中之一。
本发明还涉及包括根据本发明的磁场元件的磁存储器以及包括这种存储器的电子电路。
参考权利要求,注意在权利要求的集合中所限定的不同特征特点可能结合出现。此外,要注意无论表述“layer structure(层结构)”用在文件何处,它指单层或者层叠。
上面提到的以及本发明的其它方面是显而易见的并且将通过非限制性的实例,参考此后所述的实施例进行阐明。
在附图中:
图1是根据本发明的磁场元件一实施例的示意性截面视图,
图2是根据本发明的巨磁阻类型的自旋阀(spin-valve)元件一实施例的示意性截面视图,
图3是根据本发明的自旋隧道结器件一实施例的示意性截面视图,
图4给出了磁场传感器的一实施例的示意性透视图,其中磁场传感器被提供有根据本发明的磁场元件。
图5示意性地示出了根据本发明的系统的一实施例,
图6是根据本发明的磁存储器一实施例的示意性截面视图,以及
图7给出了根据本发明的电子电路的示意性视图。
注意相同的参考符号将被用来指明几个实施例的相应部分。
示于图1中的磁场元件被提供有由衬底1支撑的基本平行的层结构的层叠。该层结构的层叠连续地包括偏置磁层结构3、薄的非磁层结构5、第一磁层结构7、隔离层结构9和第二磁层结构11。衬底1可包括非磁、非导电材料如硅。隔离层结构9夹在第一磁层结构7和第二磁层结构11中间,而非磁层结构5夹在偏置层结构3和第一磁层结构7中间。层结构3、5、7、9和11中的每一个可包括单层或者多层。第二磁层结构11在层结构11自身的平面中具有固定的磁化M11方向。磁化M11的方向在磁场元件的制造过程中通过在形成、具体地是在沉积第二磁层结构11的过程中施加合适的磁场已被引入。
位于第一磁层结构7对面的偏置磁层结构3具有磁化M3,其提供了平行于磁化M3并垂直于第二磁层结构11的磁化M11方向的磁耦合场分量。磁化M3的方向在形成通过施加合适的磁场过程中具体地是在沉积偏置磁层结构3的已被实现,该磁场与在第二磁层结构11的形成过程中所施加的场的角度在0°至180°之间。磁化M3在偏置磁层结构3和第一磁层结构7之间经过非磁层结构5产生铁磁耦合,其导致非常局部的耦合。优选地,偏置磁层结构3的磁化M3具有固定的方向,其相对于第二磁层结构11的磁化M11的方向具有最小45°和最大135°的角度。如果所述偏置磁层结构的磁化M3的方向相对于磁化M11的方向具有90°的角度,就会获得最大磁耦合场分量。第一磁层结构7具有易磁化轴A7,其平行于第二磁层结构11的固定的磁化M11方向。作为选择,在特定的应用中,选择易磁化轴A7垂直于固定的磁化M11方向或许是有利的。第一磁层结构7可包括包含铁磁材料例如NixFe1-x的所谓自由层。第二磁层结构11可包括铁磁材料例如CoxFe1-x的所谓被钉扎层,或者交换偏置材料如反铁磁材料例如Fe50Mn50的所谓被钉扎层。
根据本发明的磁场元件可被用在自旋隧道结器件中,在该情况中,隔离层结构9包括电绝缘材料例如Al2O3的隧道势垒层,或者可被用在巨磁阻器件中,在该情况中,隔离层结构9包括一非磁材料例如Cu的层。
具有小于3纳米厚度的薄非磁层结构5可包括一层或多层非磁材料,如元素Cu、Ru或Ta,或者氧化物Al2O3或其它合适的材料。偏置层结构3可包括被钉扎层结构和钉扎层结构的层叠。被钉扎层结构优选地包括由一层非磁材料如Cu分隔开的两层铁磁材料,如NiFe合金,而钉扎层结构优选地包括一层交换偏置材料,如反铁磁材料,例如FeMn合金,或者合适的铁磁材料,例如TbCo合金。优选地,铁磁层中的一层邻近交换材料层。作为选择,偏置层结构3可包括由一层非磁材料分开的两铁磁层。
示于图2中的巨磁阻器件可包括一衬底并且包括提供有一层结构的磁场元件,其中该层叠结构包括偏置层结构3、薄的非磁层结构5、第一磁层结构7、隔离层结构9、第二磁层结构11。偏置层结构3具有磁化M3,其垂直于第二磁层结构11的固定磁化M11方向。偏置磁层3包括被钉扎层3B和用于钉扎结构3B的钉扎层结构3A。钉扎层3A包括一交换偏置材料层,在此实施例中为IrMn合金。在此实施例中,被钉扎层结构3B包括由非磁材料的介入层3B3分开的两铁磁材料层3B1和3B2。在此实施例中,铁磁材料为CoFe合金而非磁材料为Ru。层3B13B2和3B3的结构在铁磁层3B1和3B2之间导致反铁磁耦合。在此实施例中,具有2纳米厚度的非铁磁层结构5包括一个Ta层。第一磁层结构7包括铁磁材料例如NiFe合金的一自由层。隔离层结构9包括一个Cu层。第二磁层结构11是具有被钉扎层11A和钉扎层11B的被钉扎结构。第二磁层结构11具有固定的磁化M11方向而偏置层结构3提供了垂直于磁化M11方向的磁耦合场分量。
示于图3中的自旋隧道结器件包括提供在衬底1上的磁场元件,并且提供了偏置层结构3、非磁层结构5、第一磁层结构7、隔离层结构9和第二磁层结构11的层叠。隔离层结构9包括非磁的电绝缘材料如合适的氧化物例如Al2O3的隧道势垒层。如在已描述的实施中可包括层结构3、5和11。第一磁层结构7主要被铁磁耦合到偏置层结构3。
图4给出了磁场传感器的一部分。该传感器包括具有电连接100的变换器T。变换器T包括根据本发明的磁场元件的一实施例,例如图1至3所示的实施例中的一个。传感器包括磁通导向器102、104,其相对于变换器T被放置以便形成磁路。磁通导向器102、104具有形成传感器极面的端面102a、104a,磁隙106位于所述面之间。如果磁介质,如磁带、磁盘或磁卡从面102a、104a附近移过,则在该磁介质上磁存储的信息就会在上面提到的磁路中产生一个变化的磁通,该磁通也被馈给通过变换器T。变换器T将变化的磁通转换成电阻的变化,其可通过连接到电连接100的合适测量装置进行测量。这样一种传感器,也称为磁头,也可包括感应线圈,其可被用于磁介质上磁信息的记录中。
根据本发明的示于图5中的系统包括框架200和装配在框架200中用于承载盘形信息载体204的可旋转主轴202,盘形信息载体如硬盘或磁光盘。信息载体204可以是集成的载体或者是可移动的载体。系统还包括承载根据本发明的磁场传感器208的摆臂206。动力被提供用于驱动主轴202和臂206。在工作状态,传感器208扫描旋转的信息载体204,传感器被置于信息载体204的对面并且基本上相对于载体204作径向运动。所示系统是一种数据存储系统,但也可以是例如音频和/或视频系统。根据本发明的系统也可以是用于从磁带或磁卡中读取信息的系统。
在图6中,根据本发明的自旋隧道结器件300被集成在半导体器件302的顶部,如晶体管,例如Si晶体管,或二极管,例如GaAs二极管,形成一个高密度非易失性存储器的一个单元。
图7示出了用于高密度MRAM的平面布置图400。该平面布置图400包括存储器单元,存储器单元包括选择器件402,例如二极管或晶体管,以及根据本发明以自旋隧道结器件形式的或者根据本发明巨磁阻器件形式的磁部件404。

Claims (14)

1.一种磁场元件,该元件被提供有第一磁层结构、具有为固定磁化方向的第二磁层结构、以及将第一磁层结构和第二磁层结构相互分开的隔离层结构的层叠,该磁场元件还被提供有将纵向偏置场施加给第一磁层结构的偏置装置,其中偏置装置包括位于第一磁层结构对面的偏置磁层结构,该偏置磁层结构提供垂直于第二磁层结构磁化方向的磁耦合场分量并且被非磁层结构从第一磁层结构中分开,由此第一磁层结构被铁磁耦合到偏置磁层结构。
2.根据权利要求1的磁场元件,其特征在于偏置磁层结构具有固定的磁化方向,其相对于第二磁层结构的磁化方向具有最小45°和最大135°的角度。
3.根据权利要求2的磁场元件,其特征在于偏置磁层结构的磁化方向相对于第二磁层结构的磁化方向具有为90°的角度。
4.根据权利要求1的磁场元件,其特征在于非磁层结构包括一层Ta。
5.根据权利要求1的磁场元件,其特征在于偏置磁层结构包括被钉扎的层结构和用于钉扎被钉扎层结构的钉扎层结构。
6.根据权利要求5的磁场元件,其特征在于钉扎层结构包括一层交换偏置材料。
7.根据权利要求5的磁场元件,其特征在于被钉扎层的结构包括由一层非磁材料分隔开的两个铁磁层。
8.根据权利要求1的磁场元件,其特征在于偏置磁层结构包括由一层非磁材料分隔开的两个铁磁层。
9.根据权利要求6或7的磁场元件,其特征在于被钉扎层结构包括由一层非磁材料分隔开的两个铁磁层,铁磁层中的一层靠近钉扎层结构的交换偏置材料层。
10.包括根据前面的权利要求中任何一项权利要求的磁场元件的自旋隧道结器件,所述隔离层结构包括隧道势垒层。
11.包括根据权利要求1至9中任何一项权利要求的磁场元件的巨磁阻器件。
12.一种用于从磁信息载体中读取信息的系统,该系统包括根据权利要求1至9中任何一项权利要求的磁场元件或者根据权利要求10或11的所述器件。
13.包括根据权利要求1至9中任何一项权利要求的磁场元件的磁存储器。
14.包括根据权利要求13所述存储器的电子电路。
CNB018004687A 2000-03-09 2001-02-23 具有偏置磁层结构的磁场元件 Expired - Fee Related CN1242429C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP00200830 2000-03-09
EP00200830.8 2000-03-09

Publications (2)

Publication Number Publication Date
CN1364300A CN1364300A (zh) 2002-08-14
CN1242429C true CN1242429C (zh) 2006-02-15

Family

ID=8171169

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB018004687A Expired - Fee Related CN1242429C (zh) 2000-03-09 2001-02-23 具有偏置磁层结构的磁场元件

Country Status (7)

Country Link
US (1) US6438026B2 (zh)
EP (1) EP1200972A1 (zh)
JP (1) JP2003526913A (zh)
KR (1) KR20020019017A (zh)
CN (1) CN1242429C (zh)
TW (1) TW495745B (zh)
WO (1) WO2001067469A1 (zh)

Families Citing this family (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3817399B2 (ja) * 1999-12-24 2006-09-06 株式会社日立グローバルストレージテクノロジーズ 磁気抵抗センサー
US6791805B2 (en) * 2001-05-03 2004-09-14 Seagate Technology Llc Current-perpendicular-to-plane spin valve reader with reduced scattering of majority spin electrons
US6744086B2 (en) 2001-05-15 2004-06-01 Nve Corporation Current switched magnetoresistive memory cell
US6631055B2 (en) * 2001-06-08 2003-10-07 International Business Machines Corporation Tunnel valve flux guide structure formed by oxidation of pinned layer
WO2002103798A1 (fr) 2001-06-19 2002-12-27 Matsushita Electric Industrial Co., Ltd. Memoire magnetique et procede de commande associe, ainsi qu'appareil de memoire magnetique comprenant celle-ci
US6757144B2 (en) * 2002-01-18 2004-06-29 International Business Machines Corporation Flux guide read head with in stack biased current perpendicular to the planes (CPP) sensor
US6865062B2 (en) * 2002-03-21 2005-03-08 International Business Machines Corporation Spin valve sensor with exchange biased free layer and antiparallel (AP) pinned layer pinned without a pinning layer
US6856493B2 (en) * 2002-03-21 2005-02-15 International Business Machines Corporation Spin valve sensor with in-stack biased free layer and antiparallel (AP) pinned layer pinned without a pinning layer
US6741432B2 (en) * 2002-03-21 2004-05-25 International Business Machines Corporation Current perpendicular to the planes (CPP) spin valve sensor with in-stack biased free layer and self-pinned antiparallel (AP) pinned layer structure
JP2003281705A (ja) * 2002-03-25 2003-10-03 Hitachi Ltd 磁気ヘッド、磁気ヘッドジンバルアッセンブリ、磁気記録再生装置及び磁性メモリ
US6801412B2 (en) 2002-04-19 2004-10-05 International Business Machines Corporation Method and apparatus for improved pinning strength for self-pinned giant magnetoresistive heads
US7170721B2 (en) * 2002-06-25 2007-01-30 Quantum Corporation Method of producing flux guides in magnetic recording heads
US6781798B2 (en) 2002-07-15 2004-08-24 International Business Machines Corporation CPP sensor with dual self-pinned AP pinned layer structures
US6654278B1 (en) * 2002-07-31 2003-11-25 Motorola, Inc. Magnetoresistance random access memory
US6677631B1 (en) * 2002-08-27 2004-01-13 Micron Technology, Inc. MRAM memory elements and method for manufacture of MRAM memory elements
US6881993B2 (en) * 2002-08-28 2005-04-19 Micron Technology, Inc. Device having reduced diffusion through ferromagnetic materials
US6937448B2 (en) * 2002-11-13 2005-08-30 Hitachi Global Storage Technologies Netherlands, B.V. Spin valve having copper oxide spacer layer with specified coupling field strength between multi-layer free and pinned layer structures
US6947264B2 (en) * 2002-12-06 2005-09-20 International Business Machines Corporation Self-pinned in-stack bias structure for magnetoresistive read heads
KR100499136B1 (ko) * 2002-12-14 2005-07-04 삼성전자주식회사 전자 스핀의존 산란을 이용한 자성매체 및 자성매체정보재생장치 및 재생방법
US6829161B2 (en) * 2003-01-10 2004-12-07 Grandis, Inc. Magnetostatically coupled magnetic elements utilizing spin transfer and an MRAM device using the magnetic element
US6867953B2 (en) * 2003-07-02 2005-03-15 Hitachi Global Storage Technologies Netherlands B.V. Self-pinned in-stack bias structure with improved pinning
US6920062B2 (en) * 2003-10-14 2005-07-19 International Business Machines Corporation System and method for reading data stored on a magnetic shift register
US20050105328A1 (en) * 2003-11-17 2005-05-19 Ho Chiahua Perpendicular MRAM with high magnetic transition and low programming current
US6967863B2 (en) 2004-02-25 2005-11-22 Grandis, Inc. Perpendicular magnetization magnetic element utilizing spin transfer
US7301735B2 (en) * 2004-03-15 2007-11-27 Hitachi Global Technologies Netherlands B.V. Higher flip threshold structure for in-stack bias layer
US7339818B2 (en) * 2004-06-04 2008-03-04 Micron Technology, Inc. Spintronic devices with integrated transistors
US7576956B2 (en) * 2004-07-26 2009-08-18 Grandis Inc. Magnetic tunnel junction having diffusion stop layer
US7290325B2 (en) * 2004-08-13 2007-11-06 Quantum Corporation Methods of manufacturing magnetic heads with reference and monitoring devices
US7446986B2 (en) * 2004-08-31 2008-11-04 Hitachi Global Storage Technologies Netherlands B.V. Magnetic tunnel junction with in stack biasing layer providing orthogonal exchange coupling
US7236386B2 (en) * 2004-12-04 2007-06-26 International Business Machines Corporation System and method for transferring data to and from a magnetic shift register with a shiftable data column
US7636223B2 (en) * 2005-01-10 2009-12-22 Hitachi Global Storage Technologies Netherlands B.V. Three terminal magnetic sensor having an in-stack longitudinal biasing layer structure and a self-pinned layer structure
US7710691B2 (en) * 2005-01-10 2010-05-04 Hitachi Global Storage Technologies Netherlands B.V. Three terminal magnetic sensor having an in-stack longitudinal biasing layer structure in the collector region and a pinned layer structure in the emitter region
US7259942B2 (en) * 2005-01-10 2007-08-21 Hitachi Global Storage Technologies Netherlands B.V. Three terminal magnetic sensor having an in-stack longitudinal biasing layer structure in the collector or emitter region
US7639459B2 (en) * 2005-01-10 2009-12-29 Hitachi Global Storage Technologies Netherlands B.V. Three terminal magnetic sensor having an in-stack longitudinal biasing layer structure
KR100647319B1 (ko) * 2005-02-05 2006-11-23 삼성전자주식회사 스핀 분극 전류를 이용한 멀티 비트 자기 메모리 소자와그 제조 및 구동 방법
US7285836B2 (en) * 2005-03-09 2007-10-23 Maglabs, Inc. Magnetic random access memory with stacked memory cells having oppositely-directed hard-axis biasing
US7443638B2 (en) * 2005-04-22 2008-10-28 Taiwan Semiconductor Manufacturing Company Ltd. Magnetoresistive structures and fabrication methods
US7751154B2 (en) * 2005-05-19 2010-07-06 Quantum Corporation Magnetic recording heads with bearing surface protections and methods of manufacture
US7518835B2 (en) * 2005-07-01 2009-04-14 Grandis, Inc. Magnetic elements having a bias field and magnetic memory devices using the magnetic elements
US7397638B2 (en) * 2005-07-22 2008-07-08 Hitachi Global Storage Technologies Netherlands B.V. Magnetoresistive sensor having an in stack bias structure with NiFeCr spacer layer for improved bias layer pinning
US7230845B1 (en) 2005-07-29 2007-06-12 Grandis, Inc. Magnetic devices having a hard bias field and magnetic memory devices using the magnetic devices
US7973349B2 (en) * 2005-09-20 2011-07-05 Grandis Inc. Magnetic device having multilayered free ferromagnetic layer
US7777261B2 (en) * 2005-09-20 2010-08-17 Grandis Inc. Magnetic device having stabilized free ferromagnetic layer
US7859034B2 (en) * 2005-09-20 2010-12-28 Grandis Inc. Magnetic devices having oxide antiferromagnetic layer next to free ferromagnetic layer
US7430135B2 (en) * 2005-12-23 2008-09-30 Grandis Inc. Current-switched spin-transfer magnetic devices with reduced spin-transfer switching current density
US20070246787A1 (en) * 2006-03-29 2007-10-25 Lien-Chang Wang On-plug magnetic tunnel junction devices based on spin torque transfer switching
US20070297220A1 (en) * 2006-06-22 2007-12-27 Masatoshi Yoshikawa Magnetoresistive element and magnetic memory
US7851840B2 (en) * 2006-09-13 2010-12-14 Grandis Inc. Devices and circuits based on magnetic tunnel junctions utilizing a multilayer barrier
WO2008130465A2 (en) * 2007-03-02 2008-10-30 Brookhaven Science Associates Nanodevices for spintronics methods of using same
US7957179B2 (en) * 2007-06-27 2011-06-07 Grandis Inc. Magnetic shielding in magnetic multilayer structures
US20090027948A1 (en) * 2007-07-24 2009-01-29 Manfred Ruehrig Integrated Circuits, Method of Programming a Cell, Thermal Select Magnetoresistive Element, Memory Module
US20090046502A1 (en) * 2007-08-16 2009-02-19 Northern Lights Semiconductor Corp. Metal Magnetic Memory Cell
US7982275B2 (en) * 2007-08-22 2011-07-19 Grandis Inc. Magnetic element having low saturation magnetization
US7894248B2 (en) * 2008-09-12 2011-02-22 Grandis Inc. Programmable and redundant circuitry based on magnetic tunnel junction (MTJ)
KR20100041155A (ko) * 2008-10-13 2010-04-22 삼성전자주식회사 저항성 메모리 소자
US8579203B1 (en) * 2008-12-19 2013-11-12 Dynamics Inc. Electronic magnetic recorded media emulators in magnetic card devices
FR2945147B1 (fr) * 2009-04-30 2012-03-30 Thales Sa Dispositif memristor a resistance ajustable grace au deplacement d'une paroi magnetique par transfert de spin et utilisation dudit memristor dans un reseau de neurones
US8580580B2 (en) 2010-04-01 2013-11-12 Seagate Technology Llc Magnetic element with varying areal extents
CN102270736B (zh) * 2010-06-01 2014-02-05 中国科学院物理研究所 一种用于磁敏传感器的磁性纳米多层膜及其制造方法
US8829901B2 (en) * 2011-11-04 2014-09-09 Honeywell International Inc. Method of using a magnetoresistive sensor in second harmonic detection mode for sensing weak magnetic fields
US10170693B2 (en) 2015-01-27 2019-01-01 Agency For Science, Technology And Research Magnetoresistive device and method of forming the same
EP3104187A1 (en) * 2015-06-09 2016-12-14 International Iberian Nanotechnology Laboratory Magnetoresistive sensor
CN109473545A (zh) * 2017-09-08 2019-03-15 Tdk株式会社 磁阻效应器件及高频器件
US10937828B2 (en) 2018-10-11 2021-03-02 International Business Machines Corporation Fabricating embedded magnetoresistive random access memory device with v-shaped magnetic tunnel junction profile

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4243358A1 (de) * 1992-12-21 1994-06-23 Siemens Ag Magnetowiderstands-Sensor mit künstlichem Antiferromagneten und Verfahren zu seiner Herstellung
US5729410A (en) 1996-11-27 1998-03-17 International Business Machines Corporation Magnetic tunnel junction device with longitudinal biasing
US6023395A (en) * 1998-05-29 2000-02-08 International Business Machines Corporation Magnetic tunnel junction magnetoresistive sensor with in-stack biasing
US6252796B1 (en) * 1998-08-14 2001-06-26 U.S. Philips Corporation Device comprising a first and a second ferromagnetic layer separated by a non-magnetic spacer layer
US6259586B1 (en) * 1999-09-02 2001-07-10 International Business Machines Corporation Magnetic tunnel junction sensor with AP-coupled free layer
US6266218B1 (en) * 1999-10-28 2001-07-24 International Business Machines Corporation Magnetic sensors having antiferromagnetically exchange-coupled layers for longitudinal biasing

Also Published As

Publication number Publication date
KR20020019017A (ko) 2002-03-09
US20010026470A1 (en) 2001-10-04
JP2003526913A (ja) 2003-09-09
US6438026B2 (en) 2002-08-20
TW495745B (en) 2002-07-21
CN1364300A (zh) 2002-08-14
WO2001067469A1 (en) 2001-09-13
EP1200972A1 (en) 2002-05-02

Similar Documents

Publication Publication Date Title
CN1242429C (zh) 具有偏置磁层结构的磁场元件
CN1237511C (zh) 带有低本征单轴各向异性自由层的巨磁致电阻传感器
JP3327375B2 (ja) 磁気抵抗効果型トランスデューサ、その製造方法及び磁気記録装置
CN100423313C (zh) 具有在被钉扎层中含半金属铁磁性哈斯勒合金的交换耦合结构的磁电阻器件
US6469878B1 (en) Data head and method using a single antiferromagnetic material to pin multiple magnetic layers with differing orientation
EP0866444B1 (en) Thin film magnetic head
KR100344030B1 (ko) 자기 소자, 자기 메모리 디바이스, 자기저항 효과 헤드 및 자기 저장 시스템.
JP2771128B2 (ja) 磁気抵抗効果素子、これを用いた磁気抵抗効果型ヘッド、メモリー素子、及び増幅素子
JP3890893B2 (ja) スピントンネル磁気抵抗効果膜及び素子及びそれを用いた磁気抵抗センサー、及び磁気装置及びその製造方法
US6496338B2 (en) Spin-valve magnetoresistive sensor including a first antiferromagnetic layer for increasing a coercive force and a second antiferromagnetic layer for imposing a longitudinal bias
US7016170B2 (en) Magnetic head and tunnel junction magneto-resistive head having plural ferromagnetic layers associated with an antiferromagnetic coupling layer for magnetically biasing the sensing free layer
CN1670825A (zh) 电流垂直于平面的磁阻传感器
US20070048485A1 (en) Magnetoresistive effect element, magnetic head, magnetic storage device and magnetic memory device
KR100304770B1 (ko) 자기저항효과박막과그제조방법
US20040136120A1 (en) Three terminal magnetic head and magnetic recording apparatus provided with the said head
KR100295355B1 (ko) 박막자기헤드
CN1065062C (zh) 自旋阀磁致电阻效应磁头及磁盘驱动器
JPH10188235A (ja) 磁気抵抗効果膜及びその製造方法
US20010022373A1 (en) Magnetic memory element and magnetic memory using the same
KR20000071790A (ko) 자기저항 효과 헤드 및 그의 제조 방법
CN100367352C (zh) 磁阻磁头以及磁记录-复制装置
US6669787B2 (en) Method of manufacturing a spin valve structure
KR100356403B1 (ko) 자기헤드
JP3420152B2 (ja) 磁気抵抗効果ヘッド及び磁気記録再生装置
US5985471A (en) Magnetic sensor

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee