CN1239995A - Process for making detergent composition by non-tower process - Google Patents
Process for making detergent composition by non-tower process Download PDFInfo
- Publication number
- CN1239995A CN1239995A CN97180298.XA CN97180298A CN1239995A CN 1239995 A CN1239995 A CN 1239995A CN 97180298 A CN97180298 A CN 97180298A CN 1239995 A CN1239995 A CN 1239995A
- Authority
- CN
- China
- Prior art keywords
- mixing tank
- agglomerate
- fluidizing
- condition
- active agent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 97
- 239000000203 mixture Substances 0.000 title claims abstract description 73
- 239000003599 detergent Substances 0.000 title claims abstract description 71
- 230000008569 process Effects 0.000 title claims abstract description 13
- 239000000843 powder Substances 0.000 claims abstract description 35
- 239000007788 liquid Substances 0.000 claims abstract description 30
- 239000004094 surface-active agent Substances 0.000 claims abstract description 16
- 238000005507 spraying Methods 0.000 claims abstract description 9
- 238000002156 mixing Methods 0.000 claims description 84
- -1 alkyl alkoxy sulfate Chemical compound 0.000 claims description 33
- 239000002245 particle Substances 0.000 claims description 27
- 239000013543 active substance Substances 0.000 claims description 26
- 239000003795 chemical substances by application Substances 0.000 claims description 19
- 239000007921 spray Substances 0.000 claims description 19
- 235000019832 sodium triphosphate Nutrition 0.000 claims description 17
- 239000003945 anionic surfactant Substances 0.000 claims description 15
- 239000011734 sodium Substances 0.000 claims description 15
- 229910052708 sodium Inorganic materials 0.000 claims description 13
- 229920000642 polymer Polymers 0.000 claims description 11
- 101710194948 Protein phosphatase PhpP Proteins 0.000 claims description 10
- HWGNBUXHKFFFIH-UHFFFAOYSA-I pentasodium;[oxido(phosphonatooxy)phosphoryl] phosphate Chemical compound [Na+].[Na+].[Na+].[Na+].[Na+].[O-]P([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O HWGNBUXHKFFFIH-UHFFFAOYSA-I 0.000 claims description 10
- 239000000243 solution Substances 0.000 claims description 10
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 claims description 9
- 241000282326 Felis catus Species 0.000 claims description 7
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical group [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims description 7
- 238000005469 granulation Methods 0.000 claims description 7
- 230000003179 granulation Effects 0.000 claims description 7
- UNXRWKVEANCORM-UHFFFAOYSA-I triphosphate(5-) Chemical compound [O-]P([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O UNXRWKVEANCORM-UHFFFAOYSA-I 0.000 claims description 7
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 claims description 6
- 229910052938 sodium sulfate Inorganic materials 0.000 claims description 6
- 235000011152 sodium sulphate Nutrition 0.000 claims description 6
- 239000000126 substance Substances 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 5
- 229910052710 silicon Inorganic materials 0.000 claims description 5
- 239000010703 silicon Substances 0.000 claims description 5
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims description 4
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 claims description 3
- 230000036571 hydration Effects 0.000 claims description 3
- 238000006703 hydration reaction Methods 0.000 claims description 3
- MGFYIUFZLHCRTH-UHFFFAOYSA-N nitrilotriacetic acid Chemical class OC(=O)CN(CC(O)=O)CC(O)=O MGFYIUFZLHCRTH-UHFFFAOYSA-N 0.000 claims description 3
- 230000001737 promoting effect Effects 0.000 claims description 3
- 229910021653 sulphate ion Inorganic materials 0.000 claims description 3
- 150000003016 phosphoric acids Chemical class 0.000 claims description 2
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 claims description 2
- 150000004996 alkyl benzenes Chemical group 0.000 claims 1
- 239000011248 coating agent Substances 0.000 abstract description 10
- 239000008187 granular material Substances 0.000 abstract description 6
- 238000000576 coating method Methods 0.000 abstract description 4
- 230000001788 irregular Effects 0.000 abstract 1
- 238000005406 washing Methods 0.000 description 26
- 239000000047 product Substances 0.000 description 23
- 239000000463 material Substances 0.000 description 20
- 238000005054 agglomeration Methods 0.000 description 16
- 230000002776 aggregation Effects 0.000 description 16
- 238000005342 ion exchange Methods 0.000 description 13
- 238000001035 drying Methods 0.000 description 12
- 150000003839 salts Chemical class 0.000 description 11
- 230000000694 effects Effects 0.000 description 10
- 239000002994 raw material Substances 0.000 description 10
- 150000003863 ammonium salts Chemical class 0.000 description 9
- 229920005646 polycarboxylate Polymers 0.000 description 9
- NIXOWILDQLNWCW-UHFFFAOYSA-N Acrylic acid Chemical compound OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 8
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 8
- 238000002360 preparation method Methods 0.000 description 8
- 239000002253 acid Substances 0.000 description 7
- 239000004115 Sodium Silicate Substances 0.000 description 6
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 6
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 6
- 238000000280 densification Methods 0.000 description 6
- KWIUHFFTVRNATP-UHFFFAOYSA-N glycine betaine Chemical compound C[N+](C)(C)CC([O-])=O KWIUHFFTVRNATP-UHFFFAOYSA-N 0.000 description 6
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 6
- 229920000768 polyamine Polymers 0.000 description 6
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 5
- 229910052783 alkali metal Inorganic materials 0.000 description 5
- 239000011575 calcium Substances 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 5
- 125000004432 carbon atom Chemical group C* 0.000 description 5
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 5
- 239000001257 hydrogen Substances 0.000 description 5
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 5
- 229910052911 sodium silicate Inorganic materials 0.000 description 5
- 238000001694 spray drying Methods 0.000 description 5
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 4
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 4
- 229930182556 Polyacetal Natural products 0.000 description 4
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 4
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 4
- 229910021536 Zeolite Inorganic materials 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 235000014113 dietary fatty acids Nutrition 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 239000000194 fatty acid Substances 0.000 description 4
- 229930195729 fatty acid Natural products 0.000 description 4
- LVHBHZANLOWSRM-UHFFFAOYSA-N itaconic acid Chemical compound OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 4
- 239000000178 monomer Substances 0.000 description 4
- 238000006116 polymerization reaction Methods 0.000 description 4
- 229920006324 polyoxymethylene Polymers 0.000 description 4
- 239000001103 potassium chloride Substances 0.000 description 4
- 235000011164 potassium chloride Nutrition 0.000 description 4
- 239000002243 precursor Substances 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 4
- 239000010457 zeolite Substances 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 3
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 3
- 108090000790 Enzymes Proteins 0.000 description 3
- 102000004190 Enzymes Human genes 0.000 description 3
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 3
- 229920002873 Polyethylenimine Polymers 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- 229910001424 calcium ion Inorganic materials 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000010924 continuous production Methods 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 238000000227 grinding Methods 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- 239000003595 mist Substances 0.000 description 3
- 235000011837 pasties Nutrition 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 239000011574 phosphorus Substances 0.000 description 3
- 238000012216 screening Methods 0.000 description 3
- 239000000344 soap Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 2
- 229910017090 AlO 2 Inorganic materials 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical group [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical group [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- 150000001336 alkenes Chemical class 0.000 description 2
- 125000000217 alkyl group Chemical group 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 2
- 125000003368 amide group Chemical group 0.000 description 2
- 150000004646 arylidenes Chemical group 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 229960003237 betaine Drugs 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- 230000021523 carboxylation Effects 0.000 description 2
- 238000006473 carboxylation reaction Methods 0.000 description 2
- GTZCVFVGUGFEME-IWQZZHSRSA-N cis-aconitic acid Chemical compound OC(=O)C\C(C(O)=O)=C\C(O)=O GTZCVFVGUGFEME-IWQZZHSRSA-N 0.000 description 2
- HNEGQIOMVPPMNR-IHWYPQMZSA-N citraconic acid Chemical compound OC(=O)C(/C)=C\C(O)=O HNEGQIOMVPPMNR-IHWYPQMZSA-N 0.000 description 2
- 229940018557 citraconic acid Drugs 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000007334 copolymerization reaction Methods 0.000 description 2
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 238000007046 ethoxylation reaction Methods 0.000 description 2
- HCPOCMMGKBZWSJ-UHFFFAOYSA-N ethyl 3-hydrazinyl-3-oxopropanoate Chemical compound CCOC(=O)CC(=O)NN HCPOCMMGKBZWSJ-UHFFFAOYSA-N 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- 230000009969 flowable effect Effects 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 239000012634 fragment Substances 0.000 description 2
- 239000001530 fumaric acid Substances 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 229910001425 magnesium ion Chemical group 0.000 description 2
- 239000011976 maleic acid Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- HNEGQIOMVPPMNR-NSCUHMNNSA-N mesaconic acid Chemical compound OC(=O)C(/C)=C/C(O)=O HNEGQIOMVPPMNR-NSCUHMNNSA-N 0.000 description 2
- HZVOZRGWRWCICA-UHFFFAOYSA-N methanediyl Chemical compound [CH2] HZVOZRGWRWCICA-UHFFFAOYSA-N 0.000 description 2
- HNEGQIOMVPPMNR-UHFFFAOYSA-N methylfumaric acid Natural products OC(=O)C(C)=CC(O)=O HNEGQIOMVPPMNR-UHFFFAOYSA-N 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- UHOVQNZJYSORNB-UHFFFAOYSA-N monobenzene Natural products C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000012188 paraffin wax Substances 0.000 description 2
- XYFCBTPGUUZFHI-UHFFFAOYSA-N phosphine group Chemical group P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 2
- 150000003009 phosphonic acids Chemical class 0.000 description 2
- 238000006068 polycondensation reaction Methods 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 125000001453 quaternary ammonium group Chemical group 0.000 description 2
- 150000003254 radicals Chemical class 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 239000003352 sequestering agent Substances 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- MXYOPVWZZKEAGX-UHFFFAOYSA-N 1-phosphonoethylphosphonic acid Chemical compound OP(=O)(O)C(C)P(O)(O)=O MXYOPVWZZKEAGX-UHFFFAOYSA-N 0.000 description 1
- JJJOZVFVARQUJV-UHFFFAOYSA-N 2-ethylhexylphosphonic acid Chemical compound CCCCC(CC)CP(O)(O)=O JJJOZVFVARQUJV-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 238000006677 Appel reaction Methods 0.000 description 1
- FEIHNNYIQBYGDK-UHFFFAOYSA-N C(C)(=O)O.[N+](=O)([O-])C(CO)(CO)CO Chemical compound C(C)(=O)O.[N+](=O)([O-])C(CO)(CO)CO FEIHNNYIQBYGDK-UHFFFAOYSA-N 0.000 description 1
- ONYKNTRMIOQQBJ-UHFFFAOYSA-N C(CCC(=O)O)(=O)O.C(CCC(=O)O)(=O)O.[O] Chemical compound C(CCC(=O)O)(=O)O.C(CCC(=O)O)(=O)O.[O] ONYKNTRMIOQQBJ-UHFFFAOYSA-N 0.000 description 1
- XSBRVRMMKVWXQZ-UHFFFAOYSA-M CCCCCCCCCCCCCCCC[N+](C)(C)CC1=CC=CC=C1.CC(C([O-])=O)N(C)C Chemical compound CCCCCCCCCCCCCCCC[N+](C)(C)CC1=CC=CC=C1.CC(C([O-])=O)N(C)C XSBRVRMMKVWXQZ-UHFFFAOYSA-M 0.000 description 1
- GAWIXWVDTYZWAW-UHFFFAOYSA-N C[CH]O Chemical group C[CH]O GAWIXWVDTYZWAW-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical group [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- GXGJIOMUZAGVEH-UHFFFAOYSA-N Chamazulene Chemical group CCC1=CC=C(C)C2=CC=C(C)C2=C1 GXGJIOMUZAGVEH-UHFFFAOYSA-N 0.000 description 1
- RKWGIWYCVPQPMF-UHFFFAOYSA-N Chloropropamide Chemical compound CCCNC(=O)NS(=O)(=O)C1=CC=C(Cl)C=C1 RKWGIWYCVPQPMF-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical group C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- UEZVMMHDMIWARA-UHFFFAOYSA-N Metaphosphoric acid Chemical compound OP(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-N 0.000 description 1
- SXKQTYJLWWQUKA-UHFFFAOYSA-N O.O.O.O.O.O.O.O.O.O.OB(O)O.OB(O)O.OB(O)O.OB(O)O Chemical group O.O.O.O.O.O.O.O.O.O.OB(O)O.OB(O)O.OB(O)O.OB(O)O SXKQTYJLWWQUKA-UHFFFAOYSA-N 0.000 description 1
- 239000004990 Smectic liquid crystal Substances 0.000 description 1
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 1
- ZUBJEHHGZYTRPH-KTKRTIGZSA-N [(z)-octadec-9-enyl] hydrogen sulfate Chemical compound CCCCCCCC\C=C/CCCCCCCCOS(O)(=O)=O ZUBJEHHGZYTRPH-KTKRTIGZSA-N 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 150000007933 aliphatic carboxylic acids Chemical class 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910000272 alkali metal oxide Inorganic materials 0.000 description 1
- 150000005215 alkyl ethers Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229920006318 anionic polymer Polymers 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 239000003637 basic solution Substances 0.000 description 1
- 238000010923 batch production Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- CMFFZBGFNICZIS-UHFFFAOYSA-N butanedioic acid;2,3-dihydroxybutanedioic acid Chemical compound OC(=O)CCC(O)=O.OC(=O)CCC(O)=O.OC(=O)C(O)C(O)C(O)=O CMFFZBGFNICZIS-UHFFFAOYSA-N 0.000 description 1
- HXDRSFFFXJISME-UHFFFAOYSA-N butanedioic acid;2,3-dihydroxybutanedioic acid Chemical compound OC(=O)CCC(O)=O.OC(=O)C(O)C(O)C(O)=O HXDRSFFFXJISME-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 150000001733 carboxylic acid esters Chemical class 0.000 description 1
- 229920003123 carboxymethyl cellulose sodium Polymers 0.000 description 1
- 229940063834 carboxymethylcellulose sodium Drugs 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000005202 decontamination Methods 0.000 description 1
- 230000003588 decontaminative effect Effects 0.000 description 1
- GSPKZYJPUDYKPI-UHFFFAOYSA-N diethoxy sulfate Chemical compound CCOOS(=O)(=O)OOCC GSPKZYJPUDYKPI-UHFFFAOYSA-N 0.000 description 1
- 125000004177 diethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- HPNMFZURTQLUMO-UHFFFAOYSA-O diethylammonium Chemical compound CC[NH2+]CC HPNMFZURTQLUMO-UHFFFAOYSA-O 0.000 description 1
- GPLRAVKSCUXZTP-UHFFFAOYSA-N diglycerol Chemical compound OCC(O)COCC(O)CO GPLRAVKSCUXZTP-UHFFFAOYSA-N 0.000 description 1
- CQUHXBUZUBJWMR-UHFFFAOYSA-N dimethylazanium hexane-1-sulfonate Chemical compound C[NH2+]C.CCCCCCS([O-])(=O)=O CQUHXBUZUBJWMR-UHFFFAOYSA-N 0.000 description 1
- IYNJILVYWCLNBH-UHFFFAOYSA-N dimethylazanium;2-hydroxypropane-1-sulfonate Chemical compound C[NH2+]C.CC(O)CS([O-])(=O)=O IYNJILVYWCLNBH-UHFFFAOYSA-N 0.000 description 1
- JMUARGQPJWIZIP-UHFFFAOYSA-N dimethylazanium;hexanoate Chemical compound C[NH2+]C.CCCCCC([O-])=O JMUARGQPJWIZIP-UHFFFAOYSA-N 0.000 description 1
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N dimethylmethane Natural products CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- QFCZQEFMGQVACW-UHFFFAOYSA-N ethyl(dihydroxy)azanium propane-1-sulfonate Chemical compound CC[NH+](O)O.CCCS([O-])(=O)=O QFCZQEFMGQVACW-UHFFFAOYSA-N 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000005243 fluidization Methods 0.000 description 1
- 229930182478 glucoside Natural products 0.000 description 1
- 150000008131 glucosides Chemical class 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 229930182470 glycoside Natural products 0.000 description 1
- HHLFWLYXYJOTON-UHFFFAOYSA-N glyoxylic acid Chemical compound OC(=O)C=O HHLFWLYXYJOTON-UHFFFAOYSA-N 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 150000001261 hydroxy acids Chemical group 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 229910052816 inorganic phosphate Inorganic materials 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 239000006210 lotion Substances 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- YDSWCNNOKPMOTP-UHFFFAOYSA-N mellitic acid Chemical compound OC(=O)C1=C(C(O)=O)C(C(O)=O)=C(C(O)=O)C(C(O)=O)=C1C(O)=O YDSWCNNOKPMOTP-UHFFFAOYSA-N 0.000 description 1
- XJRBAMWJDBPFIM-UHFFFAOYSA-N methyl vinyl ether Chemical compound COC=C XJRBAMWJDBPFIM-UHFFFAOYSA-N 0.000 description 1
- CQDGTJPVBWZJAZ-UHFFFAOYSA-N monoethyl carbonate Chemical compound CCOC(O)=O CQDGTJPVBWZJAZ-UHFFFAOYSA-N 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- HLERILKGMXJNBU-UHFFFAOYSA-N norvaline betaine Chemical compound CCCC(C([O-])=O)[N+](C)(C)C HLERILKGMXJNBU-UHFFFAOYSA-N 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000006259 organic additive Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000013618 particulate matter Substances 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 239000002304 perfume Substances 0.000 description 1
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920005996 polystyrene-poly(ethylene-butylene)-polystyrene Polymers 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 238000005201 scrubbing Methods 0.000 description 1
- 150000003335 secondary amines Chemical class 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical class O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- FQENQNTWSFEDLI-UHFFFAOYSA-J sodium diphosphate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]P([O-])(=O)OP([O-])([O-])=O FQENQNTWSFEDLI-UHFFFAOYSA-J 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 235000019351 sodium silicates Nutrition 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 235000013599 spices Nutrition 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 230000019635 sulfation Effects 0.000 description 1
- 238000005670 sulfation reaction Methods 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 238000005494 tarnishing Methods 0.000 description 1
- 229940095064 tartrate Drugs 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- 235000019818 tetrasodium diphosphate Nutrition 0.000 description 1
- 239000012855 volatile organic compound Substances 0.000 description 1
- 230000002087 whitening effect Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D11/00—Special methods for preparing compositions containing mixtures of detergents
- C11D11/0082—Special methods for preparing compositions containing mixtures of detergents one or more of the detergent ingredients being in a liquefied state, e.g. slurry, paste or melt, and the process resulting in solid detergent particles such as granules, powders or beads
- C11D11/0088—Special methods for preparing compositions containing mixtures of detergents one or more of the detergent ingredients being in a liquefied state, e.g. slurry, paste or melt, and the process resulting in solid detergent particles such as granules, powders or beads the liquefied ingredients being sprayed or adsorbed onto solid particles
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D11/00—Special methods for preparing compositions containing mixtures of detergents
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D11/00—Special methods for preparing compositions containing mixtures of detergents
- C11D11/0082—Special methods for preparing compositions containing mixtures of detergents one or more of the detergent ingredients being in a liquefied state, e.g. slurry, paste or melt, and the process resulting in solid detergent particles such as granules, powders or beads
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D11/00—Special methods for preparing compositions containing mixtures of detergents
- C11D11/02—Preparation in the form of powder by spray drying
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D17/00—Detergent materials or soaps characterised by their shape or physical properties
- C11D17/0039—Coated compositions or coated components in the compositions, (micro)capsules
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D17/00—Detergent materials or soaps characterised by their shape or physical properties
- C11D17/06—Powder; Flakes; Free-flowing mixtures; Sheets
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D17/00—Detergent materials or soaps characterised by their shape or physical properties
- C11D17/06—Powder; Flakes; Free-flowing mixtures; Sheets
- C11D17/065—High-density particulate detergent compositions
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/02—Anionic compounds
- C11D1/12—Sulfonic acids or sulfuric acid esters; Salts thereof
- C11D1/14—Sulfonic acids or sulfuric acid esters; Salts thereof derived from aliphatic hydrocarbons or mono-alcohols
- C11D1/146—Sulfuric acid esters
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/02—Anionic compounds
- C11D1/12—Sulfonic acids or sulfuric acid esters; Salts thereof
- C11D1/22—Sulfonic acids or sulfuric acid esters; Salts thereof derived from aromatic compounds
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/02—Anionic compounds
- C11D1/12—Sulfonic acids or sulfuric acid esters; Salts thereof
- C11D1/29—Sulfates of polyoxyalkylene ethers
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Detergent Compositions (AREA)
Abstract
A non-tower process for continuously preparing granular detergent composition having a density of at least about 600 g/l is provided. The process comprises the steps of (a) dispersing an aqueous or non-aqueous surfactant, and coating the surfactant with fine powders having a diameter from 0.1 to 500 microns, in the mixer to obtain irregular shape granules and excessive fine powders, and (b) granulating the agglomerates in one or more fluidizing apparatus. The process can also comprise further step (a'), i.e., spraying finely atomized liquid onto the first agglomerates in a mixer, between step (a) and step (b).
Description
Invention field
The present invention relates generally to produce the non-tower method of granular detergent composition.More particularly, the present invention relates to a kind of continuous production method, in the production process of this method, produce detergent agglomerate by adding tensio-active agent and coated material in a series of mixing tanks.Method of the present invention can be produced free-pouring detergent composition, and its density can be regulated in the wide region of consumer wants, and described product can carry out market sale.
Background of invention
In recent years, the product that receives much concern in the laundry detergent industry is the concentrated type product that has than low dosage volume.For facility is produced these so-called low dosage washing composition, people have carried out multiple trial to produce the higher washing composition of volume density, and for example, density is 600g/l or higher.Because this low dosage washing composition can be saved resource and small packages form that can more convenient human consumer is sold, thereby its demand increased day by day.Yet in fact, modern Betengent product should " concentrating " to which kind of degree be still uncertain on earth.In fact, many human consumers', particularly developing country human consumer still more is ready to adopt the high dosage washing composition in its each laundry operations.
In general, the method for preparing washing agent particle or powder comprises two kinds of main types.First method relates in spray-drying tower carries out spraying drying to the aqueous detergent slurries, produces porous detergent particles (for example, be used for low density detergent composition the tower step arranged).In the second method, various detergent components do are mixed, after this, use tackiness agent to make its agglomeration, produce the high density detergent composition agglomeration technique of high density detergent composition (as be used for) such as nonionogenic tenside or anion surfactant.In above-mentioned two kinds of methods, the important factor of controlling formed detergent particle granule density is described coating of particles, porosity and size distribution, the density of various raw materials, the shape of various raw materials and they chemical constitution separately.
Attempt to provide the method that can increase detergent particles or powder density in this area always.Particularly make spray-dired particle densification by back tower treating processes.For example, one of means relate to carries out batch production, wherein, and at Marumerizer
In will comprise the spraying drying of tripoly phosphate sodium STPP and sodium sulfate or granulation detergent powder carry out densification and balling-up is handled.Substantially horizontal, the coarse and rotatable worktable of described equipment bag meeting, this worktable is positioned at the circular cylindrical shell of perpendicular and inner wall smooth and is its substrate.Yet,, be not suitable for the scale operation detergent powder because this process mainly is a kind of periodical operation process.At last, people also attempt to provide the density of the detergent particles of a kind of continuation method to increase " product behind the tower " or spraying drying and cross.Usually, these class methods need be pulverized or grind particulate first device and increase second of pulverizing back pellet density by agglomeration and install.Although these methods are by handling or densification " product behind the tower " or spray-dried granules have reached the increase of needed density,, when the application step that is provided with subsequently, be restricted aspect the raising ability of surfactivity degree.In addition, by " tower aftertreatment " method handle or densification from considering economically and uneconomical (cost is very high), and production process complexity.And then all aforesaid methods all relate generally to and carry out densification or carry out spray-dried granules.At present, a large number of and equal material of type is subject to spray-drying process in the washing composition production process.For example, in the detergent composition that forms, will be difficult to realize the tensio-active agent high-content, and also be difficult to produce washing composition in more effective mode expediently.Therefore, still wish to find a kind of method that is not subjected to the production detergent composition of conventional spray drying technology restriction.
For this reason, also proposed in this area variously must carry out agglomerant method to detergent composition.For example, by being mixed in mixing tank, zeolite and/or layered silicate make the detergent builders agglomeration to form free-pouring agglomerate.The explanation of this trial hint, aforesaid method can be used for producing detergent agglomerate; But they can not provide a kind of mechanism, adopt described mechanism can make pasty state, liquid and dry-matter shape detergent raw material agglomerate into easily crisp, free flowing detergent agglomerate effectively.
Thereby, still needing to seek a kind of agglomeration method (non-tower method) that is used for direct by detergent raw material continuous production high density detergent composition in this area, preferred density can realize by regulating processing conditions.Equally, still wish to find a kind of more effective, have more adaptability and more economical method, so that the scale operation washing composition, can (1) make the final densities of finished product detergent composition should have more the more poly-handiness of adding that handiness and (2) make the especially aqueous detergent component of various detergent component.
Following reference relates to the process that makes spray-dired particle densification: Appel etc., and US 5,133,924 (Lever); Bortolotti etc., US 5,160,657 (Lever); Johnson etc., GB 1,517,713 (Unilever); And Curtis, EP 451,894.
Following reference relates to by agglomeration produces washing composition: Beujean etc., WO93/23,523 (Henkel); People such as Lutz, US4,992,079 (FMC Corp.); People such as Porasik, US4,427,417 (Korex); Beerse etc., US 5,108,646 (Procter ﹠amp; Gamble); Capeci etc., US 5,366,652 (Procter ﹠amp; Gamble); Hollingsworth etc., EP 351,937 (Unilever); Swatling etc., US5,205,958; People such as Dhalewadikar, the open WO96/04359 (Unilever) of international application.
For example, WO93/23,523 (Henkel) disclose a kind of method, this method comprises by low speed mixer carries out pre-agglomeration, used the further agglomeration of high-speed mixer again, and obtained high density detergent composition, the particle grain size that said composition is lower than 25wt% surpasses 2mm.US4 has described among 427,417 (Korex) and has been used for agglomerant continuation method, and this method can reduce caking and cross the agglomeration phenomenon.
Prior art does not all possess advantage of the present invention and beneficial effect.
Summary of the invention
The invention provides a kind of method of producing high density granular shape detergent composition, can satisfy the demand of this area.The present invention also provides a kind of whole density of producing its final composition by agglomeration (as non-tower) method that the method for certain adaptive granular detergent composition is arranged, thereby satisfies the demand of this area.Described method does not adopt the restricted conventional spray-drying tower of Composition Aspects at preparation high surface agent content.In addition, consider and in described method, to produce various detergent composition that method of the present invention seems more effectively, more economical and have more handiness.And because method of the present invention does not adopt and can discharge particulate matter and volatile organic compounds usually and enter spray-drying tower in the atmosphere, therefore, method of the present invention also is useful aspect environment protection.
Herein, term " agglomerate " is meant by raw material and tackiness agent such as tensio-active agent and/or inorganic solution/organic solvent and polymers soln are carried out the particle that agglomeration forms.Herein, term " granulation " is meant agglomerate is carried out complete fluidisation, is used to make free flowable round granular agglomerate.Term herein " mean residence time " is defined as follows:
Mean residence time (hour)=material (kilogram)/throughflow (kilogram/hour)
Except as otherwise noted, all herein percentage number averages are meant weight percentage.Except as otherwise noted, all ratios is weight ratio.Term herein " contains " and is meant and also can adds other step that can not influence inventive result and other composition.Comprise in this term term " by ... form " and " substantially by ... composition ".
According to one aspect of the present invention, provide a kind of method that density is at least about the granular detergent composition of 600g/l for preparing.
This method comprises the steps:
(a) scatter table surface-active agent in mixing tank, be coated with this tensio-active agent with the fine powder that with diameter is 0.1-500 μ m, the condition of wherein said mixing tank comprises: (1) mean residence time is about 0.5-15 minute and (2) energy condition is about 0.15-7kj/kg, wherein forms agglomerate; With
(b) in one or more fluidizing devices, agglomerate is carried out granulation, wherein the condition of each fluidizing device comprises that (1) mean residence time is about 1-10 minute, (2) the fluidizing bed degree of depth is not the about 300mm of about 100-, (3) the drop spray particle diameter is no more than about 50 μ m, (4) spray height is the about 250mm of about 1 75-, (5) fluidizing velocity is about 0.2-1.4m/s, and (6) fluidized-bed temperature is about 12-100 ℃.
The present invention also provides a kind of method that density is at least about the granular detergent composition of 600g/l for preparing.
This method comprises the steps:
(a) scatter table surface-active agent in mixing tank, and be that the fine powder of 0.1-500 μ m is coated with this tensio-active agent with diameter, the condition of wherein said mixing tank comprises: (1) mean residence time is about 0.5-15 minute, and (2) energy condition is about 0.15-7kj/kg, wherein forms first agglomerate;
(a ') is in mixing tank, the fine atomized liquid of spraying on first agglomerate, the condition of wherein said mixing tank comprises: (1) mean residence time is about 0.2-5 second, and (2) tip velocity is about 10-30m/s, (3) energy condition is about 0.15-5kj/kg, wherein forms second agglomerate; With
(b) in one or more fluidizing devices, second agglomerate is carried out granulation, wherein the condition of each fluidizing device comprises that (1) mean residence time is about 1-10 minute, (2) the fluidizing bed degree of depth is not about 100-300mm, (3) the drop spray particle diameter is no more than about 50 μ m, (4) spray height is about 175-250mm, (5) fluidizing velocity is about 0.2-1.4m/s, and (6) fluidized-bed temperature is about 12-100 ℃.
The present invention also provides the high density granular detergent composition that is at least about 600g/l by the density of any preparation of the inventive method scheme.
Therefore, an object of the present invention is to provide a kind of method of continuous production detergent composition, in this method, energy input, residence time condition and tip velocity condition by the control mixing tank can make the density of finished product have more adaptability.Another object of the present invention provide a kind of more effective, have more handiness and more economical method, produce on a large scale with facility.By reading detailed description and claims of the following embodiment preferred of the present invention, these purposes of the present invention, characteristics and advantage will be clearly to one skilled in the art.Detailed Description Of The Invention
The present invention relates to a kind of method that free-pouring density is at least about the detergent granules agglomerate of 600g/l of producing.This method is produced the detergent granules agglomerate by moisture or anhydrous surfactant, and the coating diameter is the fine powder of 0.1-500 μ m on tensio-active agent, to obtain low-density particles.
The method the first step (i) [step (a)]
In the first step (i) of the inventive method, with Powdered, pasty state and/or liquid one or more are moisture or anhydrous surfactant and diameter are 0.1-500 μ m, the fine powder of the about 100 μ m of preferably about 1-adds in first mixing tank, so that the preparation agglomerate.(definition of tensio-active agent and fine powder will be described in detail hereinafter.) except that fine powder, also the diameter that produces in the fluidizing device (being fluidized bed dryer and/or fluidized bed cooler) can be joined in this mixing tank for the about 300 microns internal recycle flow of powder of about 0.1-.About 60% (weight) of the 0-that this internal recycle flow of powder can account for the finished product.
Preferably use the knife mill that can link to each other, be used to shred disadvantageous excessive agglomerate with first mixing tank.Therefore comprise the method that second knife mill has second mixing tank of knife mill and be suitable for, reduce excessive agglomerate content in the finished product to reach, so this method is one of the preferred embodiments of the invention.
In another embodiment of the invention, before above-mentioned, can earlier the tensio-active agent that is used for first step (i) be added mixing tank or premixed device (as screw extrusion press or other similar mixing machinery of routine), after this, as described herein, in first mixing tank, add blended washing composition material to carry out agglomeration.
In general, preferably, the mean residence time of first mixing tank should be about 0.5-about 15 minutes, the energy of unit mass (energy condition) is the about 7kj/kg of about 0.15-in first mixing tank, more preferably the first mixing tank mean residence time was about 3-about 6 minutes, and the energy of unit mass (energy condition) is about the about 4kj/kg of 0.15-in first mixing tank.
The example of first mixing tank can be the mixing tank of any type well known in the art, as long as this mixing tank can keep the above-mentioned condition that is used for the first step.Specific examples is the L dige KM mixing tank of being produced by L dige company (Germany).The result of the first step (i) makes agglomerate (first agglomerate).This first agglomerate then or (1) handle through second step, or (2) (ii) handle through the first step, then handles through second step.The first step is [step (a ')] (ii)
To add in second mixing tank by the product (i.e. first agglomerate) that the first step (i) makes.After first agglomerate joins second mixing tank, in second mixing tank, agglomerate is sprayed with mist liquid.Randomly, the excessive fine powder that forms in the first step (i) is joined the first step (ii) in.If excessive fine powder joins the first step (ii), spraying mist liquid is used for excessive fine powder is bonded in the agglomerate surface.Can in second mixing tank, add about 0-10%, preferably powder detergent component and/or other detergent component that uses in the first step of about 2-5% (i).
In general, preferably, the mean residence time of second mixing tank should be about 0.2-about 5 seconds, the second mixing tank tip velocity should be the about 30m/s of about 10-, the energy of unit mass (energy condition) is the about 5kj/kg of about 0.15-in second mixing tank, more preferably, the mean residence time of second mixing tank should be about 0.2-about 5 seconds, the tip velocity of second mixing tank should be about 10-30m/s, the energy of unit mass (energy condition) is the about 5kj/kg of about 0.15-in second mixing tank, most preferably, the mean residence time of second mixing tank should be about 0.2-about 5 seconds, the tip velocity of second mixing tank should be the about 26m/s of about 15-, and the energy of unit mass (energy condition) is the about 3kj/kg of about 0.2-in second mixing tank.
The example of second mixing tank can be the mixing tank of any type well known in the art, as long as mixing tank can keep the above-mentioned the first step condition (ii) that is used for.Specific examples is the Flexomic type mixing tank of being produced by Schugi company (Holland).The first step result (ii) is to obtain second agglomerate.Second step [step (b)]
In second step of the inventive method, second agglomerate that first agglomerate that will be made by the first step (i) or the first step (ii) make adds in fluidizing device such as the fluidized-bed, strengthens granulating and is used to produce free flowable high density granular.Second step can carry out in one or more fluidizing device (for example with various fluidizing device, combining as fluidized bed dryer and fluidized-bed condenser).Optionally will about 0-10%, preferably the powder detergent material that uses in the first step of about 2-5% and/or other detergent component joined in second step.Also optionally, will about 0-about 20%, more preferably from about the liquid scrubbing agent material and/or other detergent component that use in (ii) of the first step of 2-10% (i), the first step joins in this step, in order to the enhancement granulation with to the coating effect of particle surface.
In general, reach about 600g/l at least for making density, preferably be higher than 650g/l, the condition of fluidizing device is as follows: mean residence time: about 1-10 minute
The fluidizing bed degree of depth not: about 100-300mm
Drop spray particle diameter: be not higher than about 50 microns
Spray height: about 175-250mm
Fluidizing velocity: about 0.2-1.4m/s
Bed temperature: about 12-100 ℃,
More preferably:
Mean residence time: about 2-6 minute
The fluidizing bed degree of depth not: about 100-250mm
Drop spray particle diameter: be lower than about 50 microns
Spray height: about 175-200mm
Fluidizing velocity: about 0.3-1.0m/s
Bed temperature: about 12-80 ℃.
If adopt two kinds of fluidizing devices, the mean residence time total amount in second step is about 2-20 minute, more preferably from about 2-12 minute.
Can be used for the coating agent promoting flowability and/or be used to reduce detergent composition agglomerate particle diameter in one or more the adding with upper/lower positions of described method: (1) can directly add the coating agent after fluidized bed cooler and fluidized bed dryer; (2) between fluidized bed dryer and fluidized bed cooler, add the coating agent; And/or (3) directly add the coating agent in fluidized bed dryer.The coating agent is preferably selected from following composition: silico-aluminate, silicate, carbonate and their mixture.The free-flowing property of the detergent composition of gained can not only be promoted in the coating agent, can also control nodulizing, prevents or reduces agglomeration, and wherein the free-flowing property of composition is that the user is required, ladles out usefulness because this characteristic is easier to washing composition when using.What those of ordinary skills knew was that the agglomeration meeting causes very disadvantageous flowability and the relatively poor outward appearance of finished product detergent body.Detergent raw material
Tensio-active agent in the product of manufacturing of the present invention is included in following washing composition material, mist liquid and helps in the detergent ingredients, and its content is generally about 5-60%, preferably about 12-40%, more preferably from about 15-35%.The tensio-active agent that wherein is included in above-mentioned can be from arbitrary part of the inventive method, for example, and from the first step (i), the first step (ii) and/or any step in second step.Detergent surfactant (moisture and/or anhydrous)
In the total amount by the final product that obtains of the inventive method, the consumption of the tensio-active agent of present method can be about 5-60%, preferably about 12-40%, more preferably from about 15-35%.
The tensio-active agent of the inventive method is as the detergent raw material of the above-mentioned the first step, and this tensio-active agent can be powdery, pasty state or liquid starting material form.
Tensio-active agent itself is preferably selected from anion surfactant, nonionogenic tenside, zwitterionics, amphoterics, and cats product, and their compatible mixtures.Adoptable detergent surfactant is disclosed in the following document: US 3,664,961 (Norris, 1972.5.23 authorizes), US3, and 929,678 (Laughlin etc., 1975.12.30 authorizes), these two pieces of documents all are incorporated herein by reference.Adoptable cats product also comprises and being disclosed in the following document: US 4,222,905 (Cockrell, 1980.9.16 authorizes) and US4, and 239,659 (Murphy, 1980.12.16 authorizes), these two pieces of documents also are incorporated herein by reference.Described tensio-active agent preferably adopts anion surfactant and nonionogenic tenside, and anion surfactant most preferably.
The non-limiting example that is preferred for anion surfactant of the present invention comprises: conventional C
11-C
18Alkylbenzene sulfonate (" LAS "), uncle position, side chain and random C
10-C
20The C of alkyl-sulphate (" AS "), following formula
10-C
18Secondary (2,3) alkyl-sulphate: CH
3(CH
2)
x(CHOSO
3 -M
+) CH
3And CH
3(CH
2)
y(CHOSO
3 -M
+) CH
2CH
3, wherein, x and (y+1) be at least about 7 integer, preferably at least about 9 and M be that water adds dissolubility positively charged ion, particularly sodium, unsaturated vitriol such as oleyl sulfate, C
10-C
18Alkyl alkoxy sulfate (" AE
xS ", EO1-7 ethoxy sulfate particularly.
Adoptable anion surfactant also comprises and contains 2-9 the carbon atom of having an appointment in the acyl group, and paraffin section contains the water-soluble salt of the 2-acyloxy-alkane-1-sulfonic acid of 9-23 the carbon atom of having an appointment; The water-soluble salt that contains the alkene sulfonic acid of about 12-24 carbon atom; Moieties contains β-alkoxy alkane sulfonate that about 1-3 carbon atom and paraffin section contain about 8-20 carbon atom.
Optionally, other example that is used for tensio-active agent of the present invention comprises: C
10-C
18Alkyl alkoxy carboxylate salt (the particularly ethoxy carboxylate of EO1-5), C
10-C
18Glyceryl ether, C
10-C
18Alkyl poly glucoside and corresponding sulfation glycan glycosides and C
12-C
18α-sulfonated fatty acid ester.If necessary, in total composition, also can comprise conventional nonionogenic tenside and amphoterics, as: C
12-C
18Alkylethoxylate (" AE ") comprises so-called narrow peak value alkylethoxylate and C
6-C
12Alkyl phenolic alkoxy thing (the particularly mixture of ethoxylate and ethoxylate and propoxylated glycerine); C
10-C
18Amine oxide etc.Also can use C
10-C
18N-alkyl polyhydroxy fatty acid amide.Its representative instance comprises C
12-C
18The N-methyl glucose amide.Referring to WO9,206,154.Other comprises N-alkoxyl group polyhydroxy fatty acid amide by sugared deutero-tensio-active agent, as C
10-C
18N-(3-methoxy-propyl) glucamide.The N-propyl group is to N-hexyl C
12-C
18Glucamide can be used in the low-sudsing detergent.Also can adopt C
10-C
20Conventional soap class.High if desired foam can use the C of side chain
10-C
16Soap.The preferred mixture that adopts anion surfactant and nonionogenic tenside.Other conventional tensio-active agent that adopts is listed in the standard textbook.
Cats product also can be used as detergent surfactant of the present invention, and suitable quaternary ammonium surfactant is selected from: single C
6-C
16, preferred C
6-C
10N-alkyl or alkenyl ammonium surfactant, wherein, remaining N position can be replaced by methyl, hydroxyethyl or hydroxypropyl.Amphoterics also can be used as detergent surfactant of the present invention, comprises the aliphatic derivatives of heterocyclic secondary and tertiary amine; Zwitterionics, its can comprise aliphatic quaternary ammonium, quaternary phosphine and season sulfonium compound derivative; The water-soluble salt of α-sulfonated fatty acid ester; Sulfated alkyl ether; The water-soluble salt of alkene sulfonic acid; β-alkoxy alkane sulfonate; Formula R (R
1)
2N
+R
2COO
-Trimethyl-glycine, wherein, R is C
6-C
18Alkyl, preferred C
10-C
16Alkyl or C
10-C
16Amidoalkyl, each R
1Be generally C
1-C
3Alkyl, preferable methyl, R
2Be C
1-C
5Alkyl, preferred C
1-C
3Alkylidene group, more preferably C
1-C
2Alkylidene group.The example of suitable trimethyl-glycine comprises: cocounut oil amido propyl-dimethyl trimethyl-glycine; The hexadecyldimethyl benzyl ammonium trimethyl-glycine; C
12-C
14Amido propyl betaine; C
8-C
14Amido hexyl diethyl betaines; 4[C
14-C
16Acyl group methyl amido diethyl ammonium]-1-carboxylic acid butane; C
16-C
18Amido dimethyl betaine C
12-C
16Acyl group amido pentane diethyl betaines; C
12-C
16Acyl group methyl amido dimethyl betaine.Preferred trimethyl-glycine is C
12-C
18Dimethyl Ammonium hexanoate and C
10-C
18Acyl group amido propane (or ethane) dimethyl (or diethyl) trimethyl-glycine; And formula R (R
1)
2N
+R
2SO
3 -Sultaine, wherein, R is C
6-C
18Alkyl, preferred C
10-C
16Alkyl, more preferably C
12-C
13Alkyl, each R
1Be generally C
1-C
3Alkyl, preferable methyl, R
2Be C
1-C
6Alkyl, preferred C
1-C
3Alkylidene group, or preferred hydroxy alkylidene.The example of suitable sultaine comprises C
12-C
14Dimethyl Ammonium-2-hydroxypropyl sulfonate, C
12-C
14Amido propyl ammonium-2-hydroxypropyl sultaine, C
12-C
14Dihydroxy ethyl ammonium propane sulfonate and C
16-C
18Dimethyl ammonium hexane sulfonate, preferred C
12-C
14Amido propyl ammonium-2-hydroxypropyl sultaine.Fine powder
To be used for the first step raw material total amount, the fine powder amount that is used for the inventive method of the first step can be about 94-30%, preferred 86-54%.The raw material fine powder of the inventive method is preferably selected from ground SODA ASH LIGHT 99.2, powdery tripoly phosphate sodium STPP (STPP), hydration tri-polyphosphate, ground sodium sulfate, silico-aluminate, crystalline layered silicate, nitrilotriacetic acid(NTA) salt (NTA), phosphoric acid salt, precipitated silicate, polymkeric substance, carbonate, Citrate trianion, powdery surface promoting agent (as the powdery alkane sulfonic acid) and from the internal recycle flow of powder of the inventive method, wherein, the mean diameter of powder is 0.1-500 μ m, preferred 1-300 μ m, more preferably 5-100 μ m.When using hydration STPP as fine powder of the present invention, the hydrated degree of preferred STPP should be not less than 50%.Help the silico-aluminate ion exchange material of washing composition preferably to have high-calcium ionic exchange capacity and high switching speed simultaneously as the present invention.Although be not bound by any theory, it is believed that this high-calcium ionic exchange velocity and ability are the functions of a plurality of interactional factors, described each factor is the factor that derives from the method that produces the silico-aluminate ion exchange material.Like this, be used for silico-aluminate ion exchange material of the present invention, 509 (Corkill etc., Procter ﹠amp preferably according to US 4,605; Gamble) produce, the document is incorporated herein by reference.
Because the high exchange capacity and the speed that can be provided by the sodium type all can not be provided for the potassium type and the Hydrogen of silico-aluminate, thereby, preferred " sodium " type silico-aluminate ion exchange material that adopts.In addition, the silico-aluminate ion exchange material is preferably the super-dry form, so that produce crisp as described in the present invention detergent agglomerate.Being used for silico-aluminate ion exchange material of the present invention preferably has and can optimize it as helping the size of particles diameter of washing composition effect.Herein, the average particle size diameter of the described silico-aluminate ion exchange material of term " size of particles diameter " representative adopts the routine analysis technical measurement, for example microscope method of masurement and scanning electron microscope method (SEM).The particle diameter of silico-aluminate is preferably about 0.1-10 μ m, more preferably from about 0.5-9 μ m, most preferably from about 1-8 μ m.
Preferably aluminosilicate salt ion exchange material has following formula
Na
z[(AlO
2)
z·(SiO
2)
y]xH
2O
Wherein, z and y are at least 6 integer, and the mol ratio of z and y is about 1-5, and x is about 10-264.More preferably silico-aluminate has following formula
Na
12[(AlO
2)
12·(SiO
2)
12]xH
2O
Wherein, x is about 20-30, preferred about 27.These preferred silico-aluminates are commercially available, for example are purchased with zeolite A, zeolite B and X zeolite.Perhaps, be applicable to that natural or synthetic silico-aluminate ion exchange material of the present invention can be according to US 3,985, the described method preparation of 669 (Krummel etc.), the document is incorporated herein by reference.
The further feature that is used for silico-aluminate of the present invention is, their ion-exchange capacity is at least about 200 milligramequivalent calcium carbonate hardness/g, and in dried state, preferably this scope is about 300-352 milligramequivalent calcium carbonate hardness/g.In addition, another feature of silico-aluminate ion exchange material of the present invention is that their calcium ion exchange rate is at least about 2 grain Ca
++/ add human relations/minute/-Ke/as human relations, more preferably from about 2-6 grain Ca
++/ as human relations/minute/-Ke/as human relations.Fine atomized liquid
The total amount of the finished product that obtain in the inventive method, the fine atomizing amount of liquid of the inventive method is about 1-10% (based on activity), preferably about 2-6% (based on activity).The fine atomized liquid of the inventive method can be selected from liquid silicic acid salt, negatively charged ion or cats product, and it can be liquid form, moisture or non-aqueous polymer solution, water and its mixture.Other selectivity example that is used for the fine atomized liquid of the present invention can be carboxymethylcellulose sodium solution, polyoxyethylene glycol (PEG) and dimethylene triamine pentamethyl-phosphonic acids (DETMP).
The preferred embodiment that can be used as the anionic surfactant solution of the fine atomized liquid of the present invention is the active NaLAS of active HLAS, the about 30-50% of about 88-97%, about 28% active A E3S solution, about 40-50% active liquid silicate etc.
The cats product and the suitable quaternary ammonium surfactant that can be used as the fine atomized liquid of the present invention are selected from single C
6-C
16, preferred C
6-C
10N-alkyl or alkenyl ammonium surfactant, wherein, remaining N position is replaced by methyl, propyloic or hydroxypropyl.
The preferred embodiment that can be used as the moisture or non-aqueous polymer solution of the fine atomized liquid of the present invention is a modified polyamine, and it comprises the polyamine backbone corresponding to following formula:
Has formula V
(n+1)W
mY
nThe modified polyamine of Z or corresponding to the polyamine backbone of following formula
Has formula V
(n-k+1)W
mY
nY '
kThe modified polyamine of Z, wherein, k is less than or equal to n, and the molecular weight of the polyamine backbone before the described modification is greater than about 200 dalton, wherein
Wherein, skeletal chain R unit is selected from following radicals: C
2-C
12Alkylidene group, C
4-C
12Alkylene group, C
3-C
12Hydroxy alkylidene, C
4-C
12Alkyl sub-dihydroxy, C
8-C
12The dialkyl group arylidene ,-(R
1O)
xR
1-,-(R
1O)
xR
5(OR
1)
x-,
-(CH
2CH (OR
2) CH
2O)
z(R
1O)
yR
1(OCH
2CH (OR
2)-CH
2)
w-,-C (O) (R
4)
rC (O)-,-CH
2CH (OR
2) CH
2-and its mixture; Wherein, R
1Be C
2-C
6Alkylidene group and its mixture; R
2For hydrogen ,-(R
1O)
xB and its mixture; R
3Be C
1-C
18Alkyl, C
7-C
12Arylalkyl, C
7-C
12Aryl, C that alkyl replaces
6-C
12Aryl and its mixture; R
4Be C
1-C
12Alkylidene group, C
4-C
12Alkylene group, C
8-C
12Arylmethylene alkyl, C
6-C
10Arylidene and its mixture; R
5Be C
1-C
12Alkylidene group, C
3-C
12Hydroxy alkylidene, C
4-C
12Alkyl sub-dihydroxy, C
8-C
12The dialkyl group arylidene ,-C (O)-,-C (O) NHR
6NHC (O)-,-R
1(OR
1)-,-C (O) (R
4)
rC (O)-,-CH
2CH (OH) CH
2-,-CH
2CH (OH) CH
2O (R
1O)
yR
1OCH
2CH (OH) CH
2-and its mixture; R
6Be C
2-C
12Alkylidene group or C
6-C
12Arylidene; The E unit is selected from following radicals: hydrogen, C
1-C
22Alkyl, C
3-C
22Alkenyl, C
7-C
22Arylalkyl, C
2-C
22Hydroxyalkyl ,-(CH
2)
pCO
2M ,-(CH
2)
qSO
3M ,-CH (CH
2CO
2M) CO
2M ,-(CH
2)
pPO
3M ,-(R
1O)
xB ,-C (O) R
3And its mixture; Oxide compound; B is hydrogen, C
1-C
6Alkyl ,-(CH
2)
qSO
3M ,-(CH
2)
pCO
2M ,-(CH
2)
q(CHSO
3M) CH
2SO
3M ,-(CH
2)
q-(CHSO
2M) CH
2SO
3M ,-(CH
2)
pPO
3M ,-PO
3M and its mixture; M is hydrogen or water-soluble cationic, and its amount should be enough to satisfy charge balance; X is a water soluble anion; The m value is 4-about 400; The n value is 0-about 200; The p value is 1-6, and the q value is 0-6; The r value is 0 or 1; The w value is 0 or 1; The x value is 1-100; The y value is 0-100; The z value is 0 or 1.Most preferred polyethylene imine based example is that molecular weight is 1800 and polyethylene imine based by the further modification of ethoxylation, ethoxylation to each nitrogen about 7 ethylene oxide residues (PEI, 1800, E7).Preferred above-mentioned polymers soln and anion surfactant such as NaLAS premix.
Other preferred embodiment that can be used as the moisture or non-aqueous polymer solution of the fine atomized liquid of the present invention is the polycarboxylate salt dispersant, and it can be by the unsaturated monomer that will suit, and preferred acid form unsaturated monomer carries out polymerization or copolymerization forms.The unsaturated monomer acid that can be aggregated to form suitable polycarboxylate comprises: vinylformic acid, toxilic acid (or maleic anhydride), fumaric acid, methylene-succinic acid, equisetic acid, methylfumaric acid, citraconic acid and methylene radical propanedioic acid.Existing in polycarboxylate and containing non-hydroxy-acid group is to suit as monomer fragments such as vinyl methyl ether, vinylbenzene, ethene, as long as this fragment is no more than about 40wt% of polymkeric substance.
The preferred molecular weight that adopts is greater than 4000 homopolymerization polycarboxylate.Shi Yi homopolymerization polycarboxylate can be obtained by vinylformic acid especially.Thisly be used for the water-soluble salt that acrylic acid based polymer of the present invention is a polymeric acrylic acid.The molecular-weight average of the polymkeric substance of this sour form is preferably more than 4,000 to 10,000, is preferably more than 4,000 to 7,000, most preferably is greater than 4,000 to 5,000.The water-soluble salt of this acrylate copolymer for example comprises the ammonium salt of an alkali metal salt, ammonium salt and replacement.
Also can use the copolymerization polycarboxylate, as vinylformic acid/maleic copolymer.This class material comprises the water-soluble salt of vinylformic acid and maleic acid.The molecular-weight average of the multipolymer of this sour form is preferably about 2,000-100,000, more preferably from about 5,000-75,000, most preferably from about 7,000-65,000.Vinylformic acid section and the ratio of toxilic acid section in this multipolymer are generally about 30: 1-1: 1, more preferably from about 10: 1-2: 1.The example of the water-soluble salt of this vinylformic acid/maleic acid comprises the ammonium salt of its an alkali metal salt, ammonium salt and replacement.Above-mentioned polymers soln is compound in advance with anion surfactant such as LAS preferably.The washing assistant composition
Can comprise in the detergent raw material of the inventive method other detergent ingredients and/or, in the subsequent step of the inventive method, can in detergent composition, mix various other compositions.These auxiliary components comprise other washing assistant, SYNTHETIC OPTICAL WHITNER, bleach-activating agent, suds suppressor or short infusion, anti-tarnishing agent, sanitas, soil-suspending agent, soil releasing agent, sterilant, pH regulator agent, non-washing assistant alkali source, sequestrant, terre verte, enzyme, enzyme stabilizers and spices.Referring to, US3,936,537 (1976.2.3 is issued to Baskerville, Jr etc.), the document is incorporated herein by reference.
Other washing assistant is selected from various water-soluble alkali metal salts, ammonium salt or the substituted ammonium salt of phosphoric acid, polycondensation phosphoric acid, phosphonic acids, polycondensation phosphonic acids, carbonic acid, boric acid, poly-hydroxy sulfonic acid, poly-acetate, carboxylic acid and poly carboxylic acid usually.An alkali metal salt of preferred above-mentioned acid, particularly sodium salt.That preferably use is phosphoric acid salt, carbonate, C
10-C
18Lipid acid, polycarboxylate and its mixture.More preferably tripoly phosphate sodium STPP, tetrasodium pyrophosphate, Citrate trianion, tartrate, list and disuccinate and its mixture (stating as follows).
Compare with amorphous sodium silicate, the crystal type lamina sodium silicate demonstrates obvious enhanced calcium and magnesium ion exchange capacity.In addition, lamina sodium silicate is magnesium ion but not calcium ion more preferably, and these characteristics are to guarantee that all basically " hardness materials " remove necessary from washing water.Yet these crystal type lamina sodium silicates are more more expensive than amorphous silicate and other washing assistant usually.Thereby for economically viable laundry detergent is provided, the ratio of used crystal type lamina sodium silicate must careful selection.This class crystal type lamina sodium silicate is stated in following document: US 4,605,509 (Corkill etc.), and the document is incorporated herein by reference.
The specific examples of inorganic phosphate builders is tripolyphosphate, tetra-sodium, polymerization degree polymerization metaphosphoric acid and ortho-phosphoric sodium and the sylvite for about 6-21.The example of polyphosphonate washing assistant is the sodium of ethylidene diphosphonic acid and sylvite, ethane 1-hydroxyl-1, the sodium of 1-di 2 ethylhexyl phosphonic acid and sylvite and ethane, 1,1, the sodium of 2-tri methylene phosphonic acid and sylvite.Other phosphorus washing-aid compound is disclosed in the following document: US 3,159, and 581; 3,213,030; 3,422,021; 3,422,137; 3,400,176 and 3,400,148; These documents all are incorporated herein by reference.
The example of without phosphorus inorganic washing auxiliary detergent is tetraborate decahydrate and SiO
2With alkali metal oxide weight ratio be about 0.5-4.0, the preferred silicate of about 1.0-2.4.Be used for various an alkali metal salts, ammonium salt and substituted ammonium salt that water-soluble without phosphorus organic additive of the present invention comprises poly-acetate, carboxylic acid, poly carboxylic acid and poly-hydroxy sulfonic acid.The example of poly-acetate and polycarboxylate washing assistant is sodium, potassium, lithium, ammonium and the substituted ammonium salt of ethylenediamine tetraacetic acid (EDTA), nitrotrimethylolmethane acetate, oxygen disuccinic acid, mellic acid, benzene poly carboxylic acid and citric acid.
Polymer poly-carboxylate's washing assistant is stated in 067 (1967.3.7 is issued to Diehl) at US 3,308, and the document is incorporated herein by reference.This class material comprises aliphatic carboxylic acid such as the homopolymer of toxilic acid, methylene-succinic acid, methylfumaric acid, fumaric acid, equisetic acid, citraconic acid and methylene radical propanedioic acid and the water-soluble salt of multipolymer.In these materials some can be used as the following stated water-soluble anionic polymer to be used, but only just can use when itself and non-soap type anion surfactant can form the affinity mixture.
Other is suitable for polycarboxylate of the present invention and is the polyacetal carboxylation, as US4, and 144,226 (1979.3.13 is issued to Crutchfield etc.) and US 4,246,495 (1979.3.27 is issued to Crutchfield etc.) are described, and these two pieces of documents all are incorporated herein by reference.These polyacetal carboxylations can be under polymerizing condition, and ester and a kind of polymerization starter of oxoethanoic acid placed the preparation of coming together.Formed polyacetal carboxylic acid ester is connected on the chemically stable end group again and prevents its depolymerization rapidly in basic solution with the stabilized polyacetal carboxylic acid, changes into corresponding salt, and adds in the detergent composition.Particularly preferred poly carboxylic acid washing assistant is an ether carboxylic acid lotion-aid combination, it comprises the combination of tartrate monosuccinic acid salt and tartrate disuccinate, and it is at US 4,663, state in 071 (1987.5.5 is issued to Bush etc.), the document is incorporated herein by reference.
SYNTHETIC OPTICAL WHITNER and activator are stated among 934 (1983.11.1 is issued to Chung etc.) and the US 4,483,781 (1984.11.20 is issued to Hartman) at US 4,412, and two pieces of documents all are incorporated herein by reference.Sequestrant also is disclosed in US 4,663, and the 17th hurdle the 54th of 071 (Bush etc.) walks to the 18th hurdle the 68th row, and the document is incorporated herein by reference.Foam properties-correcting agent also is optional member, is disclosed in US 3,933, and among 672 (1976.1.20 is issued to Bartoletta etc.) and the US 4,136,045 (1979.1.23 is issued to Gault etc.), two pieces of documents all are incorporated herein by reference.
Be suitable for smectic clays of the present invention at US 4,762, state in 645 (1988.8.9 is issued to Tucker etc.), the 6th hurdle the 3rd walks to the 7th hurdle the 24th row, and the document is incorporated herein by reference.Be applicable to that other decontamination lotion promoter of the present invention lists (the 13rd hurdle the 54th walks to 16 hurdles, 16 row) in the patent documentation of Baskerville, and, state in 071 (1987.5.5 is issued to Bush etc.), all be incorporated herein by reference at US 4,663.The selectivity procedure of processing
Method of the present invention also optionally comprises, is being used for one of first mixing tank of the present invention, second mixing tank and/or the 3rd mixing tank or more than other tackiness agent of spraying.Add tackiness agent to strengthen the agglomeration performance by " tackiness agent " or " tackiness agent " that is provided for detergent component.Tackiness agent is preferably selected from water, anion surfactant, nonionogenic tenside, liquid silicon hydrochlorate, polyoxyethylene glycol, Polyvinylpyrolidone (PVP), polyacrylic ester, citric acid and its mixture.Other suitable binder substance comprises US 5,108,646 (Beerse etc., Procter ﹠amp; Gamble Co.) described those, the document is incorporated herein by reference.
Other selectivity step of the inventive method is included in the detergent agglomerate of screening oversize in the screening plant, and this screening plant can adopt various forms, comprises the sieve that is usually used in the required particle diameter of final Betengent product, but is not limited only to this.Other selectivity step comprises by the step of the further dry agglomerates of aforementioned device so that detergent agglomerate is adjusted.
Another selectivity step of the inventive method comprises that employing comprises that the whole bag of tricks of spraying and/or other conventional detergent ingredients of premix is to put in order the detergent agglomerate that forms.For example, described arrangement step comprises spray perfume, whitening agent and enzyme to the agglomerate of putting in order, so that more complete detergent composition to be provided.This technology and used composition also well known to a person skilled in the art.
Another selectivity step comprises tensio-active agent paste constructive method in the inventive method, as before the inventive method, by add the paste hardening material with forcing machine moisture anion surfactant paste is carried out hardening treatment.Tensio-active agent is stuck with paste the detailed description of building method referring to co-applications PCT/US96/15960 (1996.10.4 application).
In order to make the present invention be easier to understand, with reference to following embodiment the present invention is described, but these embodiment only are used to illustrate the present invention, scope of the present invention are not had any restriction.
EXAMPLE Example 1:
Below be the embodiment that preparation has the high-density agglomerate, wherein adopt L digeKM mixing tank (KM-600), adopt Schugi FX-160 mixing tank afterwards, adopt fluidized bed plant then.
[step 1] is by the stirring rake of knife mill and/or KM-600 mixing tank, with 120-260kg/hrHLAS (C
11-C
18The sour knife mill and/or the precursor of alkylbenzene sulfonate; 95% activity) descends with the ground SODA ASH LIGHT 99.2 (median size 15 μ m) of powdery STPP (median size 40-75 μ m), the 160-200kg/hr of 220kg/hr, ground sodium sulfate (median size 15 μ m) and the 200kg/hr internal recycle flow of powder of 80-120kg/hr to disperse at 45-60 ℃.Can adopt the dentation stirring rake as hydrid component in the KM mixing tank.The knife mill that is used for the KM mixing tank can be used for reducing the content of excessive agglomerate.The operational condition of KM mixing tank is as follows:
Mean residence time: 3-6 minute
Energy condition: 0.15-2kj/kg
Mixing velocity: 100-150rpm
Jacket temperature: 30-50 ℃
[step 2] joins the agglomerate in the KM-600 mixing tank in the Schugi FX-160 mixing tank.Under about 50-60 ℃ in the Schugi mixing tank with 10-20kg/hrHLAS (C
11-C
18The acid precursor of alkylbenzene sulfonate; The 94-97% activity) is dispersed into fine atomized liquid.The SODA ASH LIGHT 99.2 (the about 10-20 μ of median size m) that in this Schugi mixing tank, adds 20-80kg/hr.The operational condition of Schugi mixing tank is as follows:
Mean residence time: 0.2-5 second
Tip velocity: 16-26m/s
Energy condition: 0.15-2kj/kg
Mixing velocity: 2000-3200rpm
[step 3] joins in the fluidized bed drying equipment agglomerate in the Schugi mixing tank with dry, circular and agglomerate growth.Also can be under 35 ℃ in fluidized bed drying equipment, add 20-80kg/hr the liquid silicon hydrochlorate (43% solid, 2.0R).The operational condition of fluidized bed drying equipment is as follows:
Mean residence time: 4-8 minute
The fluidizing bed degree of depth: 200mm not
Spray droplet particle diameter: be lower than 50 μ m
Spray height: 175-250mm (more than the distribution plate)
Fluidizing velocity: 0.4-0.8m/s
Bed temperature: 40-70 ℃
The density of the product that is obtained by step 3 is about 700g/l, can be randomly through cooling, classification and/or grinding steps.Embodiment 2:
Below be the embodiment that preparation has the high-density agglomerate, wherein adopt L digeKM mixing tank (KM-600), adopt Schugi FX-160 mixing tank afterwards, adopt fluidized bed plant then.
Under [step 1] about 45-60 ℃, by the stirring rake of knife mill and/or KM-600 mixing tank, with 15-30kg/hr HLAS (C
11-C
18The acid precursor of alkylbenzene sulfonate; 95% activity) disperses with the ground SODA ASH LIGHT 99.2 (median size 15 μ m) of powdery STPP (median size 40-75 μ m), the 160-200kg/hr of 220kg/hr, ground sodium sulfate (median size 15 μ m) and the 200kg/hr internal recycle flow of powder of 80-120kg/hr.Can adopt the dentation stirring rake as hydrid component in the KM mixing tank.The knife mill that is used for the KM mixing tank can be used for reducing the content of excessive agglomerate.The operational condition of KM mixing tank is as follows:
Mean residence time: 3-6 minute
Energy condition: 0.15-2kj/kg
Mixing velocity: 100-150rpm
Jacket temperature: 30-50 ℃
[step 2] joins the agglomerate in the KM-600 mixing tank in the Schugi FX-160 mixing tank.Under about 30-40 ℃ in the Schugi mixing tank with 10-25kg/hr neutral AE
3S liquid (25-28% activity) is dispersed into fine atomized liquid.The SODA ASH LIGHT 99.2 that in the Schugi mixing tank, adds 20-80kg/hr.The operational condition of Schugi mixing tank is as follows:
Mean residence time: 0.2-5 second
Tip velocity: 16-26m/s
Energy condition: 0.15-2kj/kg
Mixing velocity: 2000-3200rpm
[step 3] joins in the fluidized bed drying equipment agglomerate in the Schugi mixing tank with dry, circular and agglomerate growth.Also can be under 35 ℃ in fluidized bed drying equipment, add 20-80kg/hr the liquid silicon hydrochlorate (43% solid, 2.0R).The condition of fluidized bed drying equipment is as follows:
Mean residence time: 2-4 minute
The fluidizing bed degree of depth: 200mm not
Drop spray particle diameter: be lower than 50 μ m
Spray height: 175-250mm (more than the distribution plate)
Fluidizing velocity: 0.4-0.8m/s
Bed temperature: 40-70 ℃
The density of the product that is obtained by step 3 is about 700g/l, can be randomly through cooling, classification and/or grinding steps.Embodiment 3:
Below be the embodiment that preparation has the high-density agglomerate, wherein adopt L dige KM mixing tank (KM-600), adopt fluidized bed plant to carry out further agglomeration then.
[step 1] 250-270kg/hr, moisture coco fatty alcohol sulfate tensio-active agent is stuck with paste (C
11-C
18, 71.5% activity), 40-80kg/hr HLAS (C
11-C
18The acid precursor of alkylbenzene sulfonate; The 94-97% activity) and ground sodium sulfate (median size 15 μ m) and the 200kg/hr internal recycle flow of powder of the ground SODA ASH LIGHT 99.2 of the powdery STPP of 220kg/hr (median size 40-75 μ m), 160-200kg/hr (median size 15 μ m), 80-120kg/hr join together in the KM-600 mixing tank.Add tensio-active agent down at 40-52 ℃ and stick with paste, at room temperature add powder.The knife mill that is used for the KM mixing tank can be used for reducing the content of excessive agglomerate.The condition of KM mixing tank is as follows:
Mean residence time: 3-6 minute
Energy condition: 0.15-2kj/kg
Mixing velocity: 100-150rpm
Jacket temperature: 30-50 ℃
[step 2] joins the agglomerate in the KM mixing tank dry in the fluidized bed drying equipment, circular and the agglomerate growth.Also can be under 35 ℃ in fluidized bed drying equipment, add 20-80kg/hr the liquid silicon hydrochlorate (43% solid, 2.0R).The condition of fluidized bed drying equipment is as follows:
Mean residence time: 2-4 minute
The fluidizing bed degree of depth: 200mm not
Drop spray particle diameter: be lower than 50 μ m
Spray height: 175-250mm (more than the distribution plate)
Fluidizing velocity: 0.4-0.8m/s
Bed temperature: 40-70 ℃
The density of the product that is obtained by step 3 is about 700g/l, can be randomly through cooling, classification and/or grinding steps.
Below at length invention has been described, and those skilled in the art can obviously find out, can carry out various improvement not deviating under the scope of the present invention, and the present invention is not subjected to the restriction of content as mentioned above.
Claims (10)
1, a kind ofly prepare the non-tower process that density is at least about the granular detergent composition of 600g/l, this method comprises the steps:
(a) scatter table surface-active agent in mixing tank, be coated with this tensio-active agent with the fine powder that with diameter is 0.1-500 μ m, the condition of wherein said mixing tank comprises: (1) mean residence time is about 0.5-15 minute and (2) energy condition is about 0.15-7kj/kg, wherein forms agglomerate; With
(b) in one or more fluidizing devices, agglomerate is carried out granulation, wherein the condition of each fluidizing device comprises that (1) mean residence time is about 1-10 minute, (2) the fluidizing bed degree of depth is not the about 300mm of about 100-, (3) the drop spray particle diameter is no more than about 50 μ m, (4) spray height is the about 250mm of about 175-, (5) fluidizing velocity is about 0.2-1.4m/s, and (6) fluidized-bed temperature is about 12-100 ℃.
2, a kind ofly prepare the non-tower process that density is at least about the granular detergent composition of 600g/l,
This method comprises the steps:
(a) scatter table surface-active agent in mixing tank, and be that the fine powder of 0.1-500 μ m is coated with this tensio-active agent with diameter, the condition of wherein said mixing tank comprises: (1) mean residence time is about 0.5-15 minute, and (2) energy condition is about 0.15-7kj/kg, wherein forms first agglomerate;
(a ') is in mixing tank, the fine atomized liquid of spraying on first agglomerate, the condition of wherein said mixing tank comprises: (1) mean residence time is about 0.2-5 second, and (2) tip velocity is about 10-30m/s, (3) energy condition is about 0.15-5kj/kg, wherein forms second agglomerate; With
(b) in one or more fluidizing devices, second agglomerate is carried out granulation, wherein the condition of each fluidizing device comprises that (1) mean residence time is about 1-10 minute, (2) the fluidizing bed degree of depth is not about 100-300mm, (3) the drop spray particle diameter is no more than about 50 μ m, (4) spray height is about 175-250mm, (5) fluidizing velocity is about 0.2-1.4m/s, and (6) fluidized-bed temperature is about 12-100 ℃.
3, according to the method for claim 1 or 2, wherein, described tensio-active agent is selected from anion surfactant, nonionogenic tenside, cats product, zwitterionics, amphoterics and its mixture.
4, according to the method for claim 1 or 2, wherein, described tensio-active agent is selected from alkylbenzene sulfonate, alkyl alkoxy sulfate, alkylethoxylate, alkyl-sulphate, coco fatty alcohol sulfate and its mixture.
5, according to the method for claim 1 or 2, wherein, in step (a) with described surfactant-dispersed moisture or non-aqueous polymer solution.
6, according to the method for claim 1 or 2, wherein, described fine powder is selected from SODA ASH LIGHT 99.2, powdery tripoly phosphate sodium STPP, hydration tri-polyphosphate, sodium sulfate, silico-aluminate, crystalline layered silicate, phosphoric acid salt, precipitated silicate, polymkeric substance, carbonate, Citrate trianion, nitrilotriacetic acid(NTA) salt, powdery surface promoting agent and composition thereof.
7, according to the method for claim 1 or 2, wherein also in the future the internal recycle flow of powder of self-fluidized type equipment join in the step (a).
8, according to the method for claim 2, wherein fine atomized liquid is selected from liquid silicon hydrochlorate, anion surfactant, cats product, aqueous polymers solution, non-aqueous polymer solution, water and composition thereof.
9, according to the method for claim 2, wherein in step (a), form excessive fine powder, and wherein this excessive fine powder is added in the step (a ').
10, a kind of granular detergent composition for preparing by the method for claim 1 or 2.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
WOPCT/US96/15881 | 1996-10-04 | ||
PCT/US1996/015881 WO1998014549A1 (en) | 1996-10-04 | 1996-10-04 | Process for making a low density detergent composition by non-tower process |
Publications (1)
Publication Number | Publication Date |
---|---|
CN1239995A true CN1239995A (en) | 1999-12-29 |
Family
ID=22255901
Family Applications (8)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB971802785A Expired - Fee Related CN1133738C (en) | 1996-10-04 | 1997-06-05 | Process for making detergent compsn. by non-tower process |
CNB971802939A Expired - Fee Related CN1133739C (en) | 1996-10-04 | 1997-06-05 | Process for making detergent composition by non-tower process |
CN97180298.XA Pending CN1239995A (en) | 1996-10-04 | 1997-06-05 | Process for making detergent composition by non-tower process |
CNB971802793A Expired - Fee Related CN1156560C (en) | 1996-10-04 | 1997-06-05 | Process for making detergent compsn. by non-tower process |
CNB971802963A Expired - Fee Related CN1156562C (en) | 1996-10-04 | 1997-06-05 | Process for making detergent composition by non-tower process |
CNB971802807A Expired - Fee Related CN1156561C (en) | 1996-10-04 | 1997-06-05 | Process for making detergent compsn. by non-tower process |
CN97180294.7A Pending CN1239992A (en) | 1996-10-04 | 1997-06-05 | Process for making detergent composition by non-tower process |
CNB971802971A Expired - Fee Related CN1156563C (en) | 1996-10-04 | 1997-06-05 | Process for making detergent composition by non-tower process |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB971802785A Expired - Fee Related CN1133738C (en) | 1996-10-04 | 1997-06-05 | Process for making detergent compsn. by non-tower process |
CNB971802939A Expired - Fee Related CN1133739C (en) | 1996-10-04 | 1997-06-05 | Process for making detergent composition by non-tower process |
Family Applications After (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB971802793A Expired - Fee Related CN1156560C (en) | 1996-10-04 | 1997-06-05 | Process for making detergent compsn. by non-tower process |
CNB971802963A Expired - Fee Related CN1156562C (en) | 1996-10-04 | 1997-06-05 | Process for making detergent composition by non-tower process |
CNB971802807A Expired - Fee Related CN1156561C (en) | 1996-10-04 | 1997-06-05 | Process for making detergent compsn. by non-tower process |
CN97180294.7A Pending CN1239992A (en) | 1996-10-04 | 1997-06-05 | Process for making detergent composition by non-tower process |
CNB971802971A Expired - Fee Related CN1156563C (en) | 1996-10-04 | 1997-06-05 | Process for making detergent composition by non-tower process |
Country Status (12)
Country | Link |
---|---|
EP (9) | EP0929645A1 (en) |
JP (9) | JP3305327B2 (en) |
CN (8) | CN1133738C (en) |
AR (6) | AR010510A1 (en) |
AT (5) | ATE223476T1 (en) |
AU (9) | AU7388196A (en) |
BR (7) | BR9612732A (en) |
CA (9) | CA2267291C (en) |
DE (5) | DE69721287T2 (en) |
ES (5) | ES2193386T3 (en) |
MX (2) | MX219077B (en) |
WO (9) | WO1998014549A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111655830A (en) * | 2018-01-26 | 2020-09-11 | 埃科莱布美国股份有限公司 | Solidified liquid anionic surfactants |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1996031510A1 (en) * | 1995-04-03 | 1996-10-10 | Novartis Ag | Pyrazole derivatives and processes for the preparation thereof |
GB9526097D0 (en) * | 1995-12-20 | 1996-02-21 | Unilever Plc | Process |
GB9712580D0 (en) * | 1997-06-16 | 1997-08-20 | Unilever Plc | Production of detergent granulates |
GB9712583D0 (en) | 1997-06-16 | 1997-08-20 | Unilever Plc | Production of detergent granulates |
GB9713748D0 (en) * | 1997-06-27 | 1997-09-03 | Unilever Plc | Production of detergent granulates |
US6355606B1 (en) | 1997-07-14 | 2002-03-12 | The Procter & Gamble Company | Process for making a low density detergent composition by controlled agglomeration in a fluid bed dryer |
CN1192091C (en) | 1997-07-14 | 2005-03-09 | 普罗格特-甘布尔公司 | Process for making low density detergent composition by controlling agglomeration via particle size |
EP1002044B1 (en) | 1997-07-15 | 2004-05-06 | The Procter & Gamble Company | Process for making high-active detergent agglomerates by multi-stage surfactant paste injection |
US6440342B1 (en) | 1998-07-08 | 2002-08-27 | The Procter & Gamble Company | Process for making a low density detergent composition by controlling nozzle height in a fluid bed dryer |
US6492319B1 (en) | 1998-08-20 | 2002-12-10 | The Procter & Gamble Company | High density detergent-making process involving a moderate speed mixer/densifier |
US6794354B1 (en) * | 1998-09-18 | 2004-09-21 | The Procter & Gamble Company | Continuous process for making detergent composition |
CA2346926A1 (en) * | 1998-10-26 | 2000-05-04 | Christopher Andrew Morrison | Processes for making granular detergent composition having improved appearance and solubility |
GB9825558D0 (en) * | 1998-11-20 | 1999-01-13 | Unilever Plc | Granular detergent components and particulate detergent compositions containing them |
GB9913546D0 (en) | 1999-06-10 | 1999-08-11 | Unilever Plc | Granular detergent component containing zeolite map and laundry detergent compositions containing it |
EP1187904B1 (en) * | 1999-06-21 | 2004-08-11 | The Procter & Gamble Company | Process for making a granular detergent composition |
US6894018B1 (en) | 1999-06-21 | 2005-05-17 | The Procter & Gamble Company | Process for making granular detergent in a fluidized bed granulator having recycling of improperly sized particles |
GB0009877D0 (en) † | 2000-04-20 | 2000-06-07 | Unilever Plc | Granular detergent component and process for its preparation |
EP2123742A1 (en) | 2008-05-14 | 2009-11-25 | The Procter and Gamble Company | A solid laundry detergent composition comprising light density silicate salt |
WO2011061045A1 (en) | 2009-11-20 | 2011-05-26 | Unilever Nv | Detergent granule and its manufacture |
CN114774206A (en) | 2014-04-10 | 2022-07-22 | 宝洁公司 | Composite detergent particles and laundry detergent composition comprising the same |
WO2019148090A1 (en) | 2018-01-26 | 2019-08-01 | Ecolab Usa Inc. | Solidifying liquid amine oxide, betaine, and/or sultaine surfactants with a carrier |
EP3743494A1 (en) | 2018-01-26 | 2020-12-02 | Ecolab Usa Inc. | Solidifying liquid amine oxide, betaine, and/or sultaine surfactants with a binder and optional carrier |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3625902A (en) * | 1968-10-11 | 1971-12-07 | Stauffer Chemical Co | Method of preparing agglomerated detergent composition |
US4169806A (en) * | 1978-08-09 | 1979-10-02 | The Procter & Gamble Company | Agglomeration process for making granular detergents |
US4992079A (en) * | 1986-11-07 | 1991-02-12 | Fmc Corporation | Process for preparing a nonphosphate laundry detergent |
GB2209172A (en) * | 1987-08-28 | 1989-05-04 | Unilever Plc | Preparation of solid particulate components for detergents |
KR0170424B1 (en) * | 1990-07-05 | 1999-01-15 | 호르스트 헤를레,요한 글라슬 | Process for making washing and cleaning active tensile granulates |
CA2096255C (en) * | 1990-11-14 | 1998-01-20 | Jeffrey D. Painter | Nonphosphated automatic dishwashing compositions with oxygen bleach systems and process for their preparation |
EP0555622B1 (en) * | 1992-02-14 | 1997-07-09 | The Procter & Gamble Company | Process for making detergent granules by neutralisation of sulphonic acids |
DE69332270T3 (en) * | 1992-06-15 | 2006-08-17 | The Procter & Gamble Company, Cincinnati | METHOD FOR PRODUCING COMPACT DETERGENT COMPOSITIONS |
DE69227311T2 (en) * | 1992-07-15 | 1999-06-02 | The Procter & Gamble Co., Cincinnati, Ohio | Detergent compositions |
CA2173108A1 (en) * | 1993-10-15 | 1995-04-20 | Scott William Capeci | Continuous process for making high density detergent granules |
GB9322530D0 (en) * | 1993-11-02 | 1993-12-22 | Unilever Plc | Process for the production of a detergent composition |
PT663439E (en) * | 1994-01-17 | 2000-12-29 | Procter & Gamble | PROCESS FOR THE PREPARATION OF DETERGENT GRANULES |
US5489392A (en) * | 1994-09-20 | 1996-02-06 | The Procter & Gamble Company | Process for making a high density detergent composition in a single mixer/densifier with selected recycle streams for improved agglomerate properties |
US5516448A (en) * | 1994-09-20 | 1996-05-14 | The Procter & Gamble Company | Process for making a high density detergent composition which includes selected recycle streams for improved agglomerate |
US5554587A (en) * | 1995-08-15 | 1996-09-10 | The Procter & Gamble Company | Process for making high density detergent composition using conditioned air |
-
1996
- 1996-10-04 MX MX9903195A patent/MX219077B/en not_active IP Right Cessation
- 1996-10-04 MX MX9903193A patent/MX219076B/en not_active IP Right Cessation
- 1996-10-04 AU AU73881/96A patent/AU7388196A/en not_active Abandoned
- 1996-10-04 EP EP96936168A patent/EP0929645A1/en not_active Withdrawn
- 1996-10-04 WO PCT/US1996/015881 patent/WO1998014549A1/en not_active Application Discontinuation
- 1996-10-04 JP JP53523397A patent/JP3305327B2/en not_active Expired - Fee Related
- 1996-10-04 CA CA002267291A patent/CA2267291C/en not_active Expired - Fee Related
- 1996-10-04 BR BR9612732A patent/BR9612732A/en not_active IP Right Cessation
-
1997
- 1997-06-05 JP JP51648998A patent/JP3299981B2/en not_active Expired - Fee Related
- 1997-06-05 ES ES97931058T patent/ES2193386T3/en not_active Expired - Lifetime
- 1997-06-05 BR BR9712490-7A patent/BR9712490A/en not_active IP Right Cessation
- 1997-06-05 CA CA002268062A patent/CA2268062C/en not_active Expired - Fee Related
- 1997-06-05 CA CA002268060A patent/CA2268060C/en not_active Expired - Fee Related
- 1997-06-05 DE DE69721287T patent/DE69721287T2/en not_active Expired - Fee Related
- 1997-06-05 ES ES97929815T patent/ES2201305T3/en not_active Expired - Lifetime
- 1997-06-05 CA CA002268068A patent/CA2268068C/en not_active Expired - Fee Related
- 1997-06-05 EP EP97931057A patent/EP0929652A1/en not_active Ceased
- 1997-06-05 DE DE69726439T patent/DE69726439T2/en not_active Expired - Fee Related
- 1997-06-05 EP EP97928872A patent/EP0929649B1/en not_active Expired - Lifetime
- 1997-06-05 AT AT97928871T patent/ATE223476T1/en not_active IP Right Cessation
- 1997-06-05 AT AT97929815T patent/ATE246726T1/en not_active IP Right Cessation
- 1997-06-05 CA CA002268063A patent/CA2268063C/en not_active Expired - Fee Related
- 1997-06-05 JP JP51649598A patent/JP3299986B2/en not_active Expired - Fee Related
- 1997-06-05 JP JP51649298A patent/JP3345022B2/en not_active Expired - Fee Related
- 1997-06-05 WO PCT/US1997/009790 patent/WO1998014552A1/en active IP Right Grant
- 1997-06-05 CN CNB971802785A patent/CN1133738C/en not_active Expired - Fee Related
- 1997-06-05 AU AU34782/97A patent/AU3478297A/en not_active Abandoned
- 1997-06-05 WO PCT/US1997/009793 patent/WO1998014555A1/en not_active Application Discontinuation
- 1997-06-05 DE DE69726440T patent/DE69726440T2/en not_active Expired - Fee Related
- 1997-06-05 DE DE69723986T patent/DE69723986T2/en not_active Expired - Fee Related
- 1997-06-05 JP JP51649098A patent/JP3299982B2/en not_active Expired - Fee Related
- 1997-06-05 WO PCT/US1997/009794 patent/WO1998014556A1/en active IP Right Grant
- 1997-06-05 AT AT97928872T patent/ATE255159T1/en not_active IP Right Cessation
- 1997-06-05 BR BR9712492-3A patent/BR9712492A/en not_active IP Right Cessation
- 1997-06-05 BR BR9713249-7A patent/BR9713249A/en not_active Application Discontinuation
- 1997-06-05 EP EP97929815A patent/EP0929650B1/en not_active Expired - Lifetime
- 1997-06-05 JP JP51649198A patent/JP3299983B2/en not_active Expired - Fee Related
- 1997-06-05 JP JP51649398A patent/JP3299984B2/en not_active Expired - Fee Related
- 1997-06-05 CA CA002268067A patent/CA2268067C/en not_active Expired - Fee Related
- 1997-06-05 CN CNB971802939A patent/CN1133739C/en not_active Expired - Fee Related
- 1997-06-05 EP EP97931056A patent/EP0929651B1/en not_active Expired - Lifetime
- 1997-06-05 WO PCT/US1997/009796 patent/WO1998014558A1/en active Application Filing
- 1997-06-05 CA CA002268055A patent/CA2268055C/en not_active Expired - Fee Related
- 1997-06-05 AU AU33030/97A patent/AU3303097A/en not_active Abandoned
- 1997-06-05 BR BR9711861A patent/BR9711861A/en not_active Application Discontinuation
- 1997-06-05 ES ES97928871T patent/ES2178778T3/en not_active Expired - Lifetime
- 1997-06-05 AU AU34785/97A patent/AU3478597A/en not_active Abandoned
- 1997-06-05 JP JP51649698A patent/JP3299987B2/en not_active Expired - Fee Related
- 1997-06-05 BR BR9711865A patent/BR9711865A/en not_active IP Right Cessation
- 1997-06-05 BR BR9713246-2A patent/BR9713246A/en not_active IP Right Cessation
- 1997-06-05 JP JP51649498A patent/JP3299985B2/en not_active Expired - Fee Related
- 1997-06-05 WO PCT/US1997/009795 patent/WO1998014557A1/en active IP Right Grant
- 1997-06-05 EP EP97932153A patent/EP0929655A1/en not_active Ceased
- 1997-06-05 AU AU33785/97A patent/AU3378597A/en not_active Abandoned
- 1997-06-05 CN CN97180298.XA patent/CN1239995A/en active Pending
- 1997-06-05 EP EP97931059A patent/EP0929654A1/en not_active Withdrawn
- 1997-06-05 CN CNB971802793A patent/CN1156560C/en not_active Expired - Fee Related
- 1997-06-05 CN CNB971802963A patent/CN1156562C/en not_active Expired - Fee Related
- 1997-06-05 WO PCT/US1997/009791 patent/WO1998014553A1/en active IP Right Grant
- 1997-06-05 ES ES97931056T patent/ES2210544T3/en not_active Expired - Lifetime
- 1997-06-05 AT AT97931056T patent/ATE255160T1/en not_active IP Right Cessation
- 1997-06-05 CA CA002267424A patent/CA2267424C/en not_active Expired - Fee Related
- 1997-06-05 CN CNB971802807A patent/CN1156561C/en not_active Expired - Fee Related
- 1997-06-05 AU AU35683/97A patent/AU3568397A/en not_active Abandoned
- 1997-06-05 AT AT97931058T patent/ATE238409T1/en not_active IP Right Cessation
- 1997-06-05 WO PCT/US1997/009792 patent/WO1998014554A1/en not_active Application Discontinuation
- 1997-06-05 AU AU34783/97A patent/AU3478397A/en not_active Abandoned
- 1997-06-05 AU AU33031/97A patent/AU3303197A/en not_active Abandoned
- 1997-06-05 WO PCT/US1997/009789 patent/WO1998014551A1/en active IP Right Grant
- 1997-06-05 CA CA002268052A patent/CA2268052C/en not_active Expired - Fee Related
- 1997-06-05 CN CN97180294.7A patent/CN1239992A/en active Pending
- 1997-06-05 EP EP97931058A patent/EP0929653B1/en not_active Expired - Lifetime
- 1997-06-05 EP EP97928871A patent/EP0929648B1/en not_active Expired - Lifetime
- 1997-06-05 AU AU34784/97A patent/AU3478497A/en not_active Abandoned
- 1997-06-05 DE DE69715224T patent/DE69715224T2/en not_active Expired - Fee Related
- 1997-06-05 ES ES97928872T patent/ES2212109T3/en not_active Expired - Lifetime
- 1997-06-05 CN CNB971802971A patent/CN1156563C/en not_active Expired - Fee Related
- 1997-10-03 AR ARP970104578A patent/AR010510A1/en unknown
- 1997-10-03 AR ARP970104574A patent/AR010507A1/en unknown
- 1997-10-03 AR ARP970104579A patent/AR010511A1/en unknown
- 1997-10-03 AR ARP970104576A patent/AR010509A1/en unknown
- 1997-10-03 AR ARP970104577A patent/AR010729A1/en unknown
- 1997-10-03 AR ARP970104575A patent/AR010508A1/en unknown
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111655830A (en) * | 2018-01-26 | 2020-09-11 | 埃科莱布美国股份有限公司 | Solidified liquid anionic surfactants |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1156563C (en) | Process for making detergent composition by non-tower process | |
CN1027287C (en) | Formation of detergent granules by deagglomeration of detergent dough | |
CN1156564C (en) | Production of anionic detergent particles | |
CN1326499A (en) | Particulate laundry detergent compositions containing nonionic surfactant granules | |
CN1195839C (en) | Particulate laundry detergent compositions containing anionic surfactant granules | |
CN1122710C (en) | Process for making low density detergent composition by agglomeration with inorganic double salt | |
CN1198773A (en) | Process for making high density detergent composition using conditioned air | |
CN1065565C (en) | Process for preparing detergent compositions | |
CN1242800A (en) | Neutralization process for making agglomerate detergent granules | |
CN1152933A (en) | Process for making a high density detergent composition from starting detergent ingredients | |
CN1234825A (en) | Agglomeration process for producing detergent compositions involving premixing modified polyamine polymers | |
CN1753981A (en) | Anionic surfactant powder | |
CN1120228C (en) | Process for making low density detergent compsn. by non-tower process | |
CN1245530A (en) | Process for production of detergent composition | |
CN1126811C (en) | Process for making high density detergent composition from surfactant paste containing non-aqueous binder | |
CN1067674A (en) | Be used for the condensing method that detergent composition forms the highly active slurry of surfactant granules | |
CN1136824A (en) | Continuous process for producing high density detergent granules | |
CN1200999C (en) | Process for making granular detergent compsn. | |
CN1175097C (en) | Process for making low density detergent compsn. | |
CN1384871A (en) | Process for the preparation of coated detergent particles | |
CN1163633A (en) | Process for making high density detergent composition in single mixer/densifier with selected recycle streams | |
CN1247562A (en) | Process for making detergent compsn. by adding co-surfactants | |
CN1162975A (en) | Process for making a high density detergent composition which includes selected recycle streams |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |